Resonant ultrasound spectroscopy of transition metal tetrachalcogenides

During this master's thesis, the set-up of resonant ultrasound spectroscopy (RUS) technique was developed at the Universidad de los Andes and a temperature-dependent experiment was carried out.

Autores:
Cruz Castiblanco, Juan Pablo Nicolás
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73704
Acceso en línea:
https://hdl.handle.net/1992/73704
Palabra clave:
Charge density wave
NbTe4
TaTe4
Phase transitions
Resonant ultrasound spectroscopy
Thermal hysteresis
Onda de densidad de carga
NbTe4
TaTe4
Transisiones de fase
Espectroscopía de resonancia ultrasónica
Histéresis térmica
Física
Rights
embargoedAccess
License
Attribution 4.0 International
id UNIANDES2_218ede161b4b8410af578ca0888bc5b6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73704
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
dc.title.alternative.spa.fl_str_mv Espectroscopía de resonancia ultrasónica de calcogenuros de metales de transición
title Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
spellingShingle Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
Charge density wave
NbTe4
TaTe4
Phase transitions
Resonant ultrasound spectroscopy
Thermal hysteresis
Onda de densidad de carga
NbTe4
TaTe4
Transisiones de fase
Espectroscopía de resonancia ultrasónica
Histéresis térmica
Física
title_short Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
title_full Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
title_fullStr Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
title_full_unstemmed Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
title_sort Resonant ultrasound spectroscopy of transition metal tetrachalcogenides
dc.creator.fl_str_mv Cruz Castiblanco, Juan Pablo Nicolás
dc.contributor.advisor.none.fl_str_mv Giraldo Gallo, Paula Liliana
dc.contributor.author.none.fl_str_mv Cruz Castiblanco, Juan Pablo Nicolás
dc.contributor.jury.none.fl_str_mv Rincón, Julián
Roa, Jairo
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.eng.fl_str_mv Charge density wave
topic Charge density wave
NbTe4
TaTe4
Phase transitions
Resonant ultrasound spectroscopy
Thermal hysteresis
Onda de densidad de carga
NbTe4
TaTe4
Transisiones de fase
Espectroscopía de resonancia ultrasónica
Histéresis térmica
Física
dc.subject.keyword.none.fl_str_mv NbTe4
TaTe4
Phase transitions
Resonant ultrasound spectroscopy
Thermal hysteresis
Onda de densidad de carga
NbTe4
TaTe4
Transisiones de fase
Espectroscopía de resonancia ultrasónica
Histéresis térmica
dc.subject.themes.spa.fl_str_mv Física
description During this master's thesis, the set-up of resonant ultrasound spectroscopy (RUS) technique was developed at the Universidad de los Andes and a temperature-dependent experiment was carried out.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-12
dc.date.accessioned.none.fl_str_mv 2024-01-31T20:12:44Z
dc.date.accepted.none.fl_str_mv 2024-01-30
dc.date.available.none.fl_str_mv 2025-02-19
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73704
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73704
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv J. A. Hofmann, A. Paskin, K. J. Tauer, and R. J. Weiss. Analysis of ferromagnetic and antiferro-magnetic second-order transitions. Journal of Physics and Chemistry of Solids, 1:45–60, 9 1956.
B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck. Ferromagnetic interaction in EuO. Physical Review Letters, 7:160, 9 1961
M.P. Marder. Condensed Matter Physics. Wiley, 2010.
G. Gruner. The dynamics of charge-density waves. Reviews of Modern Physics, 60:1129, 10 1988.
George Gruner. Density Waves in Solids. Perseus Publishing, 6 2000.
S. Kagoshima, H. Nagasawa, and T. Sambongi. One-Dimensional Conductors. Springer Verlag Berlin Heidelberg New York, 1988
G. Li and J. R. Gladden. High temperature resonant ultrasound spectroscopy: A review. International Journal of Spectroscopy, 2010:1–13, 1 2010.
Y. P. Varshni. Temperature dependence of the elastic constants. Physical Review B, 2:3952, 11 1970.
Hassel Ledbetter. Sound velocities, elastic constants: Temperature dependence. Materials Science and Engineering A, 442:31–34, 12 2006.
Sayak Ghosh. Resonant Ultrasound Spectroscopy measurements of correlated systems. Cornell University, 2022.
R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P. Chandra, V. Keppens, D. Mandrus, M. A. McGuire, B. C. Sales, A. S. Sefat, and J. Schmalian. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett.,105:157003, Oct 2010.
J. Nyhus, U. Thisted, N. Kikugawa, T. Suzuki, and K. Fossheim. Elastic and specific heat critical properties of La1,85Sr0,15CuO4. Physica C: Superconductivity, 369:273 277, 3 2002.
M. Saint-Paul, C. Opagiste, and C. Guttin. Elastic anomalies at the first order transition in lu5ir4si10. Journal of Physics and Chemistry of Solids, 138:109255, 2020.
Sayak Ghosh, Michael Matty, Ryan Baumbach, Eric D Bauer, K A Modic, Arkady Shekhter, J A Mydosh, Eun-Ah Kim, and B J Ramshaw. One-component order para meter in URu2 Si2 uncovered by resonant ultrasound spectroscopy and machine learning, 2020
J. A. Galvis, A. Fang, D. Jim´ enez-Guerrero, J. Rojas-Castillo, J. Casas, O. Herrera, A. C. Garcia-Castro, E. Bousquet, I. R. Fisher, A. Kapitulnik, and P. Giraldo-Gallo. Nanoscale phase-slip domain walls in the charge density wave state of the Weyl semi metal candidate NbTe4. Physical Review B, 107:045120, 1 2023.
Xi Zhang, Qiangqiang Gu, Haigen Sun, Tianchuang Luo, Yanzhao Liu, Yueyuan Chen, Zhibin Shao, Zongyuan Zhang, Shaojian Li, Yuanwei Sun, Yuehui Li, Xiaokang Li, Shangjie Xue, Jun Ge, Ying Xing, R. Comin, Zengwei Zhu, Peng Gao, Binghai Yan, Ji Feng, Minghu Pan, and Jian Wang. Eightfold fermionic excitation in a charge density wave compound. Physical Review B, 102:035125, 7 2020.
D J Eaglesham, D Bird, R L Withers, and J W Steeds. Microstructural behaviour in the CDW states of NbTe4 and TaTe4; domains, discommensurations and superlattice symmetry. J. Phys, 18:1–11, 1985
F. W. Boswell, A. Prodan, and J. K. Brandon. Charge-density waves in the quasi-one dimensional compounds NbTe4 and TaTe4. Journal of Physics C: Solid State Physics, 16:1067, 2 1983.
S. Tadaki, N. Hino, T. Sambongi, K. Nomura, and F. L´evy. Electrical properties of NbTe4 and TaTe4. Synthetic Metals, 38:227–234, 9 1990
Sayak Ghosh, Arkady Shekhter, F. Jerzembeck, N. Kikugawa, Dmitry A. Sokolov, Manuel Brando, A. P. Mackenzie, Clifford W. Hicks, and B. J. Ramshaw. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nature Physics, 17:199–204, 2 2021
T. J. Ulrich and T. W. Darling. Observation of anomalous elastic behavior in rock at low temperatures. Geophysical Research Letters, 28:2293–2296, 6 2001.
R. I. Zaınullina, N. G. Bebenin, A. M. Burkhanov, V. V. Ustinov, Ya M. Mukovskiı, and A. A. Arsenov. Giant thermal hysteresis of sound velocity and internal friction in a La0,8Sr0,2MnO3 single crystal. JETP Letters, 74:115–117, 7 2001
S B Palmer. Antiferromagnetic domains in rare earth metals and alloys, 1975. 104
P. Ramadevi and V. Dubey. Group Theory for Physicists: With Applications. Cambridge University Press, 2019.
Eiji Mochizuki. Application of group theory to free oscillations of an anisotropic rectangular parallelepiped. Journal of Physics of the Earth, 35:159–170, 1987.
Ammonia c3v. https://www.chemtube3d.com/sym-c3vammonianew/, 2023.
Walther Rehwald. The study of structural phase transitions by means of ultrasonic experiments. Advances in Physics, 22:721–755, 1 1973.
F. W. Boswell and A. Prodan. Structural changes in the discommensurate distortion waves of NbTe4 on cooling. Physical Review B, 34:2979, 8 1986.
Charles Kittel. Introduction to Solid State Physics. Wiley, 8 edition, 2004.
Hans Martin Eiter, Michela Lavagnini, Rudi Hackl, Elizabeth A. Nowadnick, Alexander F. Kemper, Thomas P. Devereaux, Jiun Haw Chu, James G. Analytis, Ian R. Fisher, and Leonardo Degiorgi. Alternative route to charge density wave formation in multi band systems. Proceedings of the National Academy of Sciences of the United States of America, 110:64–69, 1 2013
M. D. Johannes and I. I. Mazin. Fermi surface nesting and the origin of charge density waves in metals. Physical Review B- Condensed Matter and Materials Physics, 77:165135, 4 2008.
Strong-coupling theory of charge-density-wave transitions. Physical Review Letters, 51:138, 7 1983
F. Weber, S. Rosenkranz, J. P. Castellan, R. Osborn, R. Hott, R. Heid, K. P. Bohnen, T. Egami, A. H. Said, and D. Reznik. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Physical Review Letters, 107:107403, 9 2011.
L. D. (Lev Davidovich) Landau. Theory of elasticity, by L.D. Landau and E.M. Lifshitz. Translated from the Russian by J.B. Sykes and W.H. Reid. Their Course of theoretical physics, v. 7. Pergamon Press, London, 1959
Stephen Timoshenko and James N. Goodier. Theory of Elasticity. McGraw-Hill, New York, third edition, 1970
G. Leibfried and W. Ludwig. Theory of anharmonic effects in crystals. Solid State Physics- Advances in Research and Applications, 12:275–444, 1 1961.
Subhash Chandra Lakkad. Temperature dependence of the elastic constants. Journal of Applied Physics, 42:4277–4281, 1971.
Hassel Ledbetter. Sound velocities, elastic constants: Temperature dependence. Materials Science and Engineering A, 442:31–34, 12 2006.
Y Wang, J J Wang, H Zhang, V R Manga, S L Shang, L-Q Chen, and Z-K Liu. A first-principles approach to finite temperature elastic constants. Journal of Physics: Condensed Matter, 22:225404, 5 2010.
Hassel Ledbetter. Thermal expansion and elastic constants. International Journal of Thermophysics, 12:637–642, 7 1991
O. Gulseren and R. E. Cohen. High-pressure thermoelasticity of body-centered-cubic tantalum. Physical Review B, 65:064103, 1 2002.
Walther Rehwald. The study of structural phase transitions by means of ultrasonic experiments. Advances in Physics, 22:721–755, 1 1973
Gregg Jaeger. The ehrenfest classification of phase transitions: Introduction and evolution. Archive for History of Exact Sciences, 53:51–81, 1998
K. Binder. Theory of first-order phase transitions. Reports on Progress in Physics, 50:783, 7 1987.
L. Landau. On the theory of phase transitions. Zh. Eksp. Teor. Fiz, pages 234–252, 1969
Ulrich M¨ uller. Symmetry Relationships between Crystal Structures. Oxford University Press, 2013.
Rafael M. Fernandes, Amalia I. Coldea, Hong Ding, Ian R. Fisher, P. J. Hirschfeld, and Gabriel Kotliar. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature, 601:35–44, 1 2022.
Peter Sondergeld, Baosheng Li, Jurgen Schreuer, and Michael A. Carpenter. Discontinuous evolution of single-crystal elastic constants as a function of pressure through the c2/c p21/c phase transition in spodumene (LiAlSi2O6). Journal of Geophysical Research: Solid Earth, 111:7202, 7 2006.
A. Migliori, J. L. Sarrao, William M. Visscher, T. M. Bell, Ming Lei, Z. Fisk, and R. G. Leisure. Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B: Condensed Matter, 183:1–24, 1 1993.
Sujeet Chaudhary, Anil K. Sisodia, and Dinesh C. Dube. Thermal hysteresis across the first-order phase transition in the (Na0.5Bi0.5)(1x)BaxTiO3 dielectric system. Phase Transitions, 78:895–904, 12 2005
Chao Zhou, Tieyan Chang, Zhiyong Dai, Yuanliang Chen, Chenyang Guo, Yoshitaka Matsushita, Xiaoqin Ke, Adil Murtaza, Yin Zhang, Fanghua Tian, Wenliang Zuo, Yu Sheng Chen, Sen Yang, and Xiaobing Ren. Unified understanding of the first-order nature of the transition in TbCo2. Physical Review B, 106:064409, 8 2022.
J. B. Betts, A. Migliori, G. S. Boebinger, H. Ledbetter, F. Galli, and J. A. Mydosh. Complete elastic tensor across the charge-density-wave transition in monocrystal. Physical Review B, 66:060106, 8 2002.
J. A. Mydosh and P. M. Oppeneer. Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2. Reviews of Modern Physics, 83:1301, 11 2011.
B J Ramshaw, Arkady Shekhter, Ross D Mcdonald, Jon B Betts, J N Mitchell, P H Tobash, C H Mielke, E D Bauer, Albert Migliori, A M Designed, A M Performed, and E DBContributed. Avoided valence transition in a plutonium superconductor. PNAS, 112:3285–3289, 2015.
Daniel F. Agterberg. The symmetry of superconducting Sr2RuO4. Nature Physics 2020 17:2, 17:169–170, 9 2020.
S. Benhabib, C. Lupien, I. Paul, L. Berges, M. Dion, M. Nardone, A. Zitouni, Z. Q. Mao, Y. Maeno, A. Georges, L. Taillefer, and C. Proust. Ultrasound evidence for a twocomponent superconducting order parameter in Sr2RuO4. Nature Physics 2020 17:2, 17:194–198, 9 2020
Horst Czichos, Tetsuya Saito, and Leslie Smith. Springer handbook of materials measurement methods. Springer Handbook of Materials Measurement Methods, 2006.
Bj¨orn Wehinger, Alessandro Mirone, Michael Krisch, and Alexe¨ ı Bosak. Full elasticity tensor from thermal diffuse scattering. Physical Review Letters, 118:035502, 1 2017.
Alexander Heldmann, Markus Hoelzel, Michael Hofmann, Weimin Gan, Wolfgang W. Schmahl, Erika Griesshaber, Thomas Hansen, Norbert Schell, and Winfried Petrya. Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys. Journal of Applied Crystallography, 52:1144, 10 2019.
Alicia Guerrero de Mesa. Oscilaciones y Ondas. Universidad Nacional de Colombia, 1 edition, 2008.
Fedor F. Balakirev, Susan M. Ennaceur, Robert J. Migliori, Boris Maiorov, and Albert Migliori. Resonant ultrasound spectroscopy: The essential toolbox. Review of Scientific Instruments, 90:121401, 12 2019.
James Torres, Alexis Flores-Betancourt, and Rapha¨el P. Hermann. Ruscal: Software for the analysis of resonant ultrasound spectroscopy measurements. The Journal of the Acoustical Society of America, 151:3547, 5 2022.
Felipe Giraldo. Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design. Univesidad de los Andes, 2020
Arthur Mar, Stephane Jobic, and James A. Ibers. Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4. Journal of the American Chemical Society, 114:8963–8971, 11 1992.
Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2d transition metal dichalcogenides. Nature Reviews Materials 2017 2:8, 2:1–15, 6 2017.
D. E. Moncton, J. D. Axe, and F. J. DiSalvo. Neutron scattering study of the charge density wave transitions in 2H-TaSe2 and 2H-NbSe2. Physical Review B, 16:801, 7 1977.
R. C. Morris, R. V. Coleman, and Rajendra Bhandari. Superconductivity and magnetoresistance in NbSe2. Physical Review B, 5:895, 2 1972.
N. P. Ong and Pierre Monceau. Anomalous transport properties of a linear-chain metal: Nbse3. Physical Review B, 16:3443, 10 1977.
Mazhar N. Ali, Jun Xiong, Steven Flynn, Jing Tao, Quinn D. Gibson, Leslie M. Schoop, Tian Liang, Neel Haldolaarachchige, Max Hirschberger, N. P. Ong, and R. J. Cava. Large, non-saturating magnetoresistance in WTe2. Nature 2014 514:7521, 514:205–208, 9 2014.
Zengwei Zhu, Xiao Lin, Juan Liu, Benoıt Fauque, Qian Tao, Chongli Yang, Youguo Shi, and Kamran Behnia. Quantum oscillations, thermoelectric coefficients, and the fermi surface of semimetallic WTe2. Physical Review Letters, 114:176601, 4 2015.
J. J. Yang, Y. J. Choi, Y. S. Oh, A. Hogan, Y. Horibe, K. Kim, B. I. Min, and S. W. Cheong. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2Pd. Physical Review Letters, 108:116402, 3 2012.
Yuxia Gao, Longmeng Xu, Yang Qiu, Zhaoming Tian, Songliu Yuan, and Junfeng Wang. Anisotropic large magnetoresistance in TaTe4 single crystals. Journal of Applied Physics, 122, 10 2017.
Xiaojun Yang, Yonghui Zhou, Mengmeng Wang, Hua Bai, Xuliang Chen, Chao An, Ying Zhou, Qian Chen, Yupeng Li, Zhen Wang, Jian Chen, Chao Cao, Yuke Li, Yi Zhou, Zhaorong Yang, and Zhu An Xu. Pressure induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spin-orbit coupling. Scientific Reports 2018 8:1, 8:1–8, 4 2018.
VE FEDOROV, AV MISHCHENKO, and YU B USTIMENKO. Interaction in a niobium-selenium system. Chemischer Informationsdienst, 15(48):no–no, 1984
T. Ikari, H. Berger, and F. Levy. Electrical properties of NbTe4 and TaTe4. physica status solidi (b), 139:K37–K40, 1 1987.
K. D. Bronsema, S. Van Smaalen, J. L. De Boer, G. A. Wiegers, F. Jellinek, and J. Mahy. The determination of the commensurately modulated structure of tantalum tetratelluride. urn:issn:0108-7681, 43:305–313, 8 1987.
M. B. Walker and Rose Morelli. NbTe4 : A model for a class of incommensurate-to incommensurate phase transitions. Physical Review B, 38:4836, 9 1988.
W. E. Goff, M. B. Walker, and Z. Y. Chen. Order-parameter vibrations in the NbTe4. Physical Review B, 43:655, 1 1991.
M. Saint-Paul and P. Monceau. Survey of the thermodynamic properties of the charge density wave systems. Advances in Condensed Matter Physics, 2019.
M. Saint-Paul and P. Monceau. Elastic properties at the charge density wave phase transitions in TbTe3, ErTe3 and HoTe3. Phase Transitions, 95:691–697, 10 2022.
M. Saint-Paul, C. Guttin, P. Lejay, G. Remenyi, O. Leynaud, and P. Monceau. Elastic anomalies at the charge density wave transition in TbTe3. Solid State Communications, 233:24–29, 5 2016.
Maarten De Jong, Wei Chen, Thomas Angsten, Anubhav Jain, Randy Notestine, Anthony Gamst, Marcel Sluiter, Chaitanya Krishna Ande, Sybrand Van Der Zwaag, Jose J. Plata, Cormac Toher, Stefano Curtarolo, Gerbrand Ceder, Kristin A. Persson, and Mark Asta. Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data 2015 2:1, 2:1–13, 3 2015
Ekhard K.H. Salje, Michael A. Carpenter, Guillaume F. Nataf, Gunnar Picht, Kyle Webber, Jeevaka Weerasinghe, S. Lisenkov, and L. Bellaiche. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy. Physical Review B- Condensed Matter and Materials Physics, 87, 1 2013.
G. V. Kamarchuk, A. V. Khotkevich, V. M. Bagatsky, V. G. Ivanov, P. Molini´ e, A. Leblanc, and E. Faulques. Direct determination of debye temperature and electron-phonon interaction in 1T-VSe2. Physical Review B, 63:073107, 1 2001.
R. A. Guyer, K. R. McCall, and G. N. Boitnott. Hysteresis, discrete memory, and nonlinear wave propagation in rock: A new paradigm. Physical Review Letters, 74:3491, 4 1995.
M. Nobili and M. Scalerandi. Temperature effects on the elastic properties of hysteretic elastic media: Modeling and simulations. Physical Review B, 69:104105, 3 2004.
Vibe Boel Jakobsen, lzbieta Trzop, miel Dobbelaar, Laurence C. Gavin, Shalinee Chikara, Xiaxin Ding, Minseong Lee, Kane sien, Helge M¨ uller-Bunz, Solveig Felton, ric Collet, Michael A. Carpenter, Vivien S. Zapf, and Grace G. Morgan. Domain wall dynamics in a ferroelastic spin crossover complex with giant magnetoelectric coupling. Journal of the American Chemical Society, 144:195–211, 1 2022.
A. P. Saıko and V. E. Gusakov. Strongly correlated bistable sublattice and temperature hysteresis of elastic and thermal crystal properties. Journal of Experimental and Theoretical Physics, 89:92–106, 1999.
T. J. McKenna, S. J. Campbell, D. H. Chaplin, and G. V.H. Wilson. Temperature modulation and temperature hysteresis studies of dysprosium. physica status solidi (a), 75:421–432, 2 1983
Iuliia Liubimova, Miguel Lluis Corro Moya, Joan Torrens-Serra, Vicente Recarte, José Ignacio Pérez-Landaz abal, and Sergey Kustov. Low field magnetic and thermal hysteresis in antiferromagnetic dysprosium. Metals 2017, Vol. 7, Page 215, 7:215, 6 2017.
R. I. Zainullina, N. G. Bebenin, V. V. Mashkautsan, V. V. Ustinov, and Ya M. Mukovskii. Giant thermal hysteresis in lanthanum manganites. Journal of Magnetism and Magnetic Materials, 300:e137–e139, 5 2006.
Marco Scalerandi, Valentina Agostini, Pier Paolo Delsanto, Koen Van Den Abeele, and Paul A. Johnson. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. The Journal of the Acoustical Society of America, 113:3049–3059, 6 2003.
James A. TenCate, Eric Smith, and Robert A. Guyer. Universal slow dynamics in granular solids. Physical Review Letters, 85:1020, 7 2000.
James A. TenCate. Slow dynamics of earth materials: An experimental overview. Pure and Applied Geophysics, 168:2211–2219, 12 2011.
Yening Wang, Linhai Sun, Jin Wu, and Min Gu. Thermal hysteresis of elastic modulus in granular Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. Solid State Communications, 75:495–498, 8 1990.
Palmer. The elastic constants of dysprosium and holmium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 327:519–543, 4 1972.
Robert L. Carter. Molecular symmetry and group theory. John Wiley Sons, 1998
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 128 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Maestría en Ciencias-Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/1e4f16d1-b4b7-4a79-9f19-2b989c397ce4/download
https://repositorio.uniandes.edu.co/bitstreams/448c3476-ca11-411f-8e49-5e3e94221360/download
https://repositorio.uniandes.edu.co/bitstreams/29f3a390-0481-4a38-80c8-1a4dc0257cce/download
https://repositorio.uniandes.edu.co/bitstreams/0d1fc2fb-608f-4663-9ba1-e5b96d2acd26/download
https://repositorio.uniandes.edu.co/bitstreams/9cf39921-8572-4382-8fdf-e22927a0cfed/download
https://repositorio.uniandes.edu.co/bitstreams/bceb990b-a739-493e-a0cd-2d15a93d51e3/download
https://repositorio.uniandes.edu.co/bitstreams/42f775f6-bebe-404a-b51a-00ff3a0116c8/download
https://repositorio.uniandes.edu.co/bitstreams/ca9b6995-549c-41f5-b8cf-6d3bed4b9352/download
bitstream.checksum.fl_str_mv c338fa1a422dd9ede4b0ec4d48936d75
8d5ec5a1693476a51fbc4a628a77e56d
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
5c7af2581240c9762dbd1c364fe76046
2393647d85cb268f46c0eb413e423cdd
ad319fd649139e1fe2ff1345fb276c20
caf98da0300892fa7b9cf3847e9a302b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133920448184320
spelling Giraldo Gallo, Paula LilianaCruz Castiblanco, Juan Pablo NicolásRincón, JuliánRoa, JairoFacultad de Ciencias2024-01-31T20:12:44Z2025-02-192023-12-122024-01-30https://hdl.handle.net/1992/73704instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/During this master's thesis, the set-up of resonant ultrasound spectroscopy (RUS) technique was developed at the Universidad de los Andes and a temperature-dependent experiment was carried out.Durante esta tesis de maestría se desarrollo el montaje de la técnica de espectroscopía de resonancia ultrasónica (RUS) en la Universidad de los Andes y se llevó a cabo un experimento en función de la temperatura.Transition metal chalcogenides are an example of quantum materials, which show, topological states, charge density wave (CDW) formation, and ferroic orders. Within this family, the transition metal tetracalcogenides, NbTe4 and TaTe4, have captured the interest of the scientific community for being candidates to present axionic states connecting different Weyl points on the fermi surface through CDW formation. This represents a possibility to study the relationship between topological states of matter and correlated electronic states such as CDW. Diffraction, scanning tunneling spectroscopy, angle resolved photoemission spectroscopy and transport measurements have revealed important information about the CDW formation in these compounds. For instance, resistivity and diffraction measurements as a function of temperature in these materials suggest possible phase transitions at certain temperatures, which, for the case of NbTe4, could be related to reconfigurations of the CDW order. However, bulk thermodynamic measurements that can give more insight into the nature of such transitions are still missing. In this thesis we present resonant ultrasound spectroscopy (RUS) measurements for NbTe4 and TaTe4 single crystals, in order to get thermodynamic information of the reported putative phase transitions at different temperatures, through the determination of the temperature dependence of the elastic constants. For NbTe4 we find that the resonance frequencies, directly related to the elastic constants, are highly hysteretical in the temperature range of 100K to 300K, which can be directly related to the presence and dynamics of the recently reported CDW domain walls (DWs). In contrast, TaTe4 does not show such hysteretical behavior. These results suggest that DWs in NbTe4 play a fundamental role in both, the electronic and elastic properties of NbTe4.Los calcogenuros de metales de transición son un ejemplo de materiales cuánticos que muestran estados topológicos, formación de onda de densidad de carga (CDW) y orden ferroíco. Dentro de esta familia, los tetracalcogenuros de metales de transición, NbTe4 y TaTe4, han capturado el interés de la comunidad científica por ser candidatos a presentar estados axiónicos que conectan diferentes puntos de Weyl en la superficie de Fermi a través de la formación de CDW. Esto representa una oportunidad para estudiar la relación entre los estados topológicos de la materia y los estados electrónicos correlacionados, como la CDW. Mediciones de difracción, microscopía de efecto tunel (STM), espectroscopía de fotoemisión angular resuelta en energía (ARPES) y las mediciones de transporte han revelado información importante sobre la formación de CDW en estos compuestos. Por ejemplo, las mediciones de resistividad y difracción en función de la temperatura en estos materiales sugieren posibles transiciones de fase a ciertas temperaturas, que, en el caso del NbTe4, podrían estar relacionadas con reconfiguraciones del orden CDW. Sin embargo, aún faltan mediciones termodinámicas que puedan proporcionar una mayor comprensión de la naturaleza de tales transiciones. En esta tesis, presentamos mediciones de espectroscopía de resonancia ultrasónica (RUS) para monocristales de NbTe4 y TaTe4, con el fin de obtener información termodinámica sobre las posibles transiciones de fase reportadas a diferentes temperaturas, a través de la determinación de la dependencia de la temperatura de las constantes elásticas con la temperatura. Para NbTe4 encontramos que las frecuencias de resonancia, directamente relacionadas con las constantes elásticas, muestran un comportamiento altamente histeretico en el rango de temperatura de 100K a 300K, lo que puede estar directamente relacionado con la presencia y dinámica de las paredes de dominio (DW) de la CDW recientemente reportadas en este material. En contraste, el TaTe4 no muestra tal comportamiento histérico. Estos resultados sugieren que las DW en NbTe4 desempeñan un papel fundamental tanto en las propiedades electrónicas como elásticas del NbTe4.Universidad de los Andes, Facultad de Ciencias, Departamento de físicaTesis Magíster en Ciencias - FísicaMaestríaQuantum MaterialsCharge density wavePhase transitions128 páginasapplication/pdfspaUniversidad de los AndesMaestría en Ciencias-FísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfResonant ultrasound spectroscopy of transition metal tetrachalcogenidesEspectroscopía de resonancia ultrasónica de calcogenuros de metales de transiciónTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCharge density waveNbTe4TaTe4Phase transitionsResonant ultrasound spectroscopyThermal hysteresisOnda de densidad de cargaNbTe4TaTe4Transisiones de faseEspectroscopía de resonancia ultrasónicaHistéresis térmicaFísicaJ. A. Hofmann, A. Paskin, K. J. Tauer, and R. J. Weiss. Analysis of ferromagnetic and antiferro-magnetic second-order transitions. Journal of Physics and Chemistry of Solids, 1:45–60, 9 1956.B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck. Ferromagnetic interaction in EuO. Physical Review Letters, 7:160, 9 1961M.P. Marder. Condensed Matter Physics. Wiley, 2010.G. Gruner. The dynamics of charge-density waves. Reviews of Modern Physics, 60:1129, 10 1988.George Gruner. Density Waves in Solids. Perseus Publishing, 6 2000.S. Kagoshima, H. Nagasawa, and T. Sambongi. One-Dimensional Conductors. Springer Verlag Berlin Heidelberg New York, 1988G. Li and J. R. Gladden. High temperature resonant ultrasound spectroscopy: A review. International Journal of Spectroscopy, 2010:1–13, 1 2010.Y. P. Varshni. Temperature dependence of the elastic constants. Physical Review B, 2:3952, 11 1970.Hassel Ledbetter. Sound velocities, elastic constants: Temperature dependence. Materials Science and Engineering A, 442:31–34, 12 2006.Sayak Ghosh. Resonant Ultrasound Spectroscopy measurements of correlated systems. Cornell University, 2022.R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P. Chandra, V. Keppens, D. Mandrus, M. A. McGuire, B. C. Sales, A. S. Sefat, and J. Schmalian. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett.,105:157003, Oct 2010.J. Nyhus, U. Thisted, N. Kikugawa, T. Suzuki, and K. Fossheim. Elastic and specific heat critical properties of La1,85Sr0,15CuO4. Physica C: Superconductivity, 369:273 277, 3 2002.M. Saint-Paul, C. Opagiste, and C. Guttin. Elastic anomalies at the first order transition in lu5ir4si10. Journal of Physics and Chemistry of Solids, 138:109255, 2020.Sayak Ghosh, Michael Matty, Ryan Baumbach, Eric D Bauer, K A Modic, Arkady Shekhter, J A Mydosh, Eun-Ah Kim, and B J Ramshaw. One-component order para meter in URu2 Si2 uncovered by resonant ultrasound spectroscopy and machine learning, 2020J. A. Galvis, A. Fang, D. Jim´ enez-Guerrero, J. Rojas-Castillo, J. Casas, O. Herrera, A. C. Garcia-Castro, E. Bousquet, I. R. Fisher, A. Kapitulnik, and P. Giraldo-Gallo. Nanoscale phase-slip domain walls in the charge density wave state of the Weyl semi metal candidate NbTe4. Physical Review B, 107:045120, 1 2023.Xi Zhang, Qiangqiang Gu, Haigen Sun, Tianchuang Luo, Yanzhao Liu, Yueyuan Chen, Zhibin Shao, Zongyuan Zhang, Shaojian Li, Yuanwei Sun, Yuehui Li, Xiaokang Li, Shangjie Xue, Jun Ge, Ying Xing, R. Comin, Zengwei Zhu, Peng Gao, Binghai Yan, Ji Feng, Minghu Pan, and Jian Wang. Eightfold fermionic excitation in a charge density wave compound. Physical Review B, 102:035125, 7 2020.D J Eaglesham, D Bird, R L Withers, and J W Steeds. Microstructural behaviour in the CDW states of NbTe4 and TaTe4; domains, discommensurations and superlattice symmetry. J. Phys, 18:1–11, 1985F. W. Boswell, A. Prodan, and J. K. Brandon. Charge-density waves in the quasi-one dimensional compounds NbTe4 and TaTe4. Journal of Physics C: Solid State Physics, 16:1067, 2 1983.S. Tadaki, N. Hino, T. Sambongi, K. Nomura, and F. L´evy. Electrical properties of NbTe4 and TaTe4. Synthetic Metals, 38:227–234, 9 1990Sayak Ghosh, Arkady Shekhter, F. Jerzembeck, N. Kikugawa, Dmitry A. Sokolov, Manuel Brando, A. P. Mackenzie, Clifford W. Hicks, and B. J. Ramshaw. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nature Physics, 17:199–204, 2 2021T. J. Ulrich and T. W. Darling. Observation of anomalous elastic behavior in rock at low temperatures. Geophysical Research Letters, 28:2293–2296, 6 2001.R. I. Zaınullina, N. G. Bebenin, A. M. Burkhanov, V. V. Ustinov, Ya M. Mukovskiı, and A. A. Arsenov. Giant thermal hysteresis of sound velocity and internal friction in a La0,8Sr0,2MnO3 single crystal. JETP Letters, 74:115–117, 7 2001S B Palmer. Antiferromagnetic domains in rare earth metals and alloys, 1975. 104P. Ramadevi and V. Dubey. Group Theory for Physicists: With Applications. Cambridge University Press, 2019.Eiji Mochizuki. Application of group theory to free oscillations of an anisotropic rectangular parallelepiped. Journal of Physics of the Earth, 35:159–170, 1987.Ammonia c3v. https://www.chemtube3d.com/sym-c3vammonianew/, 2023.Walther Rehwald. The study of structural phase transitions by means of ultrasonic experiments. Advances in Physics, 22:721–755, 1 1973.F. W. Boswell and A. Prodan. Structural changes in the discommensurate distortion waves of NbTe4 on cooling. Physical Review B, 34:2979, 8 1986.Charles Kittel. Introduction to Solid State Physics. Wiley, 8 edition, 2004.Hans Martin Eiter, Michela Lavagnini, Rudi Hackl, Elizabeth A. Nowadnick, Alexander F. Kemper, Thomas P. Devereaux, Jiun Haw Chu, James G. Analytis, Ian R. Fisher, and Leonardo Degiorgi. Alternative route to charge density wave formation in multi band systems. Proceedings of the National Academy of Sciences of the United States of America, 110:64–69, 1 2013M. D. Johannes and I. I. Mazin. Fermi surface nesting and the origin of charge density waves in metals. Physical Review B- Condensed Matter and Materials Physics, 77:165135, 4 2008.Strong-coupling theory of charge-density-wave transitions. Physical Review Letters, 51:138, 7 1983F. Weber, S. Rosenkranz, J. P. Castellan, R. Osborn, R. Hott, R. Heid, K. P. Bohnen, T. Egami, A. H. Said, and D. Reznik. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Physical Review Letters, 107:107403, 9 2011.L. D. (Lev Davidovich) Landau. Theory of elasticity, by L.D. Landau and E.M. Lifshitz. Translated from the Russian by J.B. Sykes and W.H. Reid. Their Course of theoretical physics, v. 7. Pergamon Press, London, 1959Stephen Timoshenko and James N. Goodier. Theory of Elasticity. McGraw-Hill, New York, third edition, 1970G. Leibfried and W. Ludwig. Theory of anharmonic effects in crystals. Solid State Physics- Advances in Research and Applications, 12:275–444, 1 1961.Subhash Chandra Lakkad. Temperature dependence of the elastic constants. Journal of Applied Physics, 42:4277–4281, 1971.Hassel Ledbetter. Sound velocities, elastic constants: Temperature dependence. Materials Science and Engineering A, 442:31–34, 12 2006.Y Wang, J J Wang, H Zhang, V R Manga, S L Shang, L-Q Chen, and Z-K Liu. A first-principles approach to finite temperature elastic constants. Journal of Physics: Condensed Matter, 22:225404, 5 2010.Hassel Ledbetter. Thermal expansion and elastic constants. International Journal of Thermophysics, 12:637–642, 7 1991O. Gulseren and R. E. Cohen. High-pressure thermoelasticity of body-centered-cubic tantalum. Physical Review B, 65:064103, 1 2002.Walther Rehwald. The study of structural phase transitions by means of ultrasonic experiments. Advances in Physics, 22:721–755, 1 1973Gregg Jaeger. The ehrenfest classification of phase transitions: Introduction and evolution. Archive for History of Exact Sciences, 53:51–81, 1998K. Binder. Theory of first-order phase transitions. Reports on Progress in Physics, 50:783, 7 1987.L. Landau. On the theory of phase transitions. Zh. Eksp. Teor. Fiz, pages 234–252, 1969Ulrich M¨ uller. Symmetry Relationships between Crystal Structures. Oxford University Press, 2013.Rafael M. Fernandes, Amalia I. Coldea, Hong Ding, Ian R. Fisher, P. J. Hirschfeld, and Gabriel Kotliar. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature, 601:35–44, 1 2022.Peter Sondergeld, Baosheng Li, Jurgen Schreuer, and Michael A. Carpenter. Discontinuous evolution of single-crystal elastic constants as a function of pressure through the c2/c p21/c phase transition in spodumene (LiAlSi2O6). Journal of Geophysical Research: Solid Earth, 111:7202, 7 2006.A. Migliori, J. L. Sarrao, William M. Visscher, T. M. Bell, Ming Lei, Z. Fisk, and R. G. Leisure. Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B: Condensed Matter, 183:1–24, 1 1993.Sujeet Chaudhary, Anil K. Sisodia, and Dinesh C. Dube. Thermal hysteresis across the first-order phase transition in the (Na0.5Bi0.5)(1x)BaxTiO3 dielectric system. Phase Transitions, 78:895–904, 12 2005Chao Zhou, Tieyan Chang, Zhiyong Dai, Yuanliang Chen, Chenyang Guo, Yoshitaka Matsushita, Xiaoqin Ke, Adil Murtaza, Yin Zhang, Fanghua Tian, Wenliang Zuo, Yu Sheng Chen, Sen Yang, and Xiaobing Ren. Unified understanding of the first-order nature of the transition in TbCo2. Physical Review B, 106:064409, 8 2022.J. B. Betts, A. Migliori, G. S. Boebinger, H. Ledbetter, F. Galli, and J. A. Mydosh. Complete elastic tensor across the charge-density-wave transition in monocrystal. Physical Review B, 66:060106, 8 2002.J. A. Mydosh and P. M. Oppeneer. Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2. Reviews of Modern Physics, 83:1301, 11 2011.B J Ramshaw, Arkady Shekhter, Ross D Mcdonald, Jon B Betts, J N Mitchell, P H Tobash, C H Mielke, E D Bauer, Albert Migliori, A M Designed, A M Performed, and E DBContributed. Avoided valence transition in a plutonium superconductor. PNAS, 112:3285–3289, 2015.Daniel F. Agterberg. The symmetry of superconducting Sr2RuO4. Nature Physics 2020 17:2, 17:169–170, 9 2020.S. Benhabib, C. Lupien, I. Paul, L. Berges, M. Dion, M. Nardone, A. Zitouni, Z. Q. Mao, Y. Maeno, A. Georges, L. Taillefer, and C. Proust. Ultrasound evidence for a twocomponent superconducting order parameter in Sr2RuO4. Nature Physics 2020 17:2, 17:194–198, 9 2020Horst Czichos, Tetsuya Saito, and Leslie Smith. Springer handbook of materials measurement methods. Springer Handbook of Materials Measurement Methods, 2006.Bj¨orn Wehinger, Alessandro Mirone, Michael Krisch, and Alexe¨ ı Bosak. Full elasticity tensor from thermal diffuse scattering. Physical Review Letters, 118:035502, 1 2017.Alexander Heldmann, Markus Hoelzel, Michael Hofmann, Weimin Gan, Wolfgang W. Schmahl, Erika Griesshaber, Thomas Hansen, Norbert Schell, and Winfried Petrya. Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys. Journal of Applied Crystallography, 52:1144, 10 2019.Alicia Guerrero de Mesa. Oscilaciones y Ondas. Universidad Nacional de Colombia, 1 edition, 2008.Fedor F. Balakirev, Susan M. Ennaceur, Robert J. Migliori, Boris Maiorov, and Albert Migliori. Resonant ultrasound spectroscopy: The essential toolbox. Review of Scientific Instruments, 90:121401, 12 2019.James Torres, Alexis Flores-Betancourt, and Rapha¨el P. Hermann. Ruscal: Software for the analysis of resonant ultrasound spectroscopy measurements. The Journal of the Acoustical Society of America, 151:3547, 5 2022.Felipe Giraldo. Development of a machine learning model based on results obtained from CFD solvers for the ease of the iterative processes in the early stages of design. Univesidad de los Andes, 2020Arthur Mar, Stephane Jobic, and James A. Ibers. Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4. Journal of the American Chemical Society, 114:8963–8971, 11 1992.Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev, and Andras Kis. 2d transition metal dichalcogenides. Nature Reviews Materials 2017 2:8, 2:1–15, 6 2017.D. E. Moncton, J. D. Axe, and F. J. DiSalvo. Neutron scattering study of the charge density wave transitions in 2H-TaSe2 and 2H-NbSe2. Physical Review B, 16:801, 7 1977.R. C. Morris, R. V. Coleman, and Rajendra Bhandari. Superconductivity and magnetoresistance in NbSe2. Physical Review B, 5:895, 2 1972.N. P. Ong and Pierre Monceau. Anomalous transport properties of a linear-chain metal: Nbse3. Physical Review B, 16:3443, 10 1977.Mazhar N. Ali, Jun Xiong, Steven Flynn, Jing Tao, Quinn D. Gibson, Leslie M. Schoop, Tian Liang, Neel Haldolaarachchige, Max Hirschberger, N. P. Ong, and R. J. Cava. Large, non-saturating magnetoresistance in WTe2. Nature 2014 514:7521, 514:205–208, 9 2014.Zengwei Zhu, Xiao Lin, Juan Liu, Benoıt Fauque, Qian Tao, Chongli Yang, Youguo Shi, and Kamran Behnia. Quantum oscillations, thermoelectric coefficients, and the fermi surface of semimetallic WTe2. Physical Review Letters, 114:176601, 4 2015.J. J. Yang, Y. J. Choi, Y. S. Oh, A. Hogan, Y. Horibe, K. Kim, B. I. Min, and S. W. Cheong. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2Pd. Physical Review Letters, 108:116402, 3 2012.Yuxia Gao, Longmeng Xu, Yang Qiu, Zhaoming Tian, Songliu Yuan, and Junfeng Wang. Anisotropic large magnetoresistance in TaTe4 single crystals. Journal of Applied Physics, 122, 10 2017.Xiaojun Yang, Yonghui Zhou, Mengmeng Wang, Hua Bai, Xuliang Chen, Chao An, Ying Zhou, Qian Chen, Yupeng Li, Zhen Wang, Jian Chen, Chao Cao, Yuke Li, Yi Zhou, Zhaorong Yang, and Zhu An Xu. Pressure induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spin-orbit coupling. Scientific Reports 2018 8:1, 8:1–8, 4 2018.VE FEDOROV, AV MISHCHENKO, and YU B USTIMENKO. Interaction in a niobium-selenium system. Chemischer Informationsdienst, 15(48):no–no, 1984T. Ikari, H. Berger, and F. Levy. Electrical properties of NbTe4 and TaTe4. physica status solidi (b), 139:K37–K40, 1 1987.K. D. Bronsema, S. Van Smaalen, J. L. De Boer, G. A. Wiegers, F. Jellinek, and J. Mahy. The determination of the commensurately modulated structure of tantalum tetratelluride. urn:issn:0108-7681, 43:305–313, 8 1987.M. B. Walker and Rose Morelli. NbTe4 : A model for a class of incommensurate-to incommensurate phase transitions. Physical Review B, 38:4836, 9 1988.W. E. Goff, M. B. Walker, and Z. Y. Chen. Order-parameter vibrations in the NbTe4. Physical Review B, 43:655, 1 1991.M. Saint-Paul and P. Monceau. Survey of the thermodynamic properties of the charge density wave systems. Advances in Condensed Matter Physics, 2019.M. Saint-Paul and P. Monceau. Elastic properties at the charge density wave phase transitions in TbTe3, ErTe3 and HoTe3. Phase Transitions, 95:691–697, 10 2022.M. Saint-Paul, C. Guttin, P. Lejay, G. Remenyi, O. Leynaud, and P. Monceau. Elastic anomalies at the charge density wave transition in TbTe3. Solid State Communications, 233:24–29, 5 2016.Maarten De Jong, Wei Chen, Thomas Angsten, Anubhav Jain, Randy Notestine, Anthony Gamst, Marcel Sluiter, Chaitanya Krishna Ande, Sybrand Van Der Zwaag, Jose J. Plata, Cormac Toher, Stefano Curtarolo, Gerbrand Ceder, Kristin A. Persson, and Mark Asta. Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data 2015 2:1, 2:1–13, 3 2015Ekhard K.H. Salje, Michael A. Carpenter, Guillaume F. Nataf, Gunnar Picht, Kyle Webber, Jeevaka Weerasinghe, S. Lisenkov, and L. Bellaiche. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy. Physical Review B- Condensed Matter and Materials Physics, 87, 1 2013.G. V. Kamarchuk, A. V. Khotkevich, V. M. Bagatsky, V. G. Ivanov, P. Molini´ e, A. Leblanc, and E. Faulques. Direct determination of debye temperature and electron-phonon interaction in 1T-VSe2. Physical Review B, 63:073107, 1 2001.R. A. Guyer, K. R. McCall, and G. N. Boitnott. Hysteresis, discrete memory, and nonlinear wave propagation in rock: A new paradigm. Physical Review Letters, 74:3491, 4 1995.M. Nobili and M. Scalerandi. Temperature effects on the elastic properties of hysteretic elastic media: Modeling and simulations. Physical Review B, 69:104105, 3 2004.Vibe Boel Jakobsen, lzbieta Trzop, miel Dobbelaar, Laurence C. Gavin, Shalinee Chikara, Xiaxin Ding, Minseong Lee, Kane sien, Helge M¨ uller-Bunz, Solveig Felton, ric Collet, Michael A. Carpenter, Vivien S. Zapf, and Grace G. Morgan. Domain wall dynamics in a ferroelastic spin crossover complex with giant magnetoelectric coupling. Journal of the American Chemical Society, 144:195–211, 1 2022.A. P. Saıko and V. E. Gusakov. Strongly correlated bistable sublattice and temperature hysteresis of elastic and thermal crystal properties. Journal of Experimental and Theoretical Physics, 89:92–106, 1999.T. J. McKenna, S. J. Campbell, D. H. Chaplin, and G. V.H. Wilson. Temperature modulation and temperature hysteresis studies of dysprosium. physica status solidi (a), 75:421–432, 2 1983Iuliia Liubimova, Miguel Lluis Corro Moya, Joan Torrens-Serra, Vicente Recarte, José Ignacio Pérez-Landaz abal, and Sergey Kustov. Low field magnetic and thermal hysteresis in antiferromagnetic dysprosium. Metals 2017, Vol. 7, Page 215, 7:215, 6 2017.R. I. Zainullina, N. G. Bebenin, V. V. Mashkautsan, V. V. Ustinov, and Ya M. Mukovskii. Giant thermal hysteresis in lanthanum manganites. Journal of Magnetism and Magnetic Materials, 300:e137–e139, 5 2006.Marco Scalerandi, Valentina Agostini, Pier Paolo Delsanto, Koen Van Den Abeele, and Paul A. Johnson. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. The Journal of the Acoustical Society of America, 113:3049–3059, 6 2003.James A. TenCate, Eric Smith, and Robert A. Guyer. Universal slow dynamics in granular solids. Physical Review Letters, 85:1020, 7 2000.James A. TenCate. Slow dynamics of earth materials: An experimental overview. Pure and Applied Geophysics, 168:2211–2219, 12 2011.Yening Wang, Linhai Sun, Jin Wu, and Min Gu. Thermal hysteresis of elastic modulus in granular Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. Solid State Communications, 75:495–498, 8 1990.Palmer. The elastic constants of dysprosium and holmium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 327:519–543, 4 1972.Robert L. Carter. Molecular symmetry and group theory. John Wiley Sons, 1998202214202PublicationORIGINALResonant ultrasound spectroscopy of transition metal tetrachalcogenides.pdfResonant ultrasound spectroscopy of transition metal tetrachalcogenides.pdfLos resultados encontrados durante esta investigación son inéditos y se encuentran en proceso de publicación en una revista de investigación de alto impacto.application/pdf53032511https://repositorio.uniandes.edu.co/bitstreams/1e4f16d1-b4b7-4a79-9f19-2b989c397ce4/downloadc338fa1a422dd9ede4b0ec4d48936d75MD52autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf273571https://repositorio.uniandes.edu.co/bitstreams/448c3476-ca11-411f-8e49-5e3e94221360/download8d5ec5a1693476a51fbc4a628a77e56dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/29f3a390-0481-4a38-80c8-1a4dc0257cce/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/0d1fc2fb-608f-4663-9ba1-e5b96d2acd26/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTResonant ultrasound spectroscopy of transition metal tetrachalcogenides.pdf.txtResonant ultrasound spectroscopy of transition metal tetrachalcogenides.pdf.txtExtracted texttext/plain101689https://repositorio.uniandes.edu.co/bitstreams/9cf39921-8572-4382-8fdf-e22927a0cfed/download5c7af2581240c9762dbd1c364fe76046MD55autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain2003https://repositorio.uniandes.edu.co/bitstreams/bceb990b-a739-493e-a0cd-2d15a93d51e3/download2393647d85cb268f46c0eb413e423cddMD57THUMBNAILResonant ultrasound spectroscopy of transition metal tetrachalcogenides.pdf.jpgResonant ultrasound spectroscopy of transition metal tetrachalcogenides.pdf.jpgGenerated Thumbnailimage/jpeg7107https://repositorio.uniandes.edu.co/bitstreams/42f775f6-bebe-404a-b51a-00ff3a0116c8/downloadad319fd649139e1fe2ff1345fb276c20MD56autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10893https://repositorio.uniandes.edu.co/bitstreams/ca9b6995-549c-41f5-b8cf-6d3bed4b9352/downloadcaf98da0300892fa7b9cf3847e9a302bMD581992/73704oai:repositorio.uniandes.edu.co:1992/737042024-02-16 14:55:17.16http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K