Generalizaciones de la dualidad de Gelfand

La dualidad de Gelfand establece una equivalencia entre la categoría de espacios compactos de Hausdorff y la categoría de C*-álgebras, que a un espacio compacto de Hausdorff X le asocia la C*-álgebra de Banach c(X,C) de funciones complejo valuadas, y a una C*-álgebra A le asocia el espacio Max(A) de...

Full description

Autores:
Rodríguez Lozano, Juan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64097
Acceso en línea:
http://hdl.handle.net/1992/64097
Palabra clave:
Dualidad de Gelfand
Campos topológicos
Transformada de Gelfand
Stone-Weierstrass
K-Tychonoff
Matemáticas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNIANDES2_21278c11c82ceb5758fb50977e61a927
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64097
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Generalizaciones de la dualidad de Gelfand
title Generalizaciones de la dualidad de Gelfand
spellingShingle Generalizaciones de la dualidad de Gelfand
Dualidad de Gelfand
Campos topológicos
Transformada de Gelfand
Stone-Weierstrass
K-Tychonoff
Matemáticas
title_short Generalizaciones de la dualidad de Gelfand
title_full Generalizaciones de la dualidad de Gelfand
title_fullStr Generalizaciones de la dualidad de Gelfand
title_full_unstemmed Generalizaciones de la dualidad de Gelfand
title_sort Generalizaciones de la dualidad de Gelfand
dc.creator.fl_str_mv Rodríguez Lozano, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Caicedo Ferrer, Xavier
dc.contributor.author.none.fl_str_mv Rodríguez Lozano, Juan Sebastián
dc.contributor.jury.none.fl_str_mv Di Prisco, Carlos Augusto
dc.subject.keyword.none.fl_str_mv Dualidad de Gelfand
Campos topológicos
Transformada de Gelfand
Stone-Weierstrass
K-Tychonoff
topic Dualidad de Gelfand
Campos topológicos
Transformada de Gelfand
Stone-Weierstrass
K-Tychonoff
Matemáticas
dc.subject.themes.es_CO.fl_str_mv Matemáticas
description La dualidad de Gelfand establece una equivalencia entre la categoría de espacios compactos de Hausdorff y la categoría de C*-álgebras, que a un espacio compacto de Hausdorff X le asocia la C*-álgebra de Banach c(X,C) de funciones complejo valuadas, y a una C*-álgebra A le asocia el espacio Max(A) de ideales maximales con la topología de Zariski. En este trabajo exponemos la dualidad clásica y exploramos algunas posibles generalizaciones a otros campos topológicos. Probamos algunas de las generalizaciones conocidas de esta dualidad y demostramos nuevas generalizaciones en los casos que el campo K sea totalmente disconexo o cumpla con el teorema de Stone-Weierstrass.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-09
dc.date.accessioned.none.fl_str_mv 2023-01-23T20:37:38Z
dc.date.available.none.fl_str_mv 2023-01-23T20:37:38Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64097
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64097
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv V. I. Arnautov, S. T. Glavatsky, and A. V. Mikhalev. Introduction to the theory of topological rings and modules, volume 197 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1996.
G. Bachman, E. Beckenstein, L. Narici, and S. Warner. Rings of continuous functions with values in a topological field. Trans. Amer. Math. Soc., 204:91-112, 1975.
V. K. Balachandran. Topological algebras, volume 185 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 2000. Reprint of the 1999 original.
X. Caicedo and G. Mantilla-Soler. On a characterization of path connected topological fields. J. Pure Appl. Algebra, 223(12):5279-5284, 2019.
P. R. Chernoff, R. A. Rasala, and W. C. Waterhouse. The Stone-Weierstrass theorem for valuable fields. Pacific J. Math., 27:233-240, 1968.
E. Correl and M. Henriksen. On rings of bounded continuous functions with values in a division ring. Proc. Amer. Math. Soc., 7:194-198, 1956.
J. Dieudonné. Sur les corps topologiques connexes. C. R. Acad. Sci. Paris, 221:396-398, 1945.
J. M. Dominguez. Non-Archimedean Gel'fand theory. Pacific J. Math., 104(2):337-341, 1983.
J. Dugundji. Topology. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original.
O. Endler. Valuation theory. Universitext. Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899-12 April 1971).
I. Gelfand. Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S., 9 (51):3-24, 1941.
I. Gelfand and M. Neumark. On the imbedding of normed rings into the ring of operators in Hilbert space. In C*-algebras: 1943-1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 2-19. Amer. Math. Soc., Providence, RI, 1994. Corrected reprint of the 1943 original [MR 5, 147].
P. T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982.
R. R. Kallman and F. W. Simmons. A theorem on planar continua and an application to automorphisms of the field of complex numbers. Topology Appl., 20(3):251-255, 1985.
W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.
W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
N. Shell. Connected and disconnected fields. Topology Appl., 27(1):37-50, 1987.
N. Shilkret. Non-Archimedean Gelfand theory. Pacific J. Math., 32:541-550, 1970.
E. M. Vechtomov. Rings and sheaves. volume 74, pages 749-798. 1995. Topology, 1.
E. M. Vechtomov. Rings of continuous functions with values in a topological division ring. volume 78, pages 702-753. 1996. Topology, 2.
S. Warner. Topological fields, volume 157 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1989. Notas de Matem´atica [Mathematical Notes], 126.
A. G. Waterman and G. M. Bergman. Connected fields of arbitrary characteristic. J. Math. Kyoto Univ., 5:177-184, 1966.
W. Wieslaw. Topological fields, volume 119 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1988.
S. Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 41 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/b37a46b6-b89a-41b8-8cfa-c5945632b091/download
https://repositorio.uniandes.edu.co/bitstreams/18fd4b0f-ef69-480b-96fe-6bbb7bac4e2c/download
https://repositorio.uniandes.edu.co/bitstreams/e24d06b3-8123-4ccf-a74c-096c0098bd1d/download
https://repositorio.uniandes.edu.co/bitstreams/62f080c4-4554-4407-8d8a-1058dc5b484b/download
https://repositorio.uniandes.edu.co/bitstreams/d80cf66c-28e3-4b5c-a527-6f623b44733f/download
https://repositorio.uniandes.edu.co/bitstreams/b82fe2b1-4f34-4a29-9f3a-c78615dca0c9/download
https://repositorio.uniandes.edu.co/bitstreams/5de7de8c-860e-443a-b013-44cfe314d7a1/download
https://repositorio.uniandes.edu.co/bitstreams/42d1df2c-7bb5-4974-9607-5ae14342398d/download
https://repositorio.uniandes.edu.co/bitstreams/cdae1522-215b-44a0-b6d3-f0e2957f7d7b/download
https://repositorio.uniandes.edu.co/bitstreams/4ba69a75-6bd5-498e-a3ab-5d9722f722ae/download
https://repositorio.uniandes.edu.co/bitstreams/e83874e4-4157-42a1-b4d1-b977b333f633/download
bitstream.checksum.fl_str_mv aa60408b1ff54aba569e86fce9c51b3f
300bc7075dc61bb2f198230764c081b8
cb6b85cde08dc5891b2f77a310b9be55
5aa5c691a1ffe97abd12c2966efcb8d6
3de2ca41e2622cbecd8f6ca4327110f0
4491fe1afb58beaaef41a73cf7ff2e27
e2c75a48c96fb999bff51d10da1b61a3
24013099e9e6abb1575dc6ce0855efd5
a594447d475c2d2d856a1a58f76dbada
c0ee7d9421196e268ff735956f9f96da
7a9375e7df0221f14d4642b8ebdaac14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133897417261056
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caicedo Ferrer, Xaviervirtual::6341-1Rodríguez Lozano, Juan Sebastián9f4861ec-c5a4-4e84-9595-d47fe7c066b7600Di Prisco, Carlos Augusto2023-01-23T20:37:38Z2023-01-23T20:37:38Z2022-12-09http://hdl.handle.net/1992/64097instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La dualidad de Gelfand establece una equivalencia entre la categoría de espacios compactos de Hausdorff y la categoría de C*-álgebras, que a un espacio compacto de Hausdorff X le asocia la C*-álgebra de Banach c(X,C) de funciones complejo valuadas, y a una C*-álgebra A le asocia el espacio Max(A) de ideales maximales con la topología de Zariski. En este trabajo exponemos la dualidad clásica y exploramos algunas posibles generalizaciones a otros campos topológicos. Probamos algunas de las generalizaciones conocidas de esta dualidad y demostramos nuevas generalizaciones en los casos que el campo K sea totalmente disconexo o cumpla con el teorema de Stone-Weierstrass.MatemáticoPregrado41 páginasapplication/pdfspaUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasGeneralizaciones de la dualidad de GelfandTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDualidad de GelfandCampos topológicosTransformada de GelfandStone-WeierstrassK-TychonoffMatemáticasV. I. Arnautov, S. T. Glavatsky, and A. V. Mikhalev. Introduction to the theory of topological rings and modules, volume 197 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1996.G. Bachman, E. Beckenstein, L. Narici, and S. Warner. Rings of continuous functions with values in a topological field. Trans. Amer. Math. Soc., 204:91-112, 1975.V. K. Balachandran. Topological algebras, volume 185 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 2000. Reprint of the 1999 original.X. Caicedo and G. Mantilla-Soler. On a characterization of path connected topological fields. J. Pure Appl. Algebra, 223(12):5279-5284, 2019.P. R. Chernoff, R. A. Rasala, and W. C. Waterhouse. The Stone-Weierstrass theorem for valuable fields. Pacific J. Math., 27:233-240, 1968.E. Correl and M. Henriksen. On rings of bounded continuous functions with values in a division ring. Proc. Amer. Math. Soc., 7:194-198, 1956.J. Dieudonné. Sur les corps topologiques connexes. C. R. Acad. Sci. Paris, 221:396-398, 1945.J. M. Dominguez. Non-Archimedean Gel'fand theory. Pacific J. Math., 104(2):337-341, 1983.J. Dugundji. Topology. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original.O. Endler. Valuation theory. Universitext. Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899-12 April 1971).I. Gelfand. Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S., 9 (51):3-24, 1941.I. Gelfand and M. Neumark. On the imbedding of normed rings into the ring of operators in Hilbert space. In C*-algebras: 1943-1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 2-19. Amer. Math. Soc., Providence, RI, 1994. Corrected reprint of the 1943 original [MR 5, 147].P. T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982.R. R. Kallman and F. W. Simmons. A theorem on planar continua and an application to automorphisms of the field of complex numbers. Topology Appl., 20(3):251-255, 1985.W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.N. Shell. Connected and disconnected fields. Topology Appl., 27(1):37-50, 1987.N. Shilkret. Non-Archimedean Gelfand theory. Pacific J. Math., 32:541-550, 1970.E. M. Vechtomov. Rings and sheaves. volume 74, pages 749-798. 1995. Topology, 1.E. M. Vechtomov. Rings of continuous functions with values in a topological division ring. volume 78, pages 702-753. 1996. Topology, 2.S. Warner. Topological fields, volume 157 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1989. Notas de Matem´atica [Mathematical Notes], 126.A. G. Waterman and G. M. Bergman. Connected fields of arbitrary characteristic. J. Math. Kyoto Univ., 5:177-184, 1966.W. Wieslaw. Topological fields, volume 119 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1988.S. Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.201815823Publication121813f3-5233-44f4-becd-1189c3e14fddvirtual::6341-1121813f3-5233-44f4-becd-1189c3e14fddvirtual::6341-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000250821virtual::6341-1ORIGINALGeneralizacionesDualidadDeGelfandCV2.pdfGeneralizacionesDualidadDeGelfandCV2.pdfapplication/pdf710737https://repositorio.uniandes.edu.co/bitstreams/b37a46b6-b89a-41b8-8cfa-c5945632b091/downloadaa60408b1ff54aba569e86fce9c51b3fMD510GeneralizacionesDualidadDeGelfand.pdfGeneralizacionesDualidadDeGelfand.pdfHIDEapplication/pdf710711https://repositorio.uniandes.edu.co/bitstreams/18fd4b0f-ef69-480b-96fe-6bbb7bac4e2c/download300bc7075dc61bb2f198230764c081b8MD55FormatoEntregaTesis.pdfFormatoEntregaTesis.pdfHIDEapplication/pdf233174https://repositorio.uniandes.edu.co/bitstreams/e24d06b3-8123-4ccf-a74c-096c0098bd1d/downloadcb6b85cde08dc5891b2f77a310b9be55MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/62f080c4-4554-4407-8d8a-1058dc5b484b/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTGeneralizacionesDualidadDeGelfand.pdf.txtGeneralizacionesDualidadDeGelfand.pdf.txtExtracted texttext/plain128895https://repositorio.uniandes.edu.co/bitstreams/d80cf66c-28e3-4b5c-a527-6f623b44733f/download3de2ca41e2622cbecd8f6ca4327110f0MD56FormatoEntregaTesis.pdf.txtFormatoEntregaTesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/b82fe2b1-4f34-4a29-9f3a-c78615dca0c9/download4491fe1afb58beaaef41a73cf7ff2e27MD58GeneralizacionesDualidadDeGelfandCV2.pdf.txtGeneralizacionesDualidadDeGelfandCV2.pdf.txtExtracted texttext/plain128868https://repositorio.uniandes.edu.co/bitstreams/5de7de8c-860e-443a-b013-44cfe314d7a1/downloade2c75a48c96fb999bff51d10da1b61a3MD511CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/42d1df2c-7bb5-4974-9607-5ae14342398d/download24013099e9e6abb1575dc6ce0855efd5MD52THUMBNAILGeneralizacionesDualidadDeGelfand.pdf.jpgGeneralizacionesDualidadDeGelfand.pdf.jpgIM Thumbnailimage/jpeg6203https://repositorio.uniandes.edu.co/bitstreams/cdae1522-215b-44a0-b6d3-f0e2957f7d7b/downloada594447d475c2d2d856a1a58f76dbadaMD57FormatoEntregaTesis.pdf.jpgFormatoEntregaTesis.pdf.jpgIM Thumbnailimage/jpeg15980https://repositorio.uniandes.edu.co/bitstreams/4ba69a75-6bd5-498e-a3ab-5d9722f722ae/downloadc0ee7d9421196e268ff735956f9f96daMD59GeneralizacionesDualidadDeGelfandCV2.pdf.jpgGeneralizacionesDualidadDeGelfandCV2.pdf.jpgIM Thumbnailimage/jpeg6204https://repositorio.uniandes.edu.co/bitstreams/e83874e4-4157-42a1-b4d1-b977b333f633/download7a9375e7df0221f14d4642b8ebdaac14MD5121992/64097oai:repositorio.uniandes.edu.co:1992/640972024-03-13 13:09:39.664http://creativecommons.org/licenses/by-nc/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==