Generalizaciones de la dualidad de Gelfand
La dualidad de Gelfand establece una equivalencia entre la categoría de espacios compactos de Hausdorff y la categoría de C*-álgebras, que a un espacio compacto de Hausdorff X le asocia la C*-álgebra de Banach c(X,C) de funciones complejo valuadas, y a una C*-álgebra A le asocia el espacio Max(A) de...
- Autores:
-
Rodríguez Lozano, Juan Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64097
- Acceso en línea:
- http://hdl.handle.net/1992/64097
- Palabra clave:
- Dualidad de Gelfand
Campos topológicos
Transformada de Gelfand
Stone-Weierstrass
K-Tychonoff
Matemáticas
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNIANDES2_21278c11c82ceb5758fb50977e61a927 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64097 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Generalizaciones de la dualidad de Gelfand |
title |
Generalizaciones de la dualidad de Gelfand |
spellingShingle |
Generalizaciones de la dualidad de Gelfand Dualidad de Gelfand Campos topológicos Transformada de Gelfand Stone-Weierstrass K-Tychonoff Matemáticas |
title_short |
Generalizaciones de la dualidad de Gelfand |
title_full |
Generalizaciones de la dualidad de Gelfand |
title_fullStr |
Generalizaciones de la dualidad de Gelfand |
title_full_unstemmed |
Generalizaciones de la dualidad de Gelfand |
title_sort |
Generalizaciones de la dualidad de Gelfand |
dc.creator.fl_str_mv |
Rodríguez Lozano, Juan Sebastián |
dc.contributor.advisor.none.fl_str_mv |
Caicedo Ferrer, Xavier |
dc.contributor.author.none.fl_str_mv |
Rodríguez Lozano, Juan Sebastián |
dc.contributor.jury.none.fl_str_mv |
Di Prisco, Carlos Augusto |
dc.subject.keyword.none.fl_str_mv |
Dualidad de Gelfand Campos topológicos Transformada de Gelfand Stone-Weierstrass K-Tychonoff |
topic |
Dualidad de Gelfand Campos topológicos Transformada de Gelfand Stone-Weierstrass K-Tychonoff Matemáticas |
dc.subject.themes.es_CO.fl_str_mv |
Matemáticas |
description |
La dualidad de Gelfand establece una equivalencia entre la categoría de espacios compactos de Hausdorff y la categoría de C*-álgebras, que a un espacio compacto de Hausdorff X le asocia la C*-álgebra de Banach c(X,C) de funciones complejo valuadas, y a una C*-álgebra A le asocia el espacio Max(A) de ideales maximales con la topología de Zariski. En este trabajo exponemos la dualidad clásica y exploramos algunas posibles generalizaciones a otros campos topológicos. Probamos algunas de las generalizaciones conocidas de esta dualidad y demostramos nuevas generalizaciones en los casos que el campo K sea totalmente disconexo o cumpla con el teorema de Stone-Weierstrass. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-09 |
dc.date.accessioned.none.fl_str_mv |
2023-01-23T20:37:38Z |
dc.date.available.none.fl_str_mv |
2023-01-23T20:37:38Z |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64097 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64097 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
V. I. Arnautov, S. T. Glavatsky, and A. V. Mikhalev. Introduction to the theory of topological rings and modules, volume 197 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1996. G. Bachman, E. Beckenstein, L. Narici, and S. Warner. Rings of continuous functions with values in a topological field. Trans. Amer. Math. Soc., 204:91-112, 1975. V. K. Balachandran. Topological algebras, volume 185 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 2000. Reprint of the 1999 original. X. Caicedo and G. Mantilla-Soler. On a characterization of path connected topological fields. J. Pure Appl. Algebra, 223(12):5279-5284, 2019. P. R. Chernoff, R. A. Rasala, and W. C. Waterhouse. The Stone-Weierstrass theorem for valuable fields. Pacific J. Math., 27:233-240, 1968. E. Correl and M. Henriksen. On rings of bounded continuous functions with values in a division ring. Proc. Amer. Math. Soc., 7:194-198, 1956. J. Dieudonné. Sur les corps topologiques connexes. C. R. Acad. Sci. Paris, 221:396-398, 1945. J. M. Dominguez. Non-Archimedean Gel'fand theory. Pacific J. Math., 104(2):337-341, 1983. J. Dugundji. Topology. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original. O. Endler. Valuation theory. Universitext. Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899-12 April 1971). I. Gelfand. Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S., 9 (51):3-24, 1941. I. Gelfand and M. Neumark. On the imbedding of normed rings into the ring of operators in Hilbert space. In C*-algebras: 1943-1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 2-19. Amer. Math. Soc., Providence, RI, 1994. Corrected reprint of the 1943 original [MR 5, 147]. P. T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982. R. R. Kallman and F. W. Simmons. A theorem on planar continua and an application to automorphisms of the field of complex numbers. Topology Appl., 20(3):251-255, 1985. W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987. W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991. N. Shell. Connected and disconnected fields. Topology Appl., 27(1):37-50, 1987. N. Shilkret. Non-Archimedean Gelfand theory. Pacific J. Math., 32:541-550, 1970. E. M. Vechtomov. Rings and sheaves. volume 74, pages 749-798. 1995. Topology, 1. E. M. Vechtomov. Rings of continuous functions with values in a topological division ring. volume 78, pages 702-753. 1996. Topology, 2. S. Warner. Topological fields, volume 157 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1989. Notas de Matem´atica [Mathematical Notes], 126. A. G. Waterman and G. M. Bergman. Connected fields of arbitrary characteristic. J. Math. Kyoto Univ., 5:177-184, 1966. W. Wieslaw. Topological fields, volume 119 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1988. S. Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
41 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/b37a46b6-b89a-41b8-8cfa-c5945632b091/download https://repositorio.uniandes.edu.co/bitstreams/18fd4b0f-ef69-480b-96fe-6bbb7bac4e2c/download https://repositorio.uniandes.edu.co/bitstreams/e24d06b3-8123-4ccf-a74c-096c0098bd1d/download https://repositorio.uniandes.edu.co/bitstreams/62f080c4-4554-4407-8d8a-1058dc5b484b/download https://repositorio.uniandes.edu.co/bitstreams/d80cf66c-28e3-4b5c-a527-6f623b44733f/download https://repositorio.uniandes.edu.co/bitstreams/b82fe2b1-4f34-4a29-9f3a-c78615dca0c9/download https://repositorio.uniandes.edu.co/bitstreams/5de7de8c-860e-443a-b013-44cfe314d7a1/download https://repositorio.uniandes.edu.co/bitstreams/42d1df2c-7bb5-4974-9607-5ae14342398d/download https://repositorio.uniandes.edu.co/bitstreams/cdae1522-215b-44a0-b6d3-f0e2957f7d7b/download https://repositorio.uniandes.edu.co/bitstreams/4ba69a75-6bd5-498e-a3ab-5d9722f722ae/download https://repositorio.uniandes.edu.co/bitstreams/e83874e4-4157-42a1-b4d1-b977b333f633/download |
bitstream.checksum.fl_str_mv |
aa60408b1ff54aba569e86fce9c51b3f 300bc7075dc61bb2f198230764c081b8 cb6b85cde08dc5891b2f77a310b9be55 5aa5c691a1ffe97abd12c2966efcb8d6 3de2ca41e2622cbecd8f6ca4327110f0 4491fe1afb58beaaef41a73cf7ff2e27 e2c75a48c96fb999bff51d10da1b61a3 24013099e9e6abb1575dc6ce0855efd5 a594447d475c2d2d856a1a58f76dbada c0ee7d9421196e268ff735956f9f96da 7a9375e7df0221f14d4642b8ebdaac14 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133897417261056 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caicedo Ferrer, Xaviervirtual::6341-1Rodríguez Lozano, Juan Sebastián9f4861ec-c5a4-4e84-9595-d47fe7c066b7600Di Prisco, Carlos Augusto2023-01-23T20:37:38Z2023-01-23T20:37:38Z2022-12-09http://hdl.handle.net/1992/64097instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La dualidad de Gelfand establece una equivalencia entre la categoría de espacios compactos de Hausdorff y la categoría de C*-álgebras, que a un espacio compacto de Hausdorff X le asocia la C*-álgebra de Banach c(X,C) de funciones complejo valuadas, y a una C*-álgebra A le asocia el espacio Max(A) de ideales maximales con la topología de Zariski. En este trabajo exponemos la dualidad clásica y exploramos algunas posibles generalizaciones a otros campos topológicos. Probamos algunas de las generalizaciones conocidas de esta dualidad y demostramos nuevas generalizaciones en los casos que el campo K sea totalmente disconexo o cumpla con el teorema de Stone-Weierstrass.MatemáticoPregrado41 páginasapplication/pdfspaUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasGeneralizaciones de la dualidad de GelfandTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDualidad de GelfandCampos topológicosTransformada de GelfandStone-WeierstrassK-TychonoffMatemáticasV. I. Arnautov, S. T. Glavatsky, and A. V. Mikhalev. Introduction to the theory of topological rings and modules, volume 197 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1996.G. Bachman, E. Beckenstein, L. Narici, and S. Warner. Rings of continuous functions with values in a topological field. Trans. Amer. Math. Soc., 204:91-112, 1975.V. K. Balachandran. Topological algebras, volume 185 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 2000. Reprint of the 1999 original.X. Caicedo and G. Mantilla-Soler. On a characterization of path connected topological fields. J. Pure Appl. Algebra, 223(12):5279-5284, 2019.P. R. Chernoff, R. A. Rasala, and W. C. Waterhouse. The Stone-Weierstrass theorem for valuable fields. Pacific J. Math., 27:233-240, 1968.E. Correl and M. Henriksen. On rings of bounded continuous functions with values in a division ring. Proc. Amer. Math. Soc., 7:194-198, 1956.J. Dieudonné. Sur les corps topologiques connexes. C. R. Acad. Sci. Paris, 221:396-398, 1945.J. M. Dominguez. Non-Archimedean Gel'fand theory. Pacific J. Math., 104(2):337-341, 1983.J. Dugundji. Topology. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original.O. Endler. Valuation theory. Universitext. Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899-12 April 1971).I. Gelfand. Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S., 9 (51):3-24, 1941.I. Gelfand and M. Neumark. On the imbedding of normed rings into the ring of operators in Hilbert space. In C*-algebras: 1943-1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 2-19. Amer. Math. Soc., Providence, RI, 1994. Corrected reprint of the 1943 original [MR 5, 147].P. T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982.R. R. Kallman and F. W. Simmons. A theorem on planar continua and an application to automorphisms of the field of complex numbers. Topology Appl., 20(3):251-255, 1985.W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.N. Shell. Connected and disconnected fields. Topology Appl., 27(1):37-50, 1987.N. Shilkret. Non-Archimedean Gelfand theory. Pacific J. Math., 32:541-550, 1970.E. M. Vechtomov. Rings and sheaves. volume 74, pages 749-798. 1995. Topology, 1.E. M. Vechtomov. Rings of continuous functions with values in a topological division ring. volume 78, pages 702-753. 1996. Topology, 2.S. Warner. Topological fields, volume 157 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1989. Notas de Matem´atica [Mathematical Notes], 126.A. G. Waterman and G. M. Bergman. Connected fields of arbitrary characteristic. J. Math. Kyoto Univ., 5:177-184, 1966.W. Wieslaw. Topological fields, volume 119 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1988.S. Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.201815823Publication121813f3-5233-44f4-becd-1189c3e14fddvirtual::6341-1121813f3-5233-44f4-becd-1189c3e14fddvirtual::6341-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000250821virtual::6341-1ORIGINALGeneralizacionesDualidadDeGelfandCV2.pdfGeneralizacionesDualidadDeGelfandCV2.pdfapplication/pdf710737https://repositorio.uniandes.edu.co/bitstreams/b37a46b6-b89a-41b8-8cfa-c5945632b091/downloadaa60408b1ff54aba569e86fce9c51b3fMD510GeneralizacionesDualidadDeGelfand.pdfGeneralizacionesDualidadDeGelfand.pdfHIDEapplication/pdf710711https://repositorio.uniandes.edu.co/bitstreams/18fd4b0f-ef69-480b-96fe-6bbb7bac4e2c/download300bc7075dc61bb2f198230764c081b8MD55FormatoEntregaTesis.pdfFormatoEntregaTesis.pdfHIDEapplication/pdf233174https://repositorio.uniandes.edu.co/bitstreams/e24d06b3-8123-4ccf-a74c-096c0098bd1d/downloadcb6b85cde08dc5891b2f77a310b9be55MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/62f080c4-4554-4407-8d8a-1058dc5b484b/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTGeneralizacionesDualidadDeGelfand.pdf.txtGeneralizacionesDualidadDeGelfand.pdf.txtExtracted texttext/plain128895https://repositorio.uniandes.edu.co/bitstreams/d80cf66c-28e3-4b5c-a527-6f623b44733f/download3de2ca41e2622cbecd8f6ca4327110f0MD56FormatoEntregaTesis.pdf.txtFormatoEntregaTesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/b82fe2b1-4f34-4a29-9f3a-c78615dca0c9/download4491fe1afb58beaaef41a73cf7ff2e27MD58GeneralizacionesDualidadDeGelfandCV2.pdf.txtGeneralizacionesDualidadDeGelfandCV2.pdf.txtExtracted texttext/plain128868https://repositorio.uniandes.edu.co/bitstreams/5de7de8c-860e-443a-b013-44cfe314d7a1/downloade2c75a48c96fb999bff51d10da1b61a3MD511CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/42d1df2c-7bb5-4974-9607-5ae14342398d/download24013099e9e6abb1575dc6ce0855efd5MD52THUMBNAILGeneralizacionesDualidadDeGelfand.pdf.jpgGeneralizacionesDualidadDeGelfand.pdf.jpgIM Thumbnailimage/jpeg6203https://repositorio.uniandes.edu.co/bitstreams/cdae1522-215b-44a0-b6d3-f0e2957f7d7b/downloada594447d475c2d2d856a1a58f76dbadaMD57FormatoEntregaTesis.pdf.jpgFormatoEntregaTesis.pdf.jpgIM Thumbnailimage/jpeg15980https://repositorio.uniandes.edu.co/bitstreams/4ba69a75-6bd5-498e-a3ab-5d9722f722ae/downloadc0ee7d9421196e268ff735956f9f96daMD59GeneralizacionesDualidadDeGelfandCV2.pdf.jpgGeneralizacionesDualidadDeGelfandCV2.pdf.jpgIM Thumbnailimage/jpeg6204https://repositorio.uniandes.edu.co/bitstreams/e83874e4-4157-42a1-b4d1-b977b333f633/download7a9375e7df0221f14d4642b8ebdaac14MD5121992/64097oai:repositorio.uniandes.edu.co:1992/640972024-03-13 13:09:39.664http://creativecommons.org/licenses/by-nc/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |