Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading

This paper proposes a heuristic algorithm with a column generation structure, where the master problem is responsible for managing the selection of best set routes, while the slave problem is responsible for solving a shorter restricted route problem (CSP, Constrained Shortest Path) for the generati...

Full description

Autores:
Acosta Rodríguez, Diego Alejandro
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/34947
Acceso en línea:
http://hdl.handle.net/1992/34947
Palabra clave:
Distribución logística
Algoritmos heurísticos
Investigación operacional
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_203acf12cda8a5736956dfc872e3bac6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/34947
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
title Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
spellingShingle Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
Distribución logística
Algoritmos heurísticos
Investigación operacional
Ingeniería
title_short Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
title_full Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
title_fullStr Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
title_full_unstemmed Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
title_sort Heuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loading
dc.creator.fl_str_mv Acosta Rodríguez, Diego Alejandro
dc.contributor.advisor.none.fl_str_mv Escobar Velásquez, John Wilmer
Álvarez Martínez, David
dc.contributor.author.none.fl_str_mv Acosta Rodríguez, Diego Alejandro
dc.contributor.jury.none.fl_str_mv Gómez Castro, Camilo Hernando
dc.subject.keyword.es_CO.fl_str_mv Distribución logística
Algoritmos heurísticos
Investigación operacional
topic Distribución logística
Algoritmos heurísticos
Investigación operacional
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description This paper proposes a heuristic algorithm with a column generation structure, where the master problem is responsible for managing the selection of best set routes, while the slave problem is responsible for solving a shorter restricted route problem (CSP, Constrained Shortest Path) for the generation of columns (feasible routes). The CSP is not necessarily resolved to optimality. In addition to this, a GRASP algorithm (Greedy Randomized Adaptive Search Procedure) is used to verify packing constraints. The master problem begins with a set of feasible routes found through a multi-start randomized constructive heuristic (MSRCA, Multi-Start Randomized Constructive Algorithm) for the multi-container loading problem (3D-BPP, Three-dimensional Bin Packing Problem). The MSRCA consists in finding a group of valid routes thinking only in the best packing of the costumers (Packing First-Route Second). To validate the performance of the optimization methodology proposed here, a benchmark was made with the best solutions reported in the literature using the classic test sets. The results allow to conclude that the slave problem is too complex and computationally expensive to solve it through a MIP, as future proposals it is proposed the use of a labeling algorithm that allows finding a fast and good quality solution.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T09:28:04Z
dc.date.available.none.fl_str_mv 2020-06-10T09:28:04Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/34947
dc.identifier.pdf.none.fl_str_mv u820930.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/34947
identifier_str_mv u820930.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 14 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Maestría en Ingeniería Industrial
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Industrial
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0934ad0d-6b51-4a24-91e6-dae98cea93d1/download
https://repositorio.uniandes.edu.co/bitstreams/9726af30-6e83-4d16-bce2-060c43a17d62/download
https://repositorio.uniandes.edu.co/bitstreams/b0916704-a4ea-48d8-8260-2d2001d3d95a/download
bitstream.checksum.fl_str_mv 275199f851d5fc400fe3d4f6b8fd90ce
a730911a3011b54bd93e4abcc0b484a0
5e91b82feae5e053244500b156e3bd81
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134063244312576
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Escobar Velásquez, John Wilmerfc83c569-b1ff-4ade-b7d2-6d723c54b9ec500Álvarez Martínez, Davidvirtual::16603-1Acosta Rodríguez, Diego Alejandroe1fe071f-544e-48a9-b886-980ec5717967500Gómez Castro, Camilo Hernando2020-06-10T09:28:04Z2020-06-10T09:28:04Z2018http://hdl.handle.net/1992/34947u820930.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This paper proposes a heuristic algorithm with a column generation structure, where the master problem is responsible for managing the selection of best set routes, while the slave problem is responsible for solving a shorter restricted route problem (CSP, Constrained Shortest Path) for the generation of columns (feasible routes). The CSP is not necessarily resolved to optimality. In addition to this, a GRASP algorithm (Greedy Randomized Adaptive Search Procedure) is used to verify packing constraints. The master problem begins with a set of feasible routes found through a multi-start randomized constructive heuristic (MSRCA, Multi-Start Randomized Constructive Algorithm) for the multi-container loading problem (3D-BPP, Three-dimensional Bin Packing Problem). The MSRCA consists in finding a group of valid routes thinking only in the best packing of the costumers (Packing First-Route Second). To validate the performance of the optimization methodology proposed here, a benchmark was made with the best solutions reported in the literature using the classic test sets. The results allow to conclude that the slave problem is too complex and computationally expensive to solve it through a MIP, as future proposals it is proposed the use of a labeling algorithm that allows finding a fast and good quality solution."Este trabajo propone un algoritmo heurístico con una estructura de generación de columnas, donde el problema maestro se encarga de gerenciar la selección de las rutas factibles, mientras el problema esclavo se encarga de resolver un problema de ruta más corta restringido (CSP, Constrained Shortest Path) para la generación de columnas. El CSP no necesariamente es resuelto a optimalidad. Además de esto, es utilizado un algoritmo GRASP (Greedy Randomized Adaptive Search Procedure) para verificar las restricciones de empaquetamiento. El problema maestro comienza con un conjunto de rutas factibles encontradas a través de una heurística multi-arranque de tipo constructivo aleatorizado (MSRCA, Multi-Start Randomized Constructive Algorithm) para el problema de carga de vehículos (3D-BPP, Three-dimensional Bin Packing Problem). El MSRCA consiste en encontrar un grupo de rutas validas pensando en primero empacar y después rutear (Packing First-Route Second). Para validar el desempeño de la metodología de optimización aquí propuesta, se realizó un benchmark con las mejores soluciones reportadas en la literatura utilizando los conjuntos de prueba clásicos. Los resultados permiten concluir que el problema esclavo es demasiado complejo y computacionalmente caro para resolverlo a través de un MIP, como propuestas futuras se propone el uso de un algoritmo de etiquetado que permita encontrar una solución rápida y de buena calidad."--Tomado del Formato de Documento de Grado.Magíster en Ingeniería IndustrialMaestría14 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería Industrialinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaHeuristic algorithm based on columns generation for the integrated problem of vehicle routing and container loadingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMDistribución logísticaAlgoritmos heurísticosInvestigación operacionalIngenieríaPublication0000-0001-8411-1936virtual::16603-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000935700virtual::16603-1b7f11fc3-4fb6-476e-b2d6-bd3bb348a167virtual::16603-1b7f11fc3-4fb6-476e-b2d6-bd3bb348a167virtual::16603-1TEXTu820930.pdf.txtu820930.pdf.txtExtracted texttext/plain35041https://repositorio.uniandes.edu.co/bitstreams/0934ad0d-6b51-4a24-91e6-dae98cea93d1/download275199f851d5fc400fe3d4f6b8fd90ceMD54THUMBNAILu820930.pdf.jpgu820930.pdf.jpgIM Thumbnailimage/jpeg23226https://repositorio.uniandes.edu.co/bitstreams/9726af30-6e83-4d16-bce2-060c43a17d62/downloada730911a3011b54bd93e4abcc0b484a0MD55ORIGINALu820930.pdfapplication/pdf661013https://repositorio.uniandes.edu.co/bitstreams/b0916704-a4ea-48d8-8260-2d2001d3d95a/download5e91b82feae5e053244500b156e3bd81MD511992/34947oai:repositorio.uniandes.edu.co:1992/349472024-03-13 15:46:18.198https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co