Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli

Outer membrane vesicles (OMVs) are spherical structures that contain a small fraction of the periplasm of Gram-negative bacteria, surrounded by its outer membrane. They are naturally produced and detached from the bacterial surface, participate in diverse biological processes, and are approximately...

Full description

Autores:
Rincón Téllez, Nicolás
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/54425
Acceso en línea:
http://hdl.handle.net/1992/54425
Palabra clave:
Outer membrane vesicles
Vesículas de membrana externa
Green fluorescent protein
Proteína verde fluorescente
Protein encapsulation
Encapsulación de proteínas
Cell immobilization
Inmovilización celular
Size exclusion chromatography
Cromatografía de exclusión molecular
Ingeniería
Microbiología
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_1fe07540f50a7085b30b9c4e384e5123
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/54425
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
dc.title.alternative.none.fl_str_mv Producción y purificación de vesículas de membrana externa a partir de una cepa hipervesiculante de Escherichia coli
title Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
spellingShingle Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
Outer membrane vesicles
Vesículas de membrana externa
Green fluorescent protein
Proteína verde fluorescente
Protein encapsulation
Encapsulación de proteínas
Cell immobilization
Inmovilización celular
Size exclusion chromatography
Cromatografía de exclusión molecular
Ingeniería
Microbiología
title_short Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
title_full Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
title_fullStr Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
title_full_unstemmed Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
title_sort Production and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli
dc.creator.fl_str_mv Rincón Téllez, Nicolás
dc.contributor.advisor.none.fl_str_mv Reyes Barrios, Luis Humberto
Cruz Jiménez, Juan Carlos
Bernal Giraldo, Adriana Jimena
dc.contributor.author.none.fl_str_mv Rincón Téllez, Nicolás
dc.subject.keyword.none.fl_str_mv Outer membrane vesicles
Vesículas de membrana externa
Green fluorescent protein
Proteína verde fluorescente
Protein encapsulation
Encapsulación de proteínas
Cell immobilization
Inmovilización celular
Size exclusion chromatography
Cromatografía de exclusión molecular
topic Outer membrane vesicles
Vesículas de membrana externa
Green fluorescent protein
Proteína verde fluorescente
Protein encapsulation
Encapsulación de proteínas
Cell immobilization
Inmovilización celular
Size exclusion chromatography
Cromatografía de exclusión molecular
Ingeniería
Microbiología
dc.subject.themes.es_CO.fl_str_mv Ingeniería
Microbiología
description Outer membrane vesicles (OMVs) are spherical structures that contain a small fraction of the periplasm of Gram-negative bacteria, surrounded by its outer membrane. They are naturally produced and detached from the bacterial surface, participate in diverse biological processes, and are approximately 10-300 nm in diameter. Some genetically modified Gram-negative bacteria¿s ability to produce large amounts of these structures can be exploited for different applications, including biosensors, protein chips, and bioreactors. Traditionally, the main biotechnological application of OMVs has been their use as adjuvants for the development of vaccines due to their natural immunogenic characteristics. Among the most attractive applications is the encapsulation of proteins and peptides heterologously expressed in these bacteria. In this regard, OMVs can protect the expressed proteins, avoiding conformational changes responsible for loss of activity. Nevertheless, among the biggest challenges for all OMV applications are low yields, the presence of undesired macromolecules and the high purifications costs. Hence, the objective of this study was to produce green fluorescent protein (GFP) encapsulated into OMVs using Escherichia coli JC8031 transformed with pTRC99A-ssTorA-GFP, to establish the production and purification route. The obtained results allow establishing the possibility that saturation of the Tat system by the overexpression of GFP causes a low encapsulation efficiency. Moreover, the motility of JC8031 prevents the purification of OMVs by immobilization in alginate, while chromatography with a zeolite column separates OMVs from smaller particles. Therefore, it is necessary to standardize the production and use of the column in order to to apply it on a larger scale.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-23
dc.date.accessioned.none.fl_str_mv 2022-01-28T15:45:17Z
dc.date.available.none.fl_str_mv 2022-01-28T15:45:17Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/54425
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/54425
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 21 páginas
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Química
Microbiología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
Departamento de Ingeniería Química y de Alimentos
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e9c607d5-03fe-4db0-93bd-a46bb20a25ad/download
https://repositorio.uniandes.edu.co/bitstreams/40fef362-0146-4830-abac-8e980c16da0c/download
https://repositorio.uniandes.edu.co/bitstreams/7ee1728a-12d1-4a4a-bf8a-9712cac8f5ba/download
https://repositorio.uniandes.edu.co/bitstreams/d9b065a1-52b2-4cb8-b293-550451487767/download
https://repositorio.uniandes.edu.co/bitstreams/d2a7ad8c-f3db-468d-a18b-adcd516e9f54/download
bitstream.checksum.fl_str_mv 7789e635075bfc9bb63165eee5cdff8a
4460e5956bc1d1639be9ae6146a50347
5aa5c691a1ffe97abd12c2966efcb8d6
20aa8bb83cbcf838fde233c81aa2fddd
fbda8acc3f0e66c158cb73c55dc54b75
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134063130017792
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Barrios, Luis Humbertovirtual::16571-1Cruz Jiménez, Juan Carlosvirtual::16572-1Bernal Giraldo, Adriana Jimenavirtual::16573-1Rincón Téllez, Nicolás2cddfd06-519b-40a7-a828-9a43f2494eb36002022-01-28T15:45:17Z2022-01-28T15:45:17Z2021-12-23http://hdl.handle.net/1992/54425instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Outer membrane vesicles (OMVs) are spherical structures that contain a small fraction of the periplasm of Gram-negative bacteria, surrounded by its outer membrane. They are naturally produced and detached from the bacterial surface, participate in diverse biological processes, and are approximately 10-300 nm in diameter. Some genetically modified Gram-negative bacteria¿s ability to produce large amounts of these structures can be exploited for different applications, including biosensors, protein chips, and bioreactors. Traditionally, the main biotechnological application of OMVs has been their use as adjuvants for the development of vaccines due to their natural immunogenic characteristics. Among the most attractive applications is the encapsulation of proteins and peptides heterologously expressed in these bacteria. In this regard, OMVs can protect the expressed proteins, avoiding conformational changes responsible for loss of activity. Nevertheless, among the biggest challenges for all OMV applications are low yields, the presence of undesired macromolecules and the high purifications costs. Hence, the objective of this study was to produce green fluorescent protein (GFP) encapsulated into OMVs using Escherichia coli JC8031 transformed with pTRC99A-ssTorA-GFP, to establish the production and purification route. The obtained results allow establishing the possibility that saturation of the Tat system by the overexpression of GFP causes a low encapsulation efficiency. Moreover, the motility of JC8031 prevents the purification of OMVs by immobilization in alginate, while chromatography with a zeolite column separates OMVs from smaller particles. Therefore, it is necessary to standardize the production and use of the column in order to to apply it on a larger scale.Las vesículas de membrana externa (OMV) son estructuras esféricas que contienen una pequeña fracción del periplasma de bacterias Gram negativas, rodeadas por su membrana externa. Se producen naturalmente y se desprenden de la superficie bacteriana, participan en diversos procesos biológicos y tienen aproximadamente 10-300 nm de diámetro. La capacidad de algunas bacterias gramnegativas modificadas genéticamente para producir grandes cantidades de estas estructuras se puede explotar para diferentes aplicaciones, incluidos biosensores, chips de proteínas y biorreactores. Tradicionalmente, la principal aplicación biotecnológica de las OMV ha sido su uso como adyuvantes para el desarrollo de vacunas debido a sus características inmunogénicas naturales. Entre las aplicaciones más atractivas se encuentra la encapsulación de proteínas y péptidos expresados ¿¿heterólogamente en estas bacterias. En este sentido, las OMV pueden proteger las proteínas expresadas, evitando cambios conformacionales responsables de la pérdida de actividad. Sin embargo, entre los mayores desafíos para todas las aplicaciones de OMV se encuentran los bajos rendimientos, la presencia de macromoléculas no deseadas y los altos costos de purificación. Por tanto, el objetivo de este estudio fue producir proteína verde fluorescente (GFP) encapsulada en OMV utilizando Escherichia coli JC8031 transformada con pTRC99A-ssTorA-GFP, para establecer la ruta de producción y purificación. Los resultados obtenidos permiten establecer la posibilidad de que la saturación del sistema Tat por la sobreexpresión de GFP provoque una baja eficiencia de encapsulación. Además, la motilidad de JC8031 evita la purificación de las OMV mediante la inmovilización en alginato, mientras que la cromatografía con una columna de zeolita separa las OMV de las partículas más pequeñas. Por tanto, es necesario estandarizar la producción y uso de la columna para poder aplicarla a mayor escala.Ingeniero QuímicoMicrobiólogoPregrado21 páginasengUniversidad de los AndesIngeniería QuímicaMicrobiologíaFacultad de CienciasFacultad de IngenieríaDepartamento de Ciencias BiológicasDepartamento de Ingeniería Química y de AlimentosProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coliProducción y purificación de vesículas de membrana externa a partir de una cepa hipervesiculante de Escherichia coliTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPOuter membrane vesiclesVesículas de membrana externaGreen fluorescent proteinProteína verde fluorescenteProtein encapsulationEncapsulación de proteínasCell immobilizationInmovilización celularSize exclusion chromatographyCromatografía de exclusión molecularIngenieríaMicrobiología201714660Publicationhttps://scholar.google.es/citations?user=2vO8IrIAAAAJvirtual::16571-1https://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::16573-10000-0001-7251-5298virtual::16571-10000-0002-3557-697Xvirtual::16573-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001574664virtual::16571-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::16573-17bc6dc94-4e9c-4245-8b42-9f7dbc69de83virtual::16571-110c65e28-e393-4bfe-91e5-f3a7d32e6771virtual::16572-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::16573-17bc6dc94-4e9c-4245-8b42-9f7dbc69de83virtual::16571-110c65e28-e393-4bfe-91e5-f3a7d32e6771virtual::16572-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::16573-1TEXTProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli.pdf.txtProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli.pdf.txtExtracted texttext/plain58955https://repositorio.uniandes.edu.co/bitstreams/e9c607d5-03fe-4db0-93bd-a46bb20a25ad/download7789e635075bfc9bb63165eee5cdff8aMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/40fef362-0146-4830-abac-8e980c16da0c/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/7ee1728a-12d1-4a4a-bf8a-9712cac8f5ba/download5aa5c691a1ffe97abd12c2966efcb8d6MD54ORIGINALProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli.pdfProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli.pdfTrabajo de gradoapplication/pdf11322162https://repositorio.uniandes.edu.co/bitstreams/d9b065a1-52b2-4cb8-b293-550451487767/download20aa8bb83cbcf838fde233c81aa2fdddMD53THUMBNAILProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli.pdf.jpgProduction and purification of outer membrane vesicles (OMVs) from a hypervesiculating strain of Escherichia coli.pdf.jpgIM Thumbnailimage/jpeg29170https://repositorio.uniandes.edu.co/bitstreams/d2a7ad8c-f3db-468d-a18b-adcd516e9f54/downloadfbda8acc3f0e66c158cb73c55dc54b75MD581992/54425oai:repositorio.uniandes.edu.co:1992/544252024-03-13 15:45:51.267http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==