Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
Transition metal dichalcogenides (TMDs) are a family of layered bidimensional (2D) materials which find great interest in fields such as medicine, energy conversion, water treatment, and electronics. Moreover, the most impressive feature of this family is the transition to a direct semiconductor as...
- Autores:
-
Olaya Cortés, Daniel Esteban
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74906
- Acceso en línea:
- https://hdl.handle.net/1992/74906
- Palabra clave:
- TMDs
Nanosheets
Networks
Piezoresistivity
Photoconductivity
Hopping
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_1f7e9ea62f7ac697efa98ca923eac70c |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74906 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
title |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
spellingShingle |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks TMDs Nanosheets Networks Piezoresistivity Photoconductivity Hopping Física |
title_short |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
title_full |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
title_fullStr |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
title_full_unstemmed |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
title_sort |
Lateral size dependence of piezoresistivity and photoconductivity in TMD networks |
dc.creator.fl_str_mv |
Olaya Cortés, Daniel Esteban |
dc.contributor.advisor.none.fl_str_mv |
Hernández Pico, Yenny Rocio |
dc.contributor.author.none.fl_str_mv |
Olaya Cortés, Daniel Esteban |
dc.contributor.jury.none.fl_str_mv |
Giraldo Gallo, Paula Liliana |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada |
dc.subject.keyword.none.fl_str_mv |
TMDs Nanosheets Networks Piezoresistivity Photoconductivity Hopping |
topic |
TMDs Nanosheets Networks Piezoresistivity Photoconductivity Hopping Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
Transition metal dichalcogenides (TMDs) are a family of layered bidimensional (2D) materials which find great interest in fields such as medicine, energy conversion, water treatment, and electronics. Moreover, the most impressive feature of this family is the transition to a direct semiconductor as the material is fully exfoliated. Nevertheless, the interesting properties that arise as the number of layers reduce, do not necessarily persist when the nanosheets are printed on substrates to form networks. Therefore, further research on the networks and the influence of the nanosheets’ dimensions is valuable for scaling up prospects. Regarding the production process of TMD nanosheets, good quality dispersions can be obtained by liquid phase exfoliation (LPE). Moreover, the long processing times that this process requires can be reduced by mediating the exfoliation through intercalation of lithium ions. Both techniques were successfully applied to tungsten disulfide (WS2) and molybdenum disulfide (MoS2) powders to obtain concentrated dispersions. However, these dispersions are characterized by a wide distribution of sizes and thicknesses. Selecting the lateral size and thickness was successfully done by liquid cascade centrifugation (LCC). The morphological analysis by scanning electron microscopy (SEM) allowed to characterize the average and standard deviation of the distribution of the unselected and selected dispersions. Furthermore, UV-Vis, FTIR, and Raman spectroscopy allowed to distinguish the optical properties and the vibrational features of both TMDs. Characteristic Raman signals are layer dependent, thus specific features of this spectrum can be utilized as a metric. X-ray diffraction was conducted on all devices, which gave a tool to distinguish WS2 networks, conformed by two or three TMD layers which are mostly 2H-hexagonally-structured, to MoS2 networks, conformed by more than five layers which showcases a mixture of a rhombohedral (3R) and a hexagonal (2H) structure. Piezoresistivity, which is the change of resistance induced by an applied strain, matters as an important effect when designing sensors applied in medicine, energy conversion, opto-electronics and so on. It is known that strain alters the band structure of TMDs and also tune transitions between different crystal structures. Moreover, applying strain to semiconductors would change their electronic properties which could be modeled through their piezoresistivity tensor. The figure of merit that measures how much the resistivity changes when strain is applied is the gauge factor (GF). In networks, this is modeled as a sum of the nanosheet intrinsic GF and the change of the junction resistance between nanosheets due to strain. In this thesis the GF of the devices was obtained through their transport characteristics when applying uniaxial strain, both at a tensile and a compressive setup, by using a three-beam bending machine. Hereby the first report of a transition from a positive GF to a negative one, when applying uniaxial strain to WS2 networks as the lateral size increases, and a transition from negative GF to a positive one, when compression is applied to MoS2 networks as lateral size increases is shown. Photoconductivity is an important feature of semiconductors that finds major attention in the fields of solar cells, hydrogen and oxygen evolution reactions, and photodetectors. This feature involves a change of density of charge carriers induced by light, which is dependent on the generation of light-induced carriers and the recombination of excitons. In this thesis, the photoconductivity of printed devices was measured by using a xenon lamp inside an obscure chamber. Molybdenum disulfide-based devices show higher responsivity as compared with tungsten disulfide devices, which is attributed to an increased light absorption and hydroxyl groups attached to the surface of the MoS2 networks that enhance the photoconductivity by increasing the carrier lifetimes. Furthermore, the responsivity of the devices behaves similarly to the conductivity, which is modeled as networks of pairs of nanosheets and junctions through percolative paths. Finally, this is the first report that shows that the response time of the devices increase with lateral size. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-02T15:18:09Z |
dc.date.available.none.fl_str_mv |
2024-08-02T15:18:09Z |
dc.date.issued.none.fl_str_mv |
2024-07-21 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74906 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/74906 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74906 |
identifier_str_mv |
10.57784/1992/74906 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
112 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0259ce95-7076-431c-9ac0-26e2afe289ce/download https://repositorio.uniandes.edu.co/bitstreams/bebba388-a550-43fa-9b7e-2c19f3f8f7a0/download https://repositorio.uniandes.edu.co/bitstreams/fda37eb6-bade-43f6-ae26-3dd0001d7dfe/download https://repositorio.uniandes.edu.co/bitstreams/92cc4934-8e97-4010-89bc-239fe9158ef6/download https://repositorio.uniandes.edu.co/bitstreams/c06ef3b8-83a3-44b7-97cb-96eaf27f4af6/download https://repositorio.uniandes.edu.co/bitstreams/b6c13417-3f21-4334-bee2-9155d109efc7/download https://repositorio.uniandes.edu.co/bitstreams/7f5a0b3e-7c93-4b47-ba09-9ad368be374f/download https://repositorio.uniandes.edu.co/bitstreams/b79affd3-0745-4de4-bbae-df14c97e9ff7/download |
bitstream.checksum.fl_str_mv |
6ac54cd4c21184d967c33db748fc7d99 7777b04ab9f98c93d7e62370bd0912ab 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f 7526309199d76ff34c6cc27792ab7b99 3c0924ede22fa4d393af858f65b0ec8c 3ccf909a1022b1ff18f3f7d38faf59eb 910c54fb98914f894321a23aa187750a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111857565630464 |
spelling |
Hernández Pico, Yenny Rociovirtual::19608-1Olaya Cortés, Daniel EstebanGiraldo Gallo, Paula LilianaFacultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada2024-08-02T15:18:09Z2024-08-02T15:18:09Z2024-07-21https://hdl.handle.net/1992/7490610.57784/1992/74906instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Transition metal dichalcogenides (TMDs) are a family of layered bidimensional (2D) materials which find great interest in fields such as medicine, energy conversion, water treatment, and electronics. Moreover, the most impressive feature of this family is the transition to a direct semiconductor as the material is fully exfoliated. Nevertheless, the interesting properties that arise as the number of layers reduce, do not necessarily persist when the nanosheets are printed on substrates to form networks. Therefore, further research on the networks and the influence of the nanosheets’ dimensions is valuable for scaling up prospects. Regarding the production process of TMD nanosheets, good quality dispersions can be obtained by liquid phase exfoliation (LPE). Moreover, the long processing times that this process requires can be reduced by mediating the exfoliation through intercalation of lithium ions. Both techniques were successfully applied to tungsten disulfide (WS2) and molybdenum disulfide (MoS2) powders to obtain concentrated dispersions. However, these dispersions are characterized by a wide distribution of sizes and thicknesses. Selecting the lateral size and thickness was successfully done by liquid cascade centrifugation (LCC). The morphological analysis by scanning electron microscopy (SEM) allowed to characterize the average and standard deviation of the distribution of the unselected and selected dispersions. Furthermore, UV-Vis, FTIR, and Raman spectroscopy allowed to distinguish the optical properties and the vibrational features of both TMDs. Characteristic Raman signals are layer dependent, thus specific features of this spectrum can be utilized as a metric. X-ray diffraction was conducted on all devices, which gave a tool to distinguish WS2 networks, conformed by two or three TMD layers which are mostly 2H-hexagonally-structured, to MoS2 networks, conformed by more than five layers which showcases a mixture of a rhombohedral (3R) and a hexagonal (2H) structure. Piezoresistivity, which is the change of resistance induced by an applied strain, matters as an important effect when designing sensors applied in medicine, energy conversion, opto-electronics and so on. It is known that strain alters the band structure of TMDs and also tune transitions between different crystal structures. Moreover, applying strain to semiconductors would change their electronic properties which could be modeled through their piezoresistivity tensor. The figure of merit that measures how much the resistivity changes when strain is applied is the gauge factor (GF). In networks, this is modeled as a sum of the nanosheet intrinsic GF and the change of the junction resistance between nanosheets due to strain. In this thesis the GF of the devices was obtained through their transport characteristics when applying uniaxial strain, both at a tensile and a compressive setup, by using a three-beam bending machine. Hereby the first report of a transition from a positive GF to a negative one, when applying uniaxial strain to WS2 networks as the lateral size increases, and a transition from negative GF to a positive one, when compression is applied to MoS2 networks as lateral size increases is shown. Photoconductivity is an important feature of semiconductors that finds major attention in the fields of solar cells, hydrogen and oxygen evolution reactions, and photodetectors. This feature involves a change of density of charge carriers induced by light, which is dependent on the generation of light-induced carriers and the recombination of excitons. In this thesis, the photoconductivity of printed devices was measured by using a xenon lamp inside an obscure chamber. Molybdenum disulfide-based devices show higher responsivity as compared with tungsten disulfide devices, which is attributed to an increased light absorption and hydroxyl groups attached to the surface of the MoS2 networks that enhance the photoconductivity by increasing the carrier lifetimes. Furthermore, the responsivity of the devices behaves similarly to the conductivity, which is modeled as networks of pairs of nanosheets and junctions through percolative paths. Finally, this is the first report that shows that the response time of the devices increase with lateral size.Doctorado112 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lateral size dependence of piezoresistivity and photoconductivity in TMD networksTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDTMDsNanosheetsNetworksPiezoresistivityPhotoconductivityHoppingFísica200912453Publicationhttps://scholar.google.es/citations?user=KXWwfMMAAAAJvirtual::19608-1https://scholar.google.es/citations?user=KXWwfMMAAAAJhttps://scholar.google.es/citations?user=KXWwfMMAAAAJ0000-0002-6980-8820virtual::19608-10000-0002-6980-88200000-0002-6980-8820https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566virtual::19608-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00003185665ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::19608-15ec439ad-c826-485e-8b94-d4fe2bfc10175ec439ad-c826-485e-8b94-d4fe2bfc10175ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::19608-1734116d8-ad5b-4ae9-bde5-2eed399996c7ORIGINALLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdfLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdfapplication/pdf32672975https://repositorio.uniandes.edu.co/bitstreams/0259ce95-7076-431c-9ac0-26e2afe289ce/download6ac54cd4c21184d967c33db748fc7d99MD51autorizacion tesis diligenciado.pdfautorizacion tesis diligenciado.pdfHIDEapplication/pdf234249https://repositorio.uniandes.edu.co/bitstreams/bebba388-a550-43fa-9b7e-2c19f3f8f7a0/download7777b04ab9f98c93d7e62370bd0912abMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/fda37eb6-bade-43f6-ae26-3dd0001d7dfe/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/92cc4934-8e97-4010-89bc-239fe9158ef6/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdf.txtLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdf.txtExtracted texttext/plain100251https://repositorio.uniandes.edu.co/bitstreams/c06ef3b8-83a3-44b7-97cb-96eaf27f4af6/download7526309199d76ff34c6cc27792ab7b99MD55autorizacion tesis diligenciado.pdf.txtautorizacion tesis diligenciado.pdf.txtExtracted texttext/plain1990https://repositorio.uniandes.edu.co/bitstreams/b6c13417-3f21-4334-bee2-9155d109efc7/download3c0924ede22fa4d393af858f65b0ec8cMD57THUMBNAILLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdf.jpgLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdf.jpgGenerated Thumbnailimage/jpeg6686https://repositorio.uniandes.edu.co/bitstreams/7f5a0b3e-7c93-4b47-ba09-9ad368be374f/download3ccf909a1022b1ff18f3f7d38faf59ebMD56autorizacion tesis diligenciado.pdf.jpgautorizacion tesis diligenciado.pdf.jpgGenerated Thumbnailimage/jpeg10905https://repositorio.uniandes.edu.co/bitstreams/b79affd3-0745-4de4-bbae-df14c97e9ff7/download910c54fb98914f894321a23aa187750aMD581992/74906oai:repositorio.uniandes.edu.co:1992/749062024-09-12 15:51:39.841http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |