Lateral size dependence of piezoresistivity and photoconductivity in TMD networks

Transition metal dichalcogenides (TMDs) are a family of layered bidimensional (2D) materials which find great interest in fields such as medicine, energy conversion, water treatment, and electronics. Moreover, the most impressive feature of this family is the transition to a direct semiconductor as...

Full description

Autores:
Olaya Cortés, Daniel Esteban
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74906
Acceso en línea:
https://hdl.handle.net/1992/74906
Palabra clave:
TMDs
Nanosheets
Networks
Piezoresistivity
Photoconductivity
Hopping
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_1f7e9ea62f7ac697efa98ca923eac70c
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74906
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
title Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
spellingShingle Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
TMDs
Nanosheets
Networks
Piezoresistivity
Photoconductivity
Hopping
Física
title_short Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
title_full Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
title_fullStr Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
title_full_unstemmed Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
title_sort Lateral size dependence of piezoresistivity and photoconductivity in TMD networks
dc.creator.fl_str_mv Olaya Cortés, Daniel Esteban
dc.contributor.advisor.none.fl_str_mv Hernández Pico, Yenny Rocio
dc.contributor.author.none.fl_str_mv Olaya Cortés, Daniel Esteban
dc.contributor.jury.none.fl_str_mv Giraldo Gallo, Paula Liliana
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada
dc.subject.keyword.none.fl_str_mv TMDs
Nanosheets
Networks
Piezoresistivity
Photoconductivity
Hopping
topic TMDs
Nanosheets
Networks
Piezoresistivity
Photoconductivity
Hopping
Física
dc.subject.themes.spa.fl_str_mv Física
description Transition metal dichalcogenides (TMDs) are a family of layered bidimensional (2D) materials which find great interest in fields such as medicine, energy conversion, water treatment, and electronics. Moreover, the most impressive feature of this family is the transition to a direct semiconductor as the material is fully exfoliated. Nevertheless, the interesting properties that arise as the number of layers reduce, do not necessarily persist when the nanosheets are printed on substrates to form networks. Therefore, further research on the networks and the influence of the nanosheets’ dimensions is valuable for scaling up prospects. Regarding the production process of TMD nanosheets, good quality dispersions can be obtained by liquid phase exfoliation (LPE). Moreover, the long processing times that this process requires can be reduced by mediating the exfoliation through intercalation of lithium ions. Both techniques were successfully applied to tungsten disulfide (WS2) and molybdenum disulfide (MoS2) powders to obtain concentrated dispersions. However, these dispersions are characterized by a wide distribution of sizes and thicknesses. Selecting the lateral size and thickness was successfully done by liquid cascade centrifugation (LCC). The morphological analysis by scanning electron microscopy (SEM) allowed to characterize the average and standard deviation of the distribution of the unselected and selected dispersions. Furthermore, UV-Vis, FTIR, and Raman spectroscopy allowed to distinguish the optical properties and the vibrational features of both TMDs. Characteristic Raman signals are layer dependent, thus specific features of this spectrum can be utilized as a metric. X-ray diffraction was conducted on all devices, which gave a tool to distinguish WS2 networks, conformed by two or three TMD layers which are mostly 2H-hexagonally-structured, to MoS2 networks, conformed by more than five layers which showcases a mixture of a rhombohedral (3R) and a hexagonal (2H) structure. Piezoresistivity, which is the change of resistance induced by an applied strain, matters as an important effect when designing sensors applied in medicine, energy conversion, opto-electronics and so on. It is known that strain alters the band structure of TMDs and also tune transitions between different crystal structures. Moreover, applying strain to semiconductors would change their electronic properties which could be modeled through their piezoresistivity tensor. The figure of merit that measures how much the resistivity changes when strain is applied is the gauge factor (GF). In networks, this is modeled as a sum of the nanosheet intrinsic GF and the change of the junction resistance between nanosheets due to strain. In this thesis the GF of the devices was obtained through their transport characteristics when applying uniaxial strain, both at a tensile and a compressive setup, by using a three-beam bending machine. Hereby the first report of a transition from a positive GF to a negative one, when applying uniaxial strain to WS2 networks as the lateral size increases, and a transition from negative GF to a positive one, when compression is applied to MoS2 networks as lateral size increases is shown. Photoconductivity is an important feature of semiconductors that finds major attention in the fields of solar cells, hydrogen and oxygen evolution reactions, and photodetectors. This feature involves a change of density of charge carriers induced by light, which is dependent on the generation of light-induced carriers and the recombination of excitons. In this thesis, the photoconductivity of printed devices was measured by using a xenon lamp inside an obscure chamber. Molybdenum disulfide-based devices show higher responsivity as compared with tungsten disulfide devices, which is attributed to an increased light absorption and hydroxyl groups attached to the surface of the MoS2 networks that enhance the photoconductivity by increasing the carrier lifetimes. Furthermore, the responsivity of the devices behaves similarly to the conductivity, which is modeled as networks of pairs of nanosheets and junctions through percolative paths. Finally, this is the first report that shows that the response time of the devices increase with lateral size.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-02T15:18:09Z
dc.date.available.none.fl_str_mv 2024-08-02T15:18:09Z
dc.date.issued.none.fl_str_mv 2024-07-21
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74906
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74906
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 112 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0259ce95-7076-431c-9ac0-26e2afe289ce/download
https://repositorio.uniandes.edu.co/bitstreams/bebba388-a550-43fa-9b7e-2c19f3f8f7a0/download
https://repositorio.uniandes.edu.co/bitstreams/fda37eb6-bade-43f6-ae26-3dd0001d7dfe/download
https://repositorio.uniandes.edu.co/bitstreams/92cc4934-8e97-4010-89bc-239fe9158ef6/download
bitstream.checksum.fl_str_mv 6ac54cd4c21184d967c33db748fc7d99
7777b04ab9f98c93d7e62370bd0912ab
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390333175693312
spelling Hernández Pico, Yenny Rociovirtual::19608-1Olaya Cortés, Daniel EstebanGiraldo Gallo, Paula LilianaFacultad de Ciencias::Grupo de Fisica Teorica de la Materia Condensada2024-08-02T15:18:09Z2024-08-02T15:18:09Z2024-07-21https://hdl.handle.net/1992/74906instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Transition metal dichalcogenides (TMDs) are a family of layered bidimensional (2D) materials which find great interest in fields such as medicine, energy conversion, water treatment, and electronics. Moreover, the most impressive feature of this family is the transition to a direct semiconductor as the material is fully exfoliated. Nevertheless, the interesting properties that arise as the number of layers reduce, do not necessarily persist when the nanosheets are printed on substrates to form networks. Therefore, further research on the networks and the influence of the nanosheets’ dimensions is valuable for scaling up prospects. Regarding the production process of TMD nanosheets, good quality dispersions can be obtained by liquid phase exfoliation (LPE). Moreover, the long processing times that this process requires can be reduced by mediating the exfoliation through intercalation of lithium ions. Both techniques were successfully applied to tungsten disulfide (WS2) and molybdenum disulfide (MoS2) powders to obtain concentrated dispersions. However, these dispersions are characterized by a wide distribution of sizes and thicknesses. Selecting the lateral size and thickness was successfully done by liquid cascade centrifugation (LCC). The morphological analysis by scanning electron microscopy (SEM) allowed to characterize the average and standard deviation of the distribution of the unselected and selected dispersions. Furthermore, UV-Vis, FTIR, and Raman spectroscopy allowed to distinguish the optical properties and the vibrational features of both TMDs. Characteristic Raman signals are layer dependent, thus specific features of this spectrum can be utilized as a metric. X-ray diffraction was conducted on all devices, which gave a tool to distinguish WS2 networks, conformed by two or three TMD layers which are mostly 2H-hexagonally-structured, to MoS2 networks, conformed by more than five layers which showcases a mixture of a rhombohedral (3R) and a hexagonal (2H) structure. Piezoresistivity, which is the change of resistance induced by an applied strain, matters as an important effect when designing sensors applied in medicine, energy conversion, opto-electronics and so on. It is known that strain alters the band structure of TMDs and also tune transitions between different crystal structures. Moreover, applying strain to semiconductors would change their electronic properties which could be modeled through their piezoresistivity tensor. The figure of merit that measures how much the resistivity changes when strain is applied is the gauge factor (GF). In networks, this is modeled as a sum of the nanosheet intrinsic GF and the change of the junction resistance between nanosheets due to strain. In this thesis the GF of the devices was obtained through their transport characteristics when applying uniaxial strain, both at a tensile and a compressive setup, by using a three-beam bending machine. Hereby the first report of a transition from a positive GF to a negative one, when applying uniaxial strain to WS2 networks as the lateral size increases, and a transition from negative GF to a positive one, when compression is applied to MoS2 networks as lateral size increases is shown. Photoconductivity is an important feature of semiconductors that finds major attention in the fields of solar cells, hydrogen and oxygen evolution reactions, and photodetectors. This feature involves a change of density of charge carriers induced by light, which is dependent on the generation of light-induced carriers and the recombination of excitons. In this thesis, the photoconductivity of printed devices was measured by using a xenon lamp inside an obscure chamber. Molybdenum disulfide-based devices show higher responsivity as compared with tungsten disulfide devices, which is attributed to an increased light absorption and hydroxyl groups attached to the surface of the MoS2 networks that enhance the photoconductivity by increasing the carrier lifetimes. Furthermore, the responsivity of the devices behaves similarly to the conductivity, which is modeled as networks of pairs of nanosheets and junctions through percolative paths. Finally, this is the first report that shows that the response time of the devices increase with lateral size.Doctorado112 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lateral size dependence of piezoresistivity and photoconductivity in TMD networksTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDTMDsNanosheetsNetworksPiezoresistivityPhotoconductivityHoppingFísica200912453Publicationhttps://scholar.google.es/citations?user=KXWwfMMAAAAJvirtual::19608-1https://scholar.google.es/citations?user=KXWwfMMAAAAJhttps://scholar.google.es/citations?user=KXWwfMMAAAAJ0000-0002-6980-8820virtual::19608-10000-0002-6980-88200000-0002-6980-8820https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566virtual::19608-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318566https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00003185665ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::19608-15ec439ad-c826-485e-8b94-d4fe2bfc10175ec439ad-c826-485e-8b94-d4fe2bfc10175ec439ad-c826-485e-8b94-d4fe2bfc1017virtual::19608-1734116d8-ad5b-4ae9-bde5-2eed399996c7ORIGINALLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdfLateral size dependence of piezoresistivity and photoconductivity in TMD networks.pdfapplication/pdf32672975https://repositorio.uniandes.edu.co/bitstreams/0259ce95-7076-431c-9ac0-26e2afe289ce/download6ac54cd4c21184d967c33db748fc7d99MD51autorizacion tesis diligenciado.pdfautorizacion tesis diligenciado.pdfHIDEapplication/pdf234249https://repositorio.uniandes.edu.co/bitstreams/bebba388-a550-43fa-9b7e-2c19f3f8f7a0/download7777b04ab9f98c93d7e62370bd0912abMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/fda37eb6-bade-43f6-ae26-3dd0001d7dfe/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/92cc4934-8e97-4010-89bc-239fe9158ef6/downloadae9e573a68e7f92501b6913cc846c39fMD541992/74906oai:repositorio.uniandes.edu.co:1992/749062024-08-02 10:31:10.247http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K