Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios
This work explores fine-tuning of Large Language Models (LLMs) using QLoRA adapters to enhance performance in cooperative multi-agent scenarios. Using the Melting Pot framework and integrating multiple indicators of collective welfare and agent comprehension into a unified signal, the approach optim...
- Autores:
-
Gómez Barrera, Daniel Fernando
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74837
- Acceso en línea:
- https://hdl.handle.net/1992/74837
- Palabra clave:
- Artificial Intelligence
Cooperative AI
Multi-agent scenarios
Machine learning
Natural language processing
NLP
LLM
Large Language Models
Ingeniería
- Rights
- embargoedAccess
- License
- Attribution-ShareAlike 4.0 International
id |
UNIANDES2_1edf207486b61ac3e972c751fe76c847 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74837 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
title |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
spellingShingle |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios Artificial Intelligence Cooperative AI Multi-agent scenarios Machine learning Natural language processing NLP LLM Large Language Models Ingeniería |
title_short |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
title_full |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
title_fullStr |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
title_full_unstemmed |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
title_sort |
Adaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenarios |
dc.creator.fl_str_mv |
Gómez Barrera, Daniel Fernando |
dc.contributor.advisor.none.fl_str_mv |
Manrique Piramanrique, Rubén Francisco |
dc.contributor.author.none.fl_str_mv |
Gómez Barrera, Daniel Fernando |
dc.contributor.jury.none.fl_str_mv |
Manrique Piramanrique, Rubén Francisco |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería |
dc.subject.keyword.eng.fl_str_mv |
Artificial Intelligence Cooperative AI Multi-agent scenarios Machine learning Natural language processing NLP LLM Large Language Models |
topic |
Artificial Intelligence Cooperative AI Multi-agent scenarios Machine learning Natural language processing NLP LLM Large Language Models Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
This work explores fine-tuning of Large Language Models (LLMs) using QLoRA adapters to enhance performance in cooperative multi-agent scenarios. Using the Melting Pot framework and integrating multiple indicators of collective welfare and agent comprehension into a unified signal, the approach optimizes the selection of training examples. Fine-tuning applied to the quantized Llama-3B models resulted in improved stability and performance, particularly in reward acquisition and equality maintenance. Despite quantitative support for the positive effects of fine-tuning on collective well-being and increased cooperativity, the training heavily depends on the model's original state, limiting the spectrum of solutions and preventing agents from explicitly reasoning about the common good. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-31T19:21:56Z |
dc.date.issued.none.fl_str_mv |
2024-07-30 |
dc.date.accepted.none.fl_str_mv |
2024-07-31 |
dc.date.available.none.fl_str_mv |
2026-06-30 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74837 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74837 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Agapiou, J. P., Vezhnevets, A. S., Duénez-Guzmán, E. A., Matyas, J., Mao, Y., Sunehag, P., . . . contributions, E. (2022, 11). Melting pot 2.0. Retrieved from https://arxiv.org/abs/2211.13746v6 AI@Meta. (2024). Llama 3 model card. Retrieved from https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S., Abbeel, P., & Dragan, A. (2019). On the utility of learning about humans for human-ai coordination. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), (Vol. 32). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf Conitzer, V., & Oesterheld, C. (2023, 9). Foundations of cooperative ai. In (Vol. 37, p. 15359-15367). AAAI Press. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/26791 doi: 10.1609/AAAI.V37I13.26791 Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., . . . Graepel, T. (2020,12). Open problems in cooperative ai. , 2020-2032. Retrieved from https://arxiv.org/abs/2012.08630v1 Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. Retrieved from https://arxiv.org/abs/2305.14314 Du, Y., Leibo, J. Z., Islam, U., Willis, R., & Sunehag, P. (2023, 12). A review of cooperation in multi-agent learning. Retrieved from https://arxiv.org/abs/2312.05162v1 Gronauer, S., & Diepold, K. (2022). Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 55, 895-943. Retrieved from https://doi.org/10.1007/s10462-021-09996-w doi: 10.1007/s10462-021-09996-w Heuillet, A., Couthouis, F., & D´ıaz-Rodr´ıguez, N. (2021). Collective explainable ai: Explaining co-operative strategies and agent contribution in multiagent reinforcement learning with shapley values. Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Zhang, C., . . . Schmidhuber, J. (2023,8). Metagpt: Meta programming for a multi-agent collaborative framework. Retrieved from https://arxiv.org/abs/2308.00352v5 Hughes, E., Leibo, J. Z., Phillips, M., Tuyls, K., Due˜nez-Guzman, E., Casta˜neda, A. G., . . . Graepel, T. (2018). Inequity aversion improves cooperation in intertemporal social dilemmas. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), (Vol. 31). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2018/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul, S., & Bossan, B. (2022). Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft Mosquera, M., Pinzon, J. S., Rios, M., Fonseca, Y., Giraldo, L. F., Quijano, N., & Manrique, R. (2024). Can llm-augmented autonomous agents cooperate?, an evaluation of their cooperative capabilities through melting pot. Retrieved from https://arxiv.org/abs/2403.11381 Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems, 11 , 387-434. Retrieved from https://doi.org/10.1007/s10458-005-2631-2 doi: 10.1007/s10458-005-2631-2 Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023, 4). Generative agents: Interactive simulacra of human behavior. Association for Computing Machinery, Inc. Retrieved from https://arxiv.org/abs/2304.03442v2 doi: 10.1145/3586183.3606763 Radke, D., & Tilbury, K. (2023). Learning to learn group alignment: A self-tuning credo framework with multiagent teams. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2023). Attention is all you need. Retrieved from https://arxiv.org/abs/1706.03762 Zhang, C., Yang, K., Hu, S., Wang, Z., Li, G., Sun, Y., . . . Yang, Y. (2023, 8). Proagent: Building proactive cooperative agents with large language models. Retrieved from https://arxiv.org/abs/2308.11339v3 |
dc.rights.en.fl_str_mv |
Attribution-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
33 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/65ed3124-4c07-4718-9d49-01cdec8eeb38/download https://repositorio.uniandes.edu.co/bitstreams/7976a241-fb22-471c-bd46-ce2bcad71e85/download https://repositorio.uniandes.edu.co/bitstreams/3cb02914-87ee-4bd9-88a3-e424f9ab5950/download https://repositorio.uniandes.edu.co/bitstreams/cbd17211-52c0-4e13-bdc8-a6f541855d24/download https://repositorio.uniandes.edu.co/bitstreams/9c63ec57-9bb9-4a06-8e70-097b26efa327/download https://repositorio.uniandes.edu.co/bitstreams/a90c1029-f40b-4e68-afc9-12650907b3e6/download https://repositorio.uniandes.edu.co/bitstreams/ef0ac3e5-00d5-4021-a617-60460a12e282/download https://repositorio.uniandes.edu.co/bitstreams/f5cdeadc-20f4-4f33-9595-2dcb696928c7/download |
bitstream.checksum.fl_str_mv |
c50401c8d94734fa3bc54ed7df0d766e 2043c924210f98aa154a3797e7c1fa9e 84a900c9dd4b2a10095a94649e1ce116 ae9e573a68e7f92501b6913cc846c39f 530d320eb9a3b695b3582e4fc981c68e 9fec258a581def2d2ad5ceef955aa40c 4a2e4cc2dd54961a01b8aab9a703f27e e286ca2e16bf03b166939e503369c11b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134036069416960 |
spelling |
Manrique Piramanrique, Rubén Franciscovirtual::19491-1Gómez Barrera, Daniel FernandoManrique Piramanrique, Rubén FranciscoFacultad de Ingeniería2024-07-31T19:21:56Z2026-06-302024-07-302024-07-31https://hdl.handle.net/1992/74837instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work explores fine-tuning of Large Language Models (LLMs) using QLoRA adapters to enhance performance in cooperative multi-agent scenarios. Using the Melting Pot framework and integrating multiple indicators of collective welfare and agent comprehension into a unified signal, the approach optimizes the selection of training examples. Fine-tuning applied to the quantized Llama-3B models resulted in improved stability and performance, particularly in reward acquisition and equality maintenance. Despite quantitative support for the positive effects of fine-tuning on collective well-being and increased cooperativity, the training heavily depends on the model's original state, limiting the spectrum of solutions and preventing agents from explicitly reasoning about the common good.Pregrado33 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAdaptive fine-tuning of LLMs with QLoRA adapters for enhanced understanding in cooperative multi-agent scenariosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPArtificial IntelligenceCooperative AIMulti-agent scenariosMachine learningNatural language processingNLPLLMLarge Language ModelsIngenieríaAgapiou, J. P., Vezhnevets, A. S., Duénez-Guzmán, E. A., Matyas, J., Mao, Y., Sunehag, P., . . . contributions, E. (2022, 11). Melting pot 2.0. Retrieved from https://arxiv.org/abs/2211.13746v6AI@Meta. (2024). Llama 3 model card. Retrieved from https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.mdCarroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S., Abbeel, P., & Dragan, A. (2019). On the utility of learning about humans for human-ai coordination. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), (Vol. 32). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdfConitzer, V., & Oesterheld, C. (2023, 9). Foundations of cooperative ai. In (Vol. 37, p. 15359-15367). AAAI Press. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/26791 doi: 10.1609/AAAI.V37I13.26791Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., . . . Graepel, T. (2020,12). Open problems in cooperative ai. , 2020-2032. Retrieved from https://arxiv.org/abs/2012.08630v1Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. Retrieved from https://arxiv.org/abs/2305.14314Du, Y., Leibo, J. Z., Islam, U., Willis, R., & Sunehag, P. (2023, 12). A review of cooperation in multi-agent learning. Retrieved from https://arxiv.org/abs/2312.05162v1Gronauer, S., & Diepold, K. (2022). Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 55, 895-943. Retrieved from https://doi.org/10.1007/s10462-021-09996-w doi: 10.1007/s10462-021-09996-wHeuillet, A., Couthouis, F., & D´ıaz-Rodr´ıguez, N. (2021). Collective explainable ai: Explaining co-operative strategies and agent contribution in multiagent reinforcement learning with shapley values.Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Zhang, C., . . . Schmidhuber, J. (2023,8). Metagpt: Meta programming for a multi-agent collaborative framework. Retrieved from https://arxiv.org/abs/2308.00352v5Hughes, E., Leibo, J. Z., Phillips, M., Tuyls, K., Due˜nez-Guzman, E., Casta˜neda, A. G., . . . Graepel, T. (2018). Inequity aversion improves cooperation in intertemporal social dilemmas. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), (Vol. 31). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2018/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdfMangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul, S., & Bossan, B. (2022). Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peftMosquera, M., Pinzon, J. S., Rios, M., Fonseca, Y., Giraldo, L. F., Quijano, N., & Manrique, R. (2024). Can llm-augmented autonomous agents cooperate?, an evaluation of their cooperative capabilities through melting pot. Retrieved from https://arxiv.org/abs/2403.11381Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems, 11 , 387-434. Retrieved from https://doi.org/10.1007/s10458-005-2631-2 doi: 10.1007/s10458-005-2631-2Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023, 4). Generative agents: Interactive simulacra of human behavior. Association for Computing Machinery, Inc. Retrieved from https://arxiv.org/abs/2304.03442v2 doi: 10.1145/3586183.3606763Radke, D., & Tilbury, K. (2023). Learning to learn group alignment: A self-tuning credo framework with multiagent teams.Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2023). Attention is all you need. Retrieved from https://arxiv.org/abs/1706.03762Zhang, C., Yang, K., Hu, S., Wang, Z., Li, G., Sun, Y., . . . Yang, Y. (2023, 8). Proagent: Building proactive cooperative agents with large language models. Retrieved from https://arxiv.org/abs/2308.11339v3201728920Publication9f6e12e0-098e-4548-ab81-75552e8385e7virtual::19491-19f6e12e0-098e-4548-ab81-75552e8385e79f6e12e0-098e-4548-ab81-75552e8385e7virtual::19491-1ORIGINALautorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf205966https://repositorio.uniandes.edu.co/bitstreams/65ed3124-4c07-4718-9d49-01cdec8eeb38/downloadc50401c8d94734fa3bc54ed7df0d766eMD51Adaptive_Fine_Tuning_of_LLMs_with_QLoRA_Adapters_for_Enhanced_Understanding_in_Cooperative_Multi_Agent_Scenarios_vf-1.pdfAdaptive_Fine_Tuning_of_LLMs_with_QLoRA_Adapters_for_Enhanced_Understanding_in_Cooperative_Multi_Agent_Scenarios_vf-1.pdfSe restringió el acceso de acuerdo a instrucciones del profesor.application/pdf8460790https://repositorio.uniandes.edu.co/bitstreams/7976a241-fb22-471c-bd46-ce2bcad71e85/download2043c924210f98aa154a3797e7c1fa9eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/3cb02914-87ee-4bd9-88a3-e424f9ab5950/download84a900c9dd4b2a10095a94649e1ce116MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/cbd17211-52c0-4e13-bdc8-a6f541855d24/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1176https://repositorio.uniandes.edu.co/bitstreams/9c63ec57-9bb9-4a06-8e70-097b26efa327/download530d320eb9a3b695b3582e4fc981c68eMD55Adaptive_Fine_Tuning_of_LLMs_with_QLoRA_Adapters_for_Enhanced_Understanding_in_Cooperative_Multi_Agent_Scenarios_vf-1.pdf.txtAdaptive_Fine_Tuning_of_LLMs_with_QLoRA_Adapters_for_Enhanced_Understanding_in_Cooperative_Multi_Agent_Scenarios_vf-1.pdf.txtExtracted texttext/plain64291https://repositorio.uniandes.edu.co/bitstreams/a90c1029-f40b-4e68-afc9-12650907b3e6/download9fec258a581def2d2ad5ceef955aa40cMD57THUMBNAILautorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10864https://repositorio.uniandes.edu.co/bitstreams/ef0ac3e5-00d5-4021-a617-60460a12e282/download4a2e4cc2dd54961a01b8aab9a703f27eMD56Adaptive_Fine_Tuning_of_LLMs_with_QLoRA_Adapters_for_Enhanced_Understanding_in_Cooperative_Multi_Agent_Scenarios_vf-1.pdf.jpgAdaptive_Fine_Tuning_of_LLMs_with_QLoRA_Adapters_for_Enhanced_Understanding_in_Cooperative_Multi_Agent_Scenarios_vf-1.pdf.jpgGenerated Thumbnailimage/jpeg11286https://repositorio.uniandes.edu.co/bitstreams/f5cdeadc-20f4-4f33-9595-2dcb696928c7/downloade286ca2e16bf03b166939e503369c11bMD581992/74837oai:repositorio.uniandes.edu.co:1992/748372024-09-12 16:20:10.605http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |