A strategy to predict association football players' passing skills

Transfers are big business in association football. This paper develops a generalized additive mixed model that aids managers in predicting how a football player is expected to perform in a new team. It do es so by using event-level data from the Spanis hand the Colombian football leagues. Using pas...

Full description

Autores:
Tovar Mora, Jorge Andrés
Clavijo, Andrés
Cárdenas, Julián
Tipo de recurso:
Work document
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/8856
Acceso en línea:
http://hdl.handle.net/1992/8856
Palabra clave:
Generalized additive mixed models
Football
Sports forecasting
Passing
Fútbol - Modelos matemáticos
Futbolistas - Valoración
Productividad - Modelos estadísticos
Modelos lineales (Estadística)
C53, Z21, Z22
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_1d686857ff990f2b0bdf9e521fa470b7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/8856
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tovar Mora, Jorge Andrés10750600Clavijo, Andrés828cd5f3-bf51-4ab6-bd0f-e4bd6abeaf34600Cárdenas, Julián439aa442-d954-4e3a-baa2-5a821db87d566002018-09-27T16:58:10Z2018-09-27T16:58:10Z20171657-5334http://hdl.handle.net/1992/88561657-719110.57784/1992/8856instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Transfers are big business in association football. This paper develops a generalized additive mixed model that aids managers in predicting how a football player is expected to perform in a new team. It do es so by using event-level data from the Spanis hand the Colombian football leagues. Using passes as a performance proxy, the model exploits the richness of the data to account for the difficulty of each pass at tempt performed by each player over an entire season. The model estimates are then used to determine how a player transferred from the Colombian league should performin the Spanish league, taking into account that teammates and rivals' abilities are different in the latter.Las transferencias de jugadores es uno de los grandes rubros en el millonario negocio del fútbol. Este trabajo desarrolla un modelo generalizado aditivo mixto para predecir cómo se espera que se desempeñe un jugador de fútbol en un equipo nuevo. Con base en datos a nivel de evento de la liga española y colombiana se utilizan los pases como proxy de desempeño. El modelo explota la riqueza de los datos para controlar por la dificultad de cada pase que realiza un jugador a lo largo de una temporada. Una vez se estima el modelo, se utiliza para establecer como un jugador transferido de Colombia a España debería desempeñarse, teniendo en cuenta que allí encontrar nuevos compañeros y rivales.19 páginasapplication/pdfengUniversidad de los Andes, Facultad de Economía, CEDEDocumentos CEDE No. 63 Noviembre de 2017https://ideas.repec.org/p/col/000089/015821.htmlA strategy to predict association football players' passing skillsUna estrategia para predecir la habilidad en el pase de jugadores de fútbolDocumento de trabajoinfo:eu-repo/semantics/workingPaperhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttps://purl.org/redcol/resource_type/WPGeneralized additive mixed modelsFootballSports forecastingPassingFútbol - Modelos matemáticosFutbolistas - ValoraciónProductividad - Modelos estadísticosModelos lineales (Estadística)C53, Z21, Z22Facultad de EconomíaPublicationTEXTdcede2017-63.pdf.txtdcede2017-63.pdf.txtExtracted texttext/plain49181https://repositorio.uniandes.edu.co/bitstreams/23a3e38e-aa52-4d48-b240-7c84006a34a5/download72520644ab134e4c62ade3ef98375da9MD54ORIGINALdcede2017-63.pdfdcede2017-63.pdfapplication/pdf1150961https://repositorio.uniandes.edu.co/bitstreams/9c07c749-1cc3-42df-b039-d197f42dff4d/download69c8329d43b2ec995f03ae12d8af1670MD51THUMBNAILdcede2017-63.pdf.jpgdcede2017-63.pdf.jpgIM Thumbnailimage/jpeg11257https://repositorio.uniandes.edu.co/bitstreams/6571c3d4-a257-48fc-a702-256271761d41/download01f7c6f34a53a9cbe34c657a49ea3861MD551992/8856oai:repositorio.uniandes.edu.co:1992/88562024-06-04 15:36:59.152http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.none.fl_str_mv A strategy to predict association football players' passing skills
dc.title.alternative.none.fl_str_mv Una estrategia para predecir la habilidad en el pase de jugadores de fútbol
title A strategy to predict association football players' passing skills
spellingShingle A strategy to predict association football players' passing skills
Generalized additive mixed models
Football
Sports forecasting
Passing
Fútbol - Modelos matemáticos
Futbolistas - Valoración
Productividad - Modelos estadísticos
Modelos lineales (Estadística)
C53, Z21, Z22
title_short A strategy to predict association football players' passing skills
title_full A strategy to predict association football players' passing skills
title_fullStr A strategy to predict association football players' passing skills
title_full_unstemmed A strategy to predict association football players' passing skills
title_sort A strategy to predict association football players' passing skills
dc.creator.fl_str_mv Tovar Mora, Jorge Andrés
Clavijo, Andrés
Cárdenas, Julián
dc.contributor.author.none.fl_str_mv Tovar Mora, Jorge Andrés
Clavijo, Andrés
Cárdenas, Julián
dc.subject.keyword.none.fl_str_mv Generalized additive mixed models
Football
Sports forecasting
Passing
topic Generalized additive mixed models
Football
Sports forecasting
Passing
Fútbol - Modelos matemáticos
Futbolistas - Valoración
Productividad - Modelos estadísticos
Modelos lineales (Estadística)
C53, Z21, Z22
dc.subject.armarc.none.fl_str_mv Fútbol - Modelos matemáticos
Futbolistas - Valoración
Productividad - Modelos estadísticos
Modelos lineales (Estadística)
dc.subject.jel.none.fl_str_mv C53, Z21, Z22
description Transfers are big business in association football. This paper develops a generalized additive mixed model that aids managers in predicting how a football player is expected to perform in a new team. It do es so by using event-level data from the Spanis hand the Colombian football leagues. Using passes as a performance proxy, the model exploits the richness of the data to account for the difficulty of each pass at tempt performed by each player over an entire season. The model estimates are then used to determine how a player transferred from the Colombian league should performin the Spanish league, taking into account that teammates and rivals' abilities are different in the latter.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-09-27T16:58:10Z
dc.date.available.none.fl_str_mv 2018-09-27T16:58:10Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
dc.identifier.issn.none.fl_str_mv 1657-5334
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/8856
dc.identifier.eissn.none.fl_str_mv 1657-7191
dc.identifier.doi.none.fl_str_mv 10.57784/1992/8856
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
identifier_str_mv 1657-5334
1657-7191
10.57784/1992/8856
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/8856
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Documentos CEDE No. 63 Noviembre de 2017
dc.relation.repec.spa.fl_str_mv https://ideas.repec.org/p/col/000089/015821.html
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 19 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes, Facultad de Economía, CEDE
publisher.none.fl_str_mv Universidad de los Andes, Facultad de Economía, CEDE
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/23a3e38e-aa52-4d48-b240-7c84006a34a5/download
https://repositorio.uniandes.edu.co/bitstreams/9c07c749-1cc3-42df-b039-d197f42dff4d/download
https://repositorio.uniandes.edu.co/bitstreams/6571c3d4-a257-48fc-a702-256271761d41/download
bitstream.checksum.fl_str_mv 72520644ab134e4c62ade3ef98375da9
69c8329d43b2ec995f03ae12d8af1670
01f7c6f34a53a9cbe34c657a49ea3861
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133950898831360