A strategy to predict association football players' passing skills
Transfers are big business in association football. This paper develops a generalized additive mixed model that aids managers in predicting how a football player is expected to perform in a new team. It do es so by using event-level data from the Spanis hand the Colombian football leagues. Using pas...
- Autores:
-
Tovar Mora, Jorge Andrés
Clavijo, Andrés
Cárdenas, Julián
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/8856
- Acceso en línea:
- http://hdl.handle.net/1992/8856
- Palabra clave:
- Generalized additive mixed models
Football
Sports forecasting
Passing
Fútbol - Modelos matemáticos
Futbolistas - Valoración
Productividad - Modelos estadísticos
Modelos lineales (Estadística)
C53, Z21, Z22
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_1d686857ff990f2b0bdf9e521fa470b7 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/8856 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tovar Mora, Jorge Andrés10750600Clavijo, Andrés828cd5f3-bf51-4ab6-bd0f-e4bd6abeaf34600Cárdenas, Julián439aa442-d954-4e3a-baa2-5a821db87d566002018-09-27T16:58:10Z2018-09-27T16:58:10Z20171657-5334http://hdl.handle.net/1992/88561657-719110.57784/1992/8856instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Transfers are big business in association football. This paper develops a generalized additive mixed model that aids managers in predicting how a football player is expected to perform in a new team. It do es so by using event-level data from the Spanis hand the Colombian football leagues. Using passes as a performance proxy, the model exploits the richness of the data to account for the difficulty of each pass at tempt performed by each player over an entire season. The model estimates are then used to determine how a player transferred from the Colombian league should performin the Spanish league, taking into account that teammates and rivals' abilities are different in the latter.Las transferencias de jugadores es uno de los grandes rubros en el millonario negocio del fútbol. Este trabajo desarrolla un modelo generalizado aditivo mixto para predecir cómo se espera que se desempeñe un jugador de fútbol en un equipo nuevo. Con base en datos a nivel de evento de la liga española y colombiana se utilizan los pases como proxy de desempeño. El modelo explota la riqueza de los datos para controlar por la dificultad de cada pase que realiza un jugador a lo largo de una temporada. Una vez se estima el modelo, se utiliza para establecer como un jugador transferido de Colombia a España debería desempeñarse, teniendo en cuenta que allí encontrar nuevos compañeros y rivales.19 páginasapplication/pdfengUniversidad de los Andes, Facultad de Economía, CEDEDocumentos CEDE No. 63 Noviembre de 2017https://ideas.repec.org/p/col/000089/015821.htmlA strategy to predict association football players' passing skillsUna estrategia para predecir la habilidad en el pase de jugadores de fútbolDocumento de trabajoinfo:eu-repo/semantics/workingPaperhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttps://purl.org/redcol/resource_type/WPGeneralized additive mixed modelsFootballSports forecastingPassingFútbol - Modelos matemáticosFutbolistas - ValoraciónProductividad - Modelos estadísticosModelos lineales (Estadística)C53, Z21, Z22Facultad de EconomíaPublicationTEXTdcede2017-63.pdf.txtdcede2017-63.pdf.txtExtracted texttext/plain49181https://repositorio.uniandes.edu.co/bitstreams/23a3e38e-aa52-4d48-b240-7c84006a34a5/download72520644ab134e4c62ade3ef98375da9MD54ORIGINALdcede2017-63.pdfdcede2017-63.pdfapplication/pdf1150961https://repositorio.uniandes.edu.co/bitstreams/9c07c749-1cc3-42df-b039-d197f42dff4d/download69c8329d43b2ec995f03ae12d8af1670MD51THUMBNAILdcede2017-63.pdf.jpgdcede2017-63.pdf.jpgIM Thumbnailimage/jpeg11257https://repositorio.uniandes.edu.co/bitstreams/6571c3d4-a257-48fc-a702-256271761d41/download01f7c6f34a53a9cbe34c657a49ea3861MD551992/8856oai:repositorio.uniandes.edu.co:1992/88562024-06-04 15:36:59.152http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.none.fl_str_mv |
A strategy to predict association football players' passing skills |
dc.title.alternative.none.fl_str_mv |
Una estrategia para predecir la habilidad en el pase de jugadores de fútbol |
title |
A strategy to predict association football players' passing skills |
spellingShingle |
A strategy to predict association football players' passing skills Generalized additive mixed models Football Sports forecasting Passing Fútbol - Modelos matemáticos Futbolistas - Valoración Productividad - Modelos estadísticos Modelos lineales (Estadística) C53, Z21, Z22 |
title_short |
A strategy to predict association football players' passing skills |
title_full |
A strategy to predict association football players' passing skills |
title_fullStr |
A strategy to predict association football players' passing skills |
title_full_unstemmed |
A strategy to predict association football players' passing skills |
title_sort |
A strategy to predict association football players' passing skills |
dc.creator.fl_str_mv |
Tovar Mora, Jorge Andrés Clavijo, Andrés Cárdenas, Julián |
dc.contributor.author.none.fl_str_mv |
Tovar Mora, Jorge Andrés Clavijo, Andrés Cárdenas, Julián |
dc.subject.keyword.none.fl_str_mv |
Generalized additive mixed models Football Sports forecasting Passing |
topic |
Generalized additive mixed models Football Sports forecasting Passing Fútbol - Modelos matemáticos Futbolistas - Valoración Productividad - Modelos estadísticos Modelos lineales (Estadística) C53, Z21, Z22 |
dc.subject.armarc.none.fl_str_mv |
Fútbol - Modelos matemáticos Futbolistas - Valoración Productividad - Modelos estadísticos Modelos lineales (Estadística) |
dc.subject.jel.none.fl_str_mv |
C53, Z21, Z22 |
description |
Transfers are big business in association football. This paper develops a generalized additive mixed model that aids managers in predicting how a football player is expected to perform in a new team. It do es so by using event-level data from the Spanis hand the Colombian football leagues. Using passes as a performance proxy, the model exploits the richness of the data to account for the difficulty of each pass at tempt performed by each player over an entire season. The model estimates are then used to determine how a player transferred from the Colombian league should performin the Spanish league, taking into account that teammates and rivals' abilities are different in the latter. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-09-27T16:58:10Z |
dc.date.available.none.fl_str_mv |
2018-09-27T16:58:10Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
dc.identifier.issn.none.fl_str_mv |
1657-5334 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/8856 |
dc.identifier.eissn.none.fl_str_mv |
1657-7191 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/8856 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
identifier_str_mv |
1657-5334 1657-7191 10.57784/1992/8856 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/8856 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
Documentos CEDE No. 63 Noviembre de 2017 |
dc.relation.repec.spa.fl_str_mv |
https://ideas.repec.org/p/col/000089/015821.html |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
19 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes, Facultad de Economía, CEDE |
publisher.none.fl_str_mv |
Universidad de los Andes, Facultad de Economía, CEDE |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/23a3e38e-aa52-4d48-b240-7c84006a34a5/download https://repositorio.uniandes.edu.co/bitstreams/9c07c749-1cc3-42df-b039-d197f42dff4d/download https://repositorio.uniandes.edu.co/bitstreams/6571c3d4-a257-48fc-a702-256271761d41/download |
bitstream.checksum.fl_str_mv |
72520644ab134e4c62ade3ef98375da9 69c8329d43b2ec995f03ae12d8af1670 01f7c6f34a53a9cbe34c657a49ea3861 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133950898831360 |