Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes
The interactions between organisms are crucial for their survival and reproduction and have shaped life on earth. This proposition is developed in the Geographic Mosaic of Coevolution Theory proposed by John Thompson in 2005. In general terms, Thompson suggests that interactions lead to evolutionary...
- Autores:
-
Alomía Aguirre, Yasmin Amparo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/58670
- Acceso en línea:
- http://hdl.handle.net/1992/58670
- Palabra clave:
- Dichaea
Euglossine bees
Gene flow
Genetic structure
Geographic Mosaic of Coevolution Theory
Isolation by distance
Tropical Andes
Orchidaceae
Orchid endophytic fungi
Orchid mycorrhizal fungi
Orchid seeds
Abejas
Genética de insectos
Orquídeas
Hongos endófitos
Endosimbiosis
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_1d3247f36b5e27c0535d8fa33119ba7f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/58670 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
title |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
spellingShingle |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes Dichaea Euglossine bees Gene flow Genetic structure Geographic Mosaic of Coevolution Theory Isolation by distance Tropical Andes Orchidaceae Orchid endophytic fungi Orchid mycorrhizal fungi Orchid seeds Abejas Genética de insectos Orquídeas Hongos endófitos Endosimbiosis Biología |
title_short |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
title_full |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
title_fullStr |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
title_full_unstemmed |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
title_sort |
Examining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andes |
dc.creator.fl_str_mv |
Alomía Aguirre, Yasmin Amparo |
dc.contributor.advisor.none.fl_str_mv |
Stevenson Díaz, Pablo Roberto |
dc.contributor.author.none.fl_str_mv |
Alomía Aguirre, Yasmin Amparo |
dc.contributor.jury.none.fl_str_mv |
Tremblay Lalande, Raymond Madriñán Restrepo, Santiago |
dc.contributor.researchgroup.es_CO.fl_str_mv |
CENTRO DE INVESTIGACIONES ECOLÓGICAS LA MACARENA (CIEM) |
dc.subject.keyword.none.fl_str_mv |
Dichaea Euglossine bees Gene flow Genetic structure Geographic Mosaic of Coevolution Theory Isolation by distance Tropical Andes Orchidaceae Orchid endophytic fungi Orchid mycorrhizal fungi Orchid seeds |
topic |
Dichaea Euglossine bees Gene flow Genetic structure Geographic Mosaic of Coevolution Theory Isolation by distance Tropical Andes Orchidaceae Orchid endophytic fungi Orchid mycorrhizal fungi Orchid seeds Abejas Genética de insectos Orquídeas Hongos endófitos Endosimbiosis Biología |
dc.subject.armarc.none.fl_str_mv |
Abejas Genética de insectos Orquídeas Hongos endófitos Endosimbiosis |
dc.subject.themes.es_CO.fl_str_mv |
Biología |
description |
The interactions between organisms are crucial for their survival and reproduction and have shaped life on earth. This proposition is developed in the Geographic Mosaic of Coevolution Theory proposed by John Thompson in 2005. In general terms, Thompson suggests that interactions lead to evolutionary processes through coevolution between interacting species. As in nature species are usually collections of populations distributed in different environments, then the interactions that occur in each population are subject to change because they are found in different environmental contexts in each locality, which can promote the adaptation of some species to others. Therefore, the key to understanding the dynamics of coevolutionary processes lies in spatial variability. The resulting process is a geographic mosaic of local adaptations of interspecific interactions, and because the mosaic is constantly changing as species co-evolve, populations diverge, and can sometimes undergo speciation. In terms of biotic interactions, Orchidaceae is a model family to approach questions of evolutionary ecology, considering its specialized and obligate mutualistic relationships with both its pollinators and mycorrhizal fungi. Considering the framework exposed by Thompson, the central question of this research is whether populations of the Dichaea andina orchid located in different regions of the Colombian Andes differ locally in their mutualistic partners (fungi and pollinators) and have formed geographic mosaics in their interactions. This document is divided into four chapters. The first chapter focused on the detailed description of the study species, the result of which was the proposal of a new species of orchid. The second chapter addressed questions about the natural history of the D. andina orchid. Here it was determined if there were variations among populations in terms of the phenology of the species, floral traits, mating system, and pollination. We found that, for all populations, the phenology followed a bimodal pattern with two flowering peaks per year in May and October. Dichaea andina is a completely allogamous and self-incompatible species, it produces floral fragrances mainly composed of 2-(4-Methoxyphenyl) ethanol and 2-Methoxyphenol, and was exclusively pollinated by Euglossa nigropilosa bee. That is, for the orchid-pollinator interaction we did not detect a geographic mosaic. The third chapter explored the orchid-fungi interaction and assessed differences in fungal partners among populations. We found that, in each population, the plants were related to a particular set of endophytic fungi, evidencing a geographic mosaic for this type of interaction. As a mycorrhizal fungus, D. andina was associated with a Ceratobasidium fungus, which was the only one to promote seed germination in in vitro experiments. Finally, the fourth chapter quantified the genetic differences between D. andina populations, using single nucleotide polymorphisms (SNPs) as genetic markers, and evaluated the overlap between genetic and geographic distances. We found that there was little genetic differentiation between orchid populations and that geography does not seem to be explaining the minimal genetic distances detected. Under this scenario, we propose that considerable gene flow has been maintained to prevent differentiation, probably explained by the great potential for long-distance dispersal of the tiny seeds. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-09T23:18:46Z |
dc.date.available.none.fl_str_mv |
2022-07-09T23:18:46Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/58670 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/58670 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/58670 |
identifier_str_mv |
10.57784/1992/58670 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Ackerman, J. D. (1983a). Specificity and mutual dependency of the orchid euglossine bee interaction. Biological Journal of the Linnean Society, 20(3): 301-314. Ackerman, J.D. (1983b). Euglossine bee pollination of the orchid Cochleanthes lipscombiae: a food source mimic. American Journal of Botany, 70: 830-834. Ackerman, J. D. (1989). Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Systematic Botany, 14(1):101-109. Ackerman, J. D. (1998). Evolutionary potential in orchids: patterns and strategies for conservation. Selbyana, 19 (1):8-14. Ackerman, J. D., Mesler, M. R., Lu, K. L., & Montalvo, A. M. (1982). Food foraging behavior of male Euglossini (Hymenoptera: Apidae): vagabonds or trapliners? Biotropica, 14 (4): 241-248. Ackerman, J. D., & Montero, J. C. (1985). Reproductive Biology of Oncidium variegatum: Moon Phases, Pollination, and Fruit Set. American Orchid Society Bulletin, 54(3):326-329. Ackerman, J. D., & Ward, S. (1999). Genetic variation in a widespread, epiphytic orchid: where is the evolutionary potential Systematic Botany, 282-291 Ackerman, J.D. (2021). Orchids on the move: go forth & proliferate! In: Wang, Y.T., Chang, Y.C.A., Lee, Y.I., Chen, F.C. & Tsai, W.C (Eds.) Proceedings of the 2021 Virtual World Orchid Conference, Taiwan Orchid Growers Association, Tainan City, Taiwan, pp. 262-266. Allen, C. F. H.; Gates, J. W., Jr (1955). "o Eugenol". Organic Syntheses. Collective Volume, vol. 3, p. 418. Almakarem, A. S. A., Heilman, K. L., Conger, H. L., Shtarkman, Y. M., & Rogers, S. O. (2012). Extraction of DNA from plant and fungus tissues in situ. BMC Research Notes, 5(1): 1-11. Alomía, Y. A., Mosquera¿Espinosa, A.T., Flanagan, N. & Otero, J.T. (2017). Seed viability and symbiotic seed germination in Vanilla spp. (Orchidaceae). Research Journal of Seed Science, 10 (2): 43-52. Alomía, Y. A., Otero, J. T., Jersáková, J. & Stevenson, P. R. (2022). Cultivable fungal community associated with the tropical orchid Dichaea andina. Fungal Ecology, 57-58: 101158. Alomía, Y. A., Sambin, A., Otero, J. T. & Stevenson, P. R. (2021). A New Species of Dichaea (Orchidaceae: Zygopetalinae) from the Andes of Colombia. Phytotaxa, 521 (1): 39-47. Alomía, Y.A., Stevenson, P.R., Otero, J.T. & Stashenko, E. (2018) Breeding system and pollination mechanism of Dichaea pendula (Aubl.) Cogn. (Orchidaceae). 6th International Orchid Workshop, Bia ystok, 28 May 1 June 2018, 59 pp. Anderson, B., & Johnson, S. D. (2008). The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution: International Journal of Organic Evolution, 62(1): 220-225. Anderson, M. J. (2008). A new method for non¿parametric multivariate analysis of variance. Austral ecology, 26(1):32-46. Antonelli, A., Nylander, J.A.A., Persson, C & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 106(24): 9749¿9754. Aranda, M., Li, Y., Liew, Y. J., Baumgarten, S., Simakov, O., Wilson, M. C., ... & Ryu, T. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6, 39734. Arbelaez, J. D., Moreno, L. T., Singh, N., Tung, C. W., Maron, L. G., Ospina, Y., ... & McCouch, S. (2015). Development and GBS¿genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga. Molecular Breeding, 35(2): 1-18. ArcGIS [software GIS]. Versión 10.0. Redlands. CA: Environmental Systems Research Institute. Inc., 2010. Arditti, J. (1967). Factors affecting the germination of orchid seeds. Botanical Review, 33:1-197. Arditti, J., & Ghani, A. K. A. (2000). Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145: 367-421. Armenteras, D., Cadena, V.C. & Moreno, R.P. (2007) Evaluación del estado de los bosques de niebla y de la meta 2010 en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, 72 pp. Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse Ecology letters, 3(4): 267-274. Aublet, J.B.C.F. (1775) Histoire des Plantes de la Guiane Françoise 2. Catalogue des libres nouveaux, Paris. Ávila Díaz, I., & Oyama, K. (2007). Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). American Journal of Botany, 94(2): 184-193. Bánki, O., Roskov, Y., Vandepitte, L., DeWalt, R. E., Remsen, D., Schalk, P., Orrell, T., Keping, M., Miller, J., Aalbu, R., Adlard, R., Adriaenssens, E., Aedo, C., Aescht, E., Akkari, N., Alonso Zarazaga, M. A., Alvarez, B., Alvarez, F., Anderson, G., et al. (2021). Catalogue of Life Checklist (Version 2021 09 21). https://www.catalogueoflife.org/data/taxon/DPL. Accessed: 25 March 2022 Barkman, T. J., Beaman, J. H., & Gage, D. A. (1997). Floral fragrance variation in Cypripedium: implications for evolutionary and ecological studies. Phytochemistry, 44(5): 875-882. Barnes, E. C., Jumpathong, J., Lumyong, S., Voigt, K. & Hertweck, C. (2016). Daldionin, an unprecedented binaphthyl derivative, and diverse polyketide congener from a fungal orchid endophyte. Chemistry¿A European Journal, 22(13): 4551-4555. Barthlott, W., Große Veldmann, B. & Korotkova, N. (2014). Orchid seed diversity. A scanning electron microscopy survey. Botanic Garden and Botanical Museum Berlin Dahlem Englera, 32. Germany, 245 pp. Baskin, C.C. & Baskin, J. (2014). Seeds Ecology, Biogeography and Evolution of Dormancy and Germination. Academic Press, Elsevier, 1600 pp. Batty, A. L., Dixon, K. W., Brundrett, M., & Sivasithamparam, K. (2001). Constraints to symbiotic germination of terrestrial orchid seed in a Mediterranean bushland. New phytologist, 152(3): 511-520. Batygina, T. B., Bragina, E. A., & Vasilyeva, V. E. (2003). The reproductive system and germination in orchids. Acta Biologica Cracoviensia, Series Botanica, 45(2): 21-34. Bayman, P. & Otero, J. T. (2006). Microbial endophytes of orchid roots. In: Barbara J. E. Schulz, B., Boyle, C. & Sieber, T. (Eds). Microbial root endophytes. Springer, Berlin, Heidelberg, pp. 153-177. Bayman, P., Lebron, L. L., Tremblay, R. L. & Lodge, D. J. (1997). Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). The New Phytologist, 135(1): 143-149. Begum, S. R. & Tamilselvi, K. S. (2019). Biotechnological Application of Talaromyces Radicus Associated with Cucumis Dipsaceusehrenb. Ex Spach. Plant Archives, 19(1): 1938-1946. Bell, C.D. & Donoghue, M.J. (2005). Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms Diversity & Evolution, 5:147-159. Beltrán Nambo, M., Martínez Trujillo, M., Montero Castro, J. C., Salgado¿Garciglia, R., Otero¿Ospina, J. T. & Carreón Abud, Y. (2018). Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere, 7, 49-56. Berg, R.L. 1960. The ecological significance of correlation pleiades. Evolution, 14: 171-180. Bernal, R., Gradstein, S.R. & Celis, M. (2015) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Available from: http://catalogoplantasdecolombia.unal.edu.co/es/ Accessed: 10-January-2021. Bernard, N. (1904). Recherches experimentales sur les Orchidées I-III. Methodes de culture; champignon endophyte; La germination des orchidées. Reveu Générale de Botanique, 16, 405-451. Bertrand, A. R., Kadri, N. K., Flori, L., Gautier, M., & Druet, T. (2019). RZooRoH: an R package to characterize individual genomic autozygosity and identify homozygous by descent segments. Methods in Ecology and Evolution, 10(6): 860-866. Betancur, J., Sarmiento, H., Toro González, L. & Valencia, J. (2015) Plan para el estudio y la conservación de las orquídeas en Colombia. Ministerio de Ambiente y Desarrollo Sostenible, Universidad Nacional de Colombia, Bogotá, 336 pp. Betancur, J., Sarmiento, H., Toro González, L. & Valencia, J. (2015). Plan para el estudio y la conservación de las orquídeas en Colombia. Ministerio de Ambiente y Desarrollo Sostenible, Universidad Nacional de Colombia, Bogotá, 336 pp. Bhattarai, U., & Subudhi, P. K. (2018). Identification of drought responsive QTLs during vegetative growth stage of rice using a saturated GBS based SNP linkage map. Euphytica, 214(2):1-17. Bonilla-Gómez, M. A., & Nates Parra, G. (1992). Abejas euglosinas de Colombia (Hymenoptera: Apidae) I. Claves ilustradas. Caldasia, 149-172. Bonnardeaux, Y., Brundrett, M., Batty, A., Dixon, K., Koch, J. & Sivasithamparam, K. (2007). Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research, 111(1): 51-61. Borba, E. L., Felix, J. M., Solferini, V. N., & Semir, J. (2001). Fly pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. American Journal of Botany, 88(3): 419-428. Borchert, R. (1980). Phenology and ecophysiology of tropical trees: Erythrina poeppigiana O.F. Cook. Ecology, 61: 1065-1074. Borchert, R., Calle, Z., Strahler, A. H., Baertschi, A., Magill, R. E., Broadhead, J. S., ... & Muthuri, C. (2015). Insolation and photoperiodic control of tree development near the equator. New Phytologist, 205(1): 7-13. Borchert, R., Renner, S. S., Calle, Z., Navarrete, D., Tye, A., Gautier, L. & von Hildebrand, P. (2005). Photoperiodic induction of synchronous flowering near the Equator. Nature, 433(7026): 627. Borras, O., Santos, R., Matos, A. P., Cabral, R. S. & Arzola, M. (2001). A first attempt to use a Fusarium subglutinans culture filtrate for the selection of pineapple cultivars resistant to fusariose disease. Plant Breeding, 120(5): 435-438. Brundrett, M. C. (2017). Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Tedersoo, L. (Ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham, pp. 533-556. Brundrett, M.C. (2004). Diversity and classification of mycorrhizal associations. Biological reviews, 79(3): 473-495. Brundrett, M.C. (2006). Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (Eds.), Microbial root endophytes. Springer Verlag , Berlin, Germany, pp. 281-293. Bungtongdee, N., Sopalun, K., Laosripaiboon, W. & Iamtham, S. (2019). The chemical composition, antifungal, antioxidant and antimutagenicity properties of bioactive compounds from fungal endophytes associated with Thai orchids. Journal of Phytopathology, 167(1): 56-64. Burney, C. W. & Brumfield, R. T. (2009). Ecology predicts levels of genetic differentiation in neotropical birds. American Naturalist, 174: 358-368. Caballero, A. & Toro, M. A. (2002). Analysis of genetic diversity for the management of conserved subdivided populations. Conservation genetics, 3(3), 289-299. Calle, Z. (2002). Temporal variation in the reproductive phenology of Montanoa quadrangularis in the Andes of Colombia: declining photoperiod as a likely environmental trigger. Biotropica 34: 621-622. Calle, Z., Schlumpberger, B. O., Piedrahita, L., Leftin, A., Hammer, S. A., Tye, A., & Borchert, R. (2010). Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees, 24(5): 865¿877. Cameron, D. D., Leake, J. R. & Read, D. J. (2006). Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfer in the green-leaved terrestrial orchid Goodyera repens. New Phytologist, 171: 405-416. Cameron, K.M. & Chase, M.W. (1998). Seed morphology of the vanilloid orchids. Lindleyana, 13: 148-169. Cameron, S. A. (2004). Phylogeny and biology of neotropical orchid bees (Euglossini). Annual Reviews in Entomology, 49(1): 377-404. Carrieri, R., Borriello, G., Piccirillo, G., Lahoz, E., Sorrentino, R., Cermola, M., ... & Vinale, F. (2020). Antibiotic Activity of a Paraphaeosphaeria sporulosa produced Diketopiperazine against Salmonella enterica. Journal of Fungi, 6(2): 83. Cavaglieri, L., Orlando, J. R. M. I., Rodríguez, M. I., Chulze, S. & Etcheverry, M. (2005). Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 156(5-6): 748-754. Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics, 19(4): 220-234. Cevallos, S., Herrera, P., Sánchez¿Rodríguez, A., Declerck, S. & Suárez, J. P. (2018). Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. Fungal Ecology, 34, 67-75. Cevallos, S., Sánchez Rodríguez, A., Decock, C., Declerck, S. & Suárez, J. P. (2017). Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids Mycorrhiza, 27(3): 225-232. Chambers, A., Cibrián¿Jaramillo, A., Karremans, A. P., Martinez, D. M., Hernandez¿Hernandez, J., Brym, M., Resende Jr., M.F.R., Moloney, R., Sierra, S.N., Hasing, T. Alomía, Y.A., Ying, H. & Vanilla Genotyping Consortium. (2021). Genotyping¿By¿Sequencing diversity analysis of international Vanilla collections uncovers hidden diversity and enables plant improvement. Plant Science, 311: 111019. Chase, M. W., Cameron, K. M., Freudenstein, J. V., Pridgeon, A. M., Salazar, G., Van den Berg, C. & Schuiteman, A. (2015). An updated classification of Orchidaceae. Botanical Journal of the Linnean Society, 177(2): 151-174. Chen, J., Hu, K. X., Hou, X. Q. & Guo, S. X. (2011). Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World Journal of Microbiology and Biotechnology, 27(5): 1009-1016. Chung, M. Y., Nason, J. D., & Chung, M. G. (2004). Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). American Journal of Botany, 91(1): 52¿57. Chung, M. Y., Nason, J. D., & Chung, M. G. (2005). Spatial genetic structure in populations of the terrestrial orchid Orchis cyclochila (Orchidaceae). Plant Systematics and Evolution, 254(3): 209-219. Claro, A., Mujica, M. I., Cisternas, M., Armesto, J. J., & Pérez, F. (2020). Low mycorrhizal diversity in the endangered and rare orchids Bipinnula volckmannii and B. apinnula of Central Chile. Symbiosis, 80(2): 145-154. Clay, K. & Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285: 1742-1745. Clements, M. A., & R. K. Ellyard. (1979). The symbiotic germination of Australian terrestrial orchids. American Orchid Society Bulletin, 48:810-816. Clements, M. A., Muir, H., & Cribb, P. J. (1986). A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bulletin, 437-445. Close, R.C., Moore, N.T., Tomlinson, A.I. & Low, A.D. (1978). Aerial dispersal of biological material from Australia to New Zealand. International Journal of Biometeorology, 22: 1-19. Cogniaux, A. (1903) Dichaea Lindl. Symbolae Antillanae seu Fundamenta Florae Indiae Occidentalis 4: 182-183. Cogniaux, A. (1906) Orchidaceae III, Dichaea. In: Martius, C.F.P., Eichler, A.G. & Urban, I. (eds.) Flora Brasiliensis. Fleischer, Munich, pp. 484-504. Conner, J. K., & Sterling, A. (1995). Testing hypotheses of functional relationships: a comparative survey of correlation patterns among floral traits in five insect pollinated plants. American Journal of Botany, 82(11): 1399-1406. Cotxarrera, L., Trillas Gay, M. I., Steinberg, C. & Alabouvette, C. (2002). Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry, 34(4): 467-476. Cozzolino, S. & Widmer, A. (2005). Orchid diversity: An evolutionary consequence of deception? Trends in Ecology & Evolution, 20: 487-494. Crossa, J., Beyene, Y., Kassa, S., Pérez, P., Hickey, J. M., Chen, C., de los Campos, G., Burgueño, J., Windhausen, V.S., Buckler, E., Jannink, J., López, M.A.& Babu, R. (2013). Genomic prediction in maize breeding populations with genotyping¿by¿sequencing. G3: Genes, Genomes, Genetics, 3(11): 1903-1926. Currah, R.S., Zelmer, C.D., Hambleton, S. & Richardson, K.A. (1997). Fungi from orchid mycorrhizas. In: Arditti & Pridgeon (Eds.), Orchid Biology: Reviews and Perspectives, Kluwer Academic Publishers, 7:117-170. Dai, J., Krohn, K., Flörke, U., Draeger, S., Schulz, B., Kiss Szikszai, A., ... & van Ree, T. (2006). Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. European Journal of Organic Chemistry: 3498-3506. Darwin, C. R. (1877). On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London. Davies, K. L., & Stpiczy ska, M. (2008). Labellar micromorphology of two euglossine¿pollinated orchid genera; Scuticaria Lindl. and Dichaea Lindl. Annals of botany, 102(5): 805-824. De Amorim, M. R., Hilário, F., dos Santos Junior, F. M., Junior, J. M. B., Bauab, T. M., Araújo, A. R., ... & Dos Santos, L. C. (2019). New benzaldehyde and benzopyran compounds from the endophytic fungus Paraphaeosphaeria sp. F03 and their antimicrobial and cytotoxic activities. Planta medica, 85(11/12): 957-964. De Leon, T. B., Linscombe, S., & Subudhi, P. K. (2016). Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high¿density GBS based SNP linkage map. Rice, 9(1): 1-22. Dearnaley, J., F. Martos, & M.A. Selosse. (2012). Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In: Hock, B. (Ed.), Fungal associations. Springer Verlag, Heidelberg, Germany, pp. 207-230. Dearnaley, J., S. Perotto, & M.A. Selosse. (2016). Structure and development of orchid mycorrhizas. In: Martin, F. (Ed.), Molecular mycorrhizal symbiosis, John Wiley & Sons Inc., Hoboken, New Yersey, USA, pp. 63-86. Delaye, L., Guzman, G. G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens are fungal lifestyles evolutionarily stable traits Fungal Divers, 60, 125-135. Díaz, J. A. C., Gerlach, G. & Otero, T. (2017). Hongos endófitos de Stanhopea tricornis (Orchidaceae) en Colombia. Orquideología, 32(1): 4-13. Dick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long distance gene flow and cross Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology, 13(12): 3775-3785. Diez, J.M. (2007). Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. Journal of Ecology, 95: 159-170. Díez, M. C. (2002) Notas de ecología forestal. Biología reproductiva de las plantas de los bosques tropicales. Departamento de Ciencias Forestales. Repositorio Institucional, Universidad Nacional de Colombia, 74 pp. Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re¿implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1): 209-214. Dodson, C. H. (1966). Ethology of some bees of the tribe Euglossini (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 607-629. Dodson, C. H., Dressler, R. L., Hills, H. G., Adams, R. M., & Williams, N. H. (1969). Biologically active compounds in orchid fragrances. Science, 164(3885): 1243-1249. Dodson, C.H. & Escobar, R. (1993) Dichaea Lindley. In: Dodson, C.H. & Escobar, R. (Eds.) Native Ecuadorian Orchids (V. 1) Aa Dracula. Compañía Litográfica Nacional S.A., Medellín, pp. 176-186. Dodson, C.H. & Luer, C.A. (2010) Flora of Ecuador (225). Botanical Institute, University of Göteborg, Stockholm, 438 pp. Dodson, C.H. (1989) Icones Plantarum Tropicarum: Series II. Missouri Botanical Garden, St. Louis, pp. 1-404. Dodson, C.H. (1992) Checklist of the Orchids of the Western Hemisphere. Draft manuscript deposited in Missouri Botanical Garden Library, St. Louis. Dodson, C.H. (2004) Ecuador orchid list. In: Dodson, C.H. (Ed.) Native Ecuadorian Orchids (V. 5) Rodriguezia Zygosepalum. Dodson Publishing, Sarasota, pp. 1112-1156. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1): 11-15. Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22: 1-20. Dressler R. L. (1981). The orchids: their natural history and classification. MA: Harvard University Press, Cambridge. 352 pp. Dressler, R. L. (1968). Pollination by euglossine bees. Evolution, 22(1): 202-210. Dressler, R. L. (1976). Una Sievekingia Nueva de Colombia. Orquideologia, 11, 215-221. Dressler, R. L. (1982). Biology of orchid bees (Euglossini). Annual Review of Ecology and Systematics, 13: 373-394. Druet, T. & Gautier, M. (2017). A model¿based approach to characterize individual inbreeding at both global and local genomic scales. Molecular Ecology, 26: 5820-5841. Duncan, K. E. & Howard, R. J. (2010). Biology of maize kernel infection by Fusarium verticillioides. Molecular plant-microbe interactions, 23(1): 6-16. El Shafie, H. A. F., & Faleiro, J. R. (2017). Optimizing components of pheromone¿baited trap for the management of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date palm agro ecosystem. Journal of Plant Diseases and Protection, 124(3): 279-287. Eltz, T., Roubik, D. W., & Whitten, M. W. (2003). Fragrances, male display and mating behaviour of Euglossa hemichlora: a flight cage experiment. Physiological Entomology, 28(4): 251-260. Esposito, Lawrence J.; Formanek, K.; Kientz, G.; Mauger, F.; Maureaux, V.; Robert, G.; Truchet, F. (1997). "Vanillin". Kirk Othmer Encyclopedia of Chemical Technology. Vol. 24 (4th ed.). New York, NY: John Wiley & Sons. pp. 812-825. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611-2620. Farsi, M. & Farokhi, S. (2018). Biosynthesis of antibacterial silver nanoparticles by endophytic fungus Nemania sp. isolated from Taxus baccata L. (Iranian yew). Zahedan Journal of Research in Medical Sciences, 20(6). Fenner, M. (1998). The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics, 1(1): 78-91. Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., & Thomson, J. D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35: 375-403. Fine, P.V.A. (2015). Ecological and Evolutionary Drivers of Geographic Variation in Species Diversity. Annual Review of Ecology, Evolution, and Systematics, 46:369-392. Folsom, J.P. (1985). Pollination floral strategy and pollen flow in Dichaea sp. (Orchidaceae). American Journal of Botany, 72: 953- 954. Folsom, J.P. (1987) A systematic monograph of Dichaea section Dichaea (Orchidaceae). Ph.D. thesis, Department of Botany, University of Texas, Austin, 266 pp. Folsom, J.P. (1990) Dichaea Lindl. In: Escobar, R. (Ed.) Orquídeas Nativas de Colombia (1) Acacallis Dryadella. Sociedad Colombiana de Orquideología, Compañía Litográfica Nacional S.A., Medellín, pp. 112-115. Folsom, J.P. (1994). Pollination of a fragrant orchid. Orchid Digest, 58:83-99. Forrest, A. D., Hollingsworth, M. L., Hollingsworth, P. M., Sydes, C., & Bateman, R. M. (2004). Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity, 92(3): 218-227. Fracchia, S., Silvani, V., Flachsland, E. Terada, G. & Sede, S. (2014). Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza, 24(1): 35-43. Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). Introduction to Conservation Genetics. Cambridge: Cambridge University Press. Franklin, I. R. (1980). Evolutionary change in small populations. In: Soulé, M. & Wilcox, B. (Eds.), Conservation biology: An evolutionary¿ecological perspective. MA: Sinauer Associates, Sunderland, pp. 135-149. Frantine Silva, W., Giangarelli, D. C., Penha, R. E., Suzuki, K. M., Dec, E., Gaglianone, M. C., ... & Sofia, S. H. (2017). Phylogeography and historical demography of the orchid bee Euglossa iopoecila: signs of vicariant events associated to Quaternary climatic changes. Conservation Genetics, 18(3): 539-552. Friberg, M., Schwind, C., Roark, L. C., Raguso, R. A., & Thompson, J. N. (2014). Floral scent contributes to interaction specificity in coevolving plants and their insect pollinators. Journal of Chemical Ecology, 40(9): 955-965. Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8): 925-929. Gabaldón, T. (2021). Origin and early evolution of the eukaryotic cell. Annual review of microbiology, 75: 631-647. Galen, C. (1999). Why do flowers vary The functional ecology of variation in flower size and form within natural plant populations. Bioscience, 49(8): 631-640. Galletti, G. C., Russo, M. T., & Bocchini, P. (1995). Pyrolysis gas chromatography/mass spectrometry used to simultaneously determine essential oil and phenolic compounds in the monks' pepper vitex agnus¿castus L. Rapid communications in mass spectrometry, 9(13): 1252 1260. Gamboa Gaitán, M. Á. (2014). Vainillas colombianas y su microbiota II. Diversidad, cultivo y microorganismos endófitos. Universitas Scientiarum, 19(3): 287-300. Gang, G. H., Cho, G., Kwak, Y. S. & Park, E. H. (2017). Distribution of rhizosphere and endosphere fungi on the first-class endangered plant Cypripedium japonicum. Mycobiology, 45(2): 97-100. Gao, J. Y., & Yin, W. P. (2016). Flower Essential Oil Composition of Chionanthus retusus. Chemistry of Natural Compounds, 52(5): 934-935. Gao, Y., Zhao, Z., Li, J., Liu, N., Jacquemyn, H., Guo, S., & Xing, X. (2020). Do fungal associates of co-occurring orchids promote seed germination of the widespread orchid species Gymnadenia conopsea Mycorrhiza, 30(2): 221-228. Gardes, M. & Bruns, T. D. (1993). ITS primers with enhanced specificity for Basidiomycetes¿application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118. Gebauer, G. & Meyer, M. (2003). 15N and 13C natural abundance studies of autotrophic and mycoheterotrophic orchids provide insight into nitrogen and carbon gain from fungal associations. New Phytologist, 160: 209-223. Gentry, A. H., & Dodson, C. H. (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74(2): 205-233. Gerlach, G., & Schill, R. (1991). Composition of orchid scents attracting euglossine bees. Botanica Acta, 104(5): 379-384. Gubiani, J. R., Habeck, T. R., Chapla, V. M., Silva, G. H., Bolzani, V. S. & Araujo, A. R. (2016). One strain¿many compounds (OSMAC) method for production of phenolic compounds using Camarops sp., an endophytic fungus from Alibertia macrophylla (Rubiaceae). Química Nova, 39(10): 1221-1224. Gubiani, J. R., Zeraik, M. L., Oliveira, C. M., Ximenes, V. F., Nogueira, C. R., Fonseca, L. M., ... & Araujo, A. R. (2014). Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla. Journal of Natural Products, 77(3): 668-672. Gupta, R. S. & Golding, G. B. (1996). The origin of the eukaryotic cell. Trends in biochemical sciences, 21(5): 166-171. Hadley, G. (1969). Cellulose as a Carbon Source for Orchid Mycorrhiza. New Phytologist, 68 (4): 933-939. Harley, J.L. & Smith, S.E. (1983). Mycorrhizal Symbiosis. Academic Press Inc. Ltd., London, UK, 483 pp. Hartl, D.L. & Clark, A.G. (1989). Principles of population genetics, 2nd ed. Sinauer associates, Sunderland, Massachusetts, 682 pp. Hassan, S. R. U., Strobel, G. A., Geary, B. & Sears, J. (2013). An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. Journal of microbiology and biotechnology, 23(1): 29-35. Hernández L.V. & Alomía Y.A. (2020). Hongos endófitos en orquídeas: un meta análisis global. Undergraduate Monograph. Facultad de Ciencias, Universidad de Los Andes, Bogotá, Colombia. 61 pp. Available in: https://documentodegrado.uniandes.edu.co/acepto201699.php?id=21930.pdf Hetherington Rauth, M. C., & Ramírez, S. R. (2015). Evolutionary trends and specialization in the euglossine bee-pollinated orchid genus Gongora. Annals of the Missouri Botanical Garden, 271-299. Hietz, P., Winkler, M., Cruz Paredes, L., & Jiménez Aguilar, A. (2006). Breeding systems, fruit set, and flowering phenology of epiphytic bromeliads and orchids in a Mexican humid montane forest. Selbyana, 156¿164. Hills, H. G., Williams, N. H. & Dodson, C. H. (1972). Floral fragrances and isolation mechanisms in the genus Catasetum (Orchidaceae). Biotropica, 4:61-76. Hilty, S.L. (1980). Flowering and fruiting periodicity in a premontane rain forest in Pacific Colombia. Biotropica, 12: 292-306. Hoeksema, J. D., Hernandez, J. V., Rogers, D. L., Mendoza, L. L., & Thompson, J. N. (2012). Geographic divergence in a species¿rich symbiosis: interactions between Monterey pines and ectomycorrhizal fungi. Ecology, 93(10): 2274-2285. Hogbin, P. M., Peakall, R., & Sydes, M. A. (2000). Achieving practical outcomes from genetic studies of rare Australian plants. Australian Journal of Botany, 48(3): 375-382. Holdridge, L.R. 1967. Life Zone Ecology. First edition. Tropical Science Center, San José, Costa Rica. Hollens Kuhr, H., van der Niet, T., Cozien, R., & Kuhlmann, M. (2021). Pollinator Community Predicts Trait Matching between Oil Producing Flowers and a Guild of Oil¿Collecting Bees. The American Naturalist, 198(6): 750 758. Holsinger, K. E., & Weir, B. S. (2009). Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10(9), 639-650. Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., ... & Jaramillo, C. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330 (6006): 927-931. Hopper, S. D. (2000). How well do phylogenetic studies inform the conservation of Australian plants. Australian Journal of Botany, 48(3): 321-328. Hu, Y., Resende, M., Bombarely, A., Brym, M., Bassil, E., Chambers, A. (2019). Genomics based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and Genotyping By Sequencing. Scientific Reports, 9(1): 1-16. Huang, C. L., Jian, F. Y., Huang, H. J., Chang, W. C., Wu, W. L., Hwang, C. C., ... & Chiang, T. Y. (2014). Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 66(1): 77-88. Hughes, C. & Eastwood, R. (2006). Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103:10334-10339. Hume, B. C., Voolstra, C. R., Arif, C., D¿Angelo, C., Burt, J. A., Eyal, G., ... & Wiedenmann, J. (2016). Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proceedings of the National Academy of Sciences, 113(16): 4416-4421. Hyung, J.J., Kang, H., Joong, J.J. & Soo, K.Y. (2013). Paecilomyces variotii extracts for preventing and treating infections caused by fish pathogenic microorganisms. KR Patent, 2013051523. Ibrahim, A., Sørensen, D., Jenkins, H. A., Ejim, L., Capretta, A. & Sumarah, M. W. (2017). Epoxynemanione A, nemanifuranones A F, and nemanilactones A C, from Nemania serpens, an endophytic fungus isolated from Riesling grapevines. Phytochemistry, 140, 16-26. Idárraga Piedrahita, A., Ortiz, R.D.C., Callejas Posada, R. & Merello, M. (2011) Flora de Antioquia. Universidad de Antioquia, Medellín, 939 pp. Jacquemyn, H., Brys, R., Vandepitte, K., Honnay, O., Roldán¿Ruiz, I., & Wiegand, T. (2007). A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist, 176(2): 448-459. Jacquemyn, H., Waud, M., Lievens, B. & Brys, R. (2016). Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany, 118(1): 105 114. Jacquemyn, H., Waud, M., Merckx, V. S., Lievens, B., & Brys, R. (2015). Mycorrhizal diversity, seed germination and long term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Molecular Ecology, 24(13): 3269-3280. Janzen, D. H. (1971). Euglossine bees as long-distance pollinators of tropical plants. Science, 171(3967): 203-205. Janzen, D. H. (1986). The future of tropical ecology. Annual Review of Ecology and Systematics, 17:305-324. Janzen, D.H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101: 233-249. Jersáková, J., & Malinová, T. (2007). Spatial aspects of seed dispersal and seedling recruitment in orchids. New phytologist, 237-241. Johnson, S. D., & Steiner, K. E. (1997). Long¿tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 51(1): 45-53. Jørgensen, P.M. & León Yánez, S. (1999) Catalogue of the Vascular Plants of Ecuador (V. 75). Missouri Botanical Garden, St. Louis, 1182 pp. Jumpponen, A., Herrera, J., Porras Alfaro, A. & Rudgers, J. (2017). Chapter 10¿Biogeography of root-associated fungal endophytes. In: Tedersoo, L. (Ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 195-222. Kamvar, Z. N., Brooks, J. C., & Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in genetics, 208. Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2: e281. Katoh, K., Rozewicki, J. & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, 20(4): 1160-1166. Keller, M. (2015). Phenology and Growth Cycle. In: The science of grapevines: anatomy and physiology. Academic Press. pp. 59-99. Kharwar, R. N., Verma, V. C., Kumar, A., Gond, S. K., Harper, J. K., Hess, W. M., ... & Strobel, G. A. (2009). Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Current microbiology, 58(3): 233-238. Kite, G. C., & Hetterschieid, W. L. (1997). Inflorescence odours of Amorphophallus and Pseudodracontium (Araceae). Phytochemistry, 46(1): 71-75. Knaus, B. J., & Grünwald, N. J. (2017). vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17(1): 44-53. Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. The botanical review, 72(1): 1-120. Ko, T. W. K., Stephenson, S. L., Bahkali, A. H. & Hyde, K. D. (2011). From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Diversity, 50(1): 113. Kohout, P., T¿¿itelová, T., Roy, M., Vohník, M. & Jersáková, J. (2013). A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology, 6(1): 50-64. Kottke, I. & Suárez, J.P. (2009). Mutualistic, root inhabiting fungi of orchids identification and functional types. In: Pridgeon A. M. & Suárez, J.P. (Eds.), Proceedings of the Second Scientific Conference on Andean Orchids. Universidad Técnica Particular De Loja, Loja, Ecuador, pp. 84 99. Kottke, I., & Suárez, J. P. (2009). Mutualistic, root¿inhabiting fungi of orchids, identification and functional types. In: Proceedings of the Second Scientific Conference on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador. pp.84-99 Kovach Computing Services (2011). Oriana for Windows, ver. 4. Pentraeth, Wales, UK. Kristiansen, K. A., Taylor, D. L., Kjøller, R., Rasmussen, H. N. & Rosendahl, S. (2001). Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single¿strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Molecular Ecology, 10(8): 2089-2093. Kumar, N., & Motto, M. G. (1985). Volatile constituents of peony flowers. Phytochemistry, 25(1): 250-253. Kuntze, C.E.O. (1904) Dichaea. In: von Post, T.E. (Ed.) Lexicon Generum Phanerogamarum. Stuttgart, Deutsche Verlags Anstalt, 171 pp. Kurzweil, H. (1993). The unusual seeds of the Disa uniflora group with notes on their dispersal. In: Pridgeon, A.M., ed. Proceedings of the 14th World Orchid Conference. Glasgow 1993. London, UK: HMSO, pp. 397-399. Li, T., Wu, S., Yang, W., Selosse, M. A., & Gao, J. (2021a). How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. Frontiers in Plant Science, 12, 833. Li, T., Yang, W., Wu, S., Selosse, M. A. & Gao, J. (2021b). Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. Frontiers in Plant Science, 12, 820. Lindley, J. (1833) Dichaea. The genera and species of Orchidaceous plants. Ridgways, London. Luukas, E. (2015). Root associated fungi of Patagonian endemic orchids. Master Thesis, University of Tartu, Tartu Estonia, 25 pp. Ma, X., Kang, J., Nontachaiyapoom, S., Wen, T. & Hyde, K. D. (2015). Non mycorrhizal endophytic fungi from orchids. Current Science, 72-87. Maddison, W.P. & Maddison, D.R. (2007). Mesquite: a modular system for evolutionary analysis. Mesquite v. 2.72. http://mesquiteproject.org Maia, A. C. D., de Lima, C. T., Navarro, D. M. D. A. F., Chartier, M., Giulietti, A. M., & Machado, I. C. (2014). The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators. Phytochemistry Maldonado, G. P., Yarzábal, L. A., Cevallos Cevallos, J. M., Chica, E. J. & Peña, D. F. (2020). Root endophytic fungi promote in vitro seed germination in Pleurothallis coriacardia (Orchidaceae). Lankesteriana, 20(1): 107-122. Malécot, G. (1969). The mathematics of heredity. The mathematics of heredity. Rev. ed. San Francisco, W.H. Freeman, 88 pp. Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. International Journal of Plant Genomics, 2012:1-11. Martos, F., Dulormne, M., Pailler, T., Bonfante, P., Faccio, A., Fournel, J., ... & Selosse, M. A. (2009). Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist, 184(3): 668-681. McCormack, J. E., Maley, J. M., Hird, S. M., Derryberry, E. P., Graves, G. R., & Brumfield, R. T. (2012). Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences. Molecular Phylogenetics and Evolution, 62(1): 397-406. McCormick, M. K. & Jacquemyn, H. (2014). What constrains the distribution of orchid populations? New Phytologist, 202(2): 392-400. Mccormick, M. K., Taylor, D.L, Juhaszova, K., Burnett Jr, R. K., Whigham, D. F., & O neill, J. P. (2012). Limitations on orchid recruitment: not a simple picture. Molecular Ecology, 21(6): 1511-1523. Mends, M. T., Yu, E., Strobel, G. A., Hassan, S. R. U., Booth, E., Geary, B., ... & Hadi, M. (2012). An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. Journal of Petroleum & Environmental Biotechnology, 3(3). Menéndez, J., Álvarez, I., Fernandez, I., Menéndez Arias, N. A., & Goyache, F. (2016). Assessing performance of single¿sample molecular genetic methods to estimate effective population size: Empirical evidence from the endangered Gochu Asturcelta pig breed. Ecology and Evolution, 6(14): 4971-4980. Meng, Y. Y., Shao, S. C., Liu, S. J., & Gao, J. Y. (2019). Do the fungi associate with roots of adult plants support seed germination A case study on Dendrobium exile (Orchidaceae). Global Ecology and Conservation, 17, e00582. Merchant, N., Lyons, E., Goff, S., Vaughn, M., Ware, D., Micklos, D., Antin, P. (2016). The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLoS biology, 14(1): e1002342 MichelnAceves, A. C., Otero Sánchez, M. A., Solano Pascacio, L. Y., ArizaFlores, R., Barrios¿Ayala, A. & Rebolledo¿Martínez, A. (2009). Biocontrol in vitro con Trichoderma spp. de Fusarium subglutinans (Wollenweb. y Reinking) Nelson, Toussoun y Marasas y F. oxysporum Schlecht., Agentes Causales de la" Escoba de Bruja" del Mango (Mangifera indica L.). Revista Mexicana de Fitopatología, 27(1): 18-26. |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
177 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Ciencias - Biología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/14b0899d-696c-417e-81c2-ba8903aa70be/download https://repositorio.uniandes.edu.co/bitstreams/e4655b0f-ab22-4512-a53d-7448fa9a02e8/download https://repositorio.uniandes.edu.co/bitstreams/c69c510d-b472-4698-afb6-81030f555d9e/download https://repositorio.uniandes.edu.co/bitstreams/46f30d3d-df61-46b4-b34d-7c9ba7d3166e/download https://repositorio.uniandes.edu.co/bitstreams/0d53912b-1253-45d0-b1e6-0c237f787d29/download https://repositorio.uniandes.edu.co/bitstreams/3d25ad44-6167-4467-9716-faceaacc6e8d/download https://repositorio.uniandes.edu.co/bitstreams/4613cfb0-eea0-47e7-a329-4451294af6de/download https://repositorio.uniandes.edu.co/bitstreams/e8e618f2-e565-40dc-883b-abfa46a9ace4/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 ef66766c0914d0647ef91d62e3bc0ff4 c50dfbb2b4cb23ac1179dace30f687f4 819d92c4d2f192fa1732c67f415d792e b854f01b540b848547bcc3c9f050b173 5aa5c691a1ffe97abd12c2966efcb8d6 6895575cbc4eed21eb40349eddc74377 4491fe1afb58beaaef41a73cf7ff2e27 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134002325192704 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Stevenson Díaz, Pablo Roberto147a5ccc-d327-4aa0-aacd-168d0ecd9dee600Alomía Aguirre, Yasmin Amparobdce5865-b04a-48e6-bb5f-4a09a1ce4829600Tremblay Lalande, RaymondMadriñán Restrepo, SantiagoCENTRO DE INVESTIGACIONES ECOLÓGICAS LA MACARENA (CIEM)2022-07-09T23:18:46Z2022-07-09T23:18:46Z2022http://hdl.handle.net/1992/5867010.57784/1992/58670instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The interactions between organisms are crucial for their survival and reproduction and have shaped life on earth. This proposition is developed in the Geographic Mosaic of Coevolution Theory proposed by John Thompson in 2005. In general terms, Thompson suggests that interactions lead to evolutionary processes through coevolution between interacting species. As in nature species are usually collections of populations distributed in different environments, then the interactions that occur in each population are subject to change because they are found in different environmental contexts in each locality, which can promote the adaptation of some species to others. Therefore, the key to understanding the dynamics of coevolutionary processes lies in spatial variability. The resulting process is a geographic mosaic of local adaptations of interspecific interactions, and because the mosaic is constantly changing as species co-evolve, populations diverge, and can sometimes undergo speciation. In terms of biotic interactions, Orchidaceae is a model family to approach questions of evolutionary ecology, considering its specialized and obligate mutualistic relationships with both its pollinators and mycorrhizal fungi. Considering the framework exposed by Thompson, the central question of this research is whether populations of the Dichaea andina orchid located in different regions of the Colombian Andes differ locally in their mutualistic partners (fungi and pollinators) and have formed geographic mosaics in their interactions. This document is divided into four chapters. The first chapter focused on the detailed description of the study species, the result of which was the proposal of a new species of orchid. The second chapter addressed questions about the natural history of the D. andina orchid. Here it was determined if there were variations among populations in terms of the phenology of the species, floral traits, mating system, and pollination. We found that, for all populations, the phenology followed a bimodal pattern with two flowering peaks per year in May and October. Dichaea andina is a completely allogamous and self-incompatible species, it produces floral fragrances mainly composed of 2-(4-Methoxyphenyl) ethanol and 2-Methoxyphenol, and was exclusively pollinated by Euglossa nigropilosa bee. That is, for the orchid-pollinator interaction we did not detect a geographic mosaic. The third chapter explored the orchid-fungi interaction and assessed differences in fungal partners among populations. We found that, in each population, the plants were related to a particular set of endophytic fungi, evidencing a geographic mosaic for this type of interaction. As a mycorrhizal fungus, D. andina was associated with a Ceratobasidium fungus, which was the only one to promote seed germination in in vitro experiments. Finally, the fourth chapter quantified the genetic differences between D. andina populations, using single nucleotide polymorphisms (SNPs) as genetic markers, and evaluated the overlap between genetic and geographic distances. We found that there was little genetic differentiation between orchid populations and that geography does not seem to be explaining the minimal genetic distances detected. Under this scenario, we propose that considerable gene flow has been maintained to prevent differentiation, probably explained by the great potential for long-distance dispersal of the tiny seeds.Las interacciones entre los organismos son de suma importancia para su supervivencia y reproducción, y han moldeado la vida en la tierra. Este planteamiento es desarrollado en la Teoría del Mosaico Geográfico de la Coevolución propuesta por John Thompson en el año 2005. En términos generales, Thompson sugiere que las interacciones conllevan a procesos evolutivos a través de la coevolución entre las especies que interactúan. Como en la naturaleza las especies suelen ser colecciones de poblaciones distribuidas en diferentes entornos, entonces las interacciones que ocurren en cada población están sujetas al cambio porque se encuentran en diferentes contextos ambientales en cada localidad, lo que puede promover que unas especies se adapten a otras. Por lo tanto, la clave para entender la dinámica de los procesos coevolutivos radica en la variabilidad espacial. El proceso resultante es un mosaico geográfico de adaptaciones locales de interacciones interespecíficas, y como el mosaico cambia constantemente a medida que las especies coevolucionan, las poblaciones divergen, y en ocasiones pueden sufrir especiación. En términos de interacciones bióticas, Orchidaceae es una familia modelo para aproximarse a preguntas de ecología evolutiva, si se tiene en cuenta sus especializadas y obligadas relaciones mutualistas tanto con sus polinizadores como con sus hongos micorrízicos. Considerando el marco expuesto por Thompson, la pregunta central de esta investigación es si las poblaciones de la orquídea Dichaea andina ubicadas en diferentes regiones de los Andes colombianos, difieren localmente en sus socios mutualistas (hongos y polinizadores) y han formado mosaicos geográficos en sus interacciones. El presente documento está dividido en cuatro capítulos. El primer capítulo se centró en la descripción detallada de la especie de estudio, cuyo resultado fue la propuesta de una nueva especie de orquídea. El segundo capítulo abordó interrogantes sobre la historia natural de la orquídea D. andina. Aquí se determinó si existían variaciones entre las poblaciones en cuanto a la fenología de la especie, rasgos florales, sistema de entrecruzamiento y polinización. Encontramos que, para todas las poblaciones la fenología siguió un patrón bimodal con dos picos de floración al año en los meses de mayo y octubre. Dichaea andina es una especie completamente alógama y autoincompatible, produce fragancias florales principalmente compuestas por 2-(4-Metoxifenil) etanol y 2-Metoxifenol, y fue exclusivamente polinizada por la abeja Euglossa nigropilosa. Es decir, para la interacción orquídea-polinizador no detectamos un mosaico geográfico. El tercer capítulo exploró las interacciones entre las orquídeas y los hongos tanto micorrízicos como endófitos y evaluó las diferencias en los socios fúngicos entre las poblaciones. Encontramos que, en cada población las plantas se relacionaron con un conjunto particular de hongos endófitos, evidenciando un mosaico para este tipo de interacción. Como hongo micorrízico, D. andina se asoció co un hongo del género Ceratobasidium, el cual fue el único en promover germinación de semillas en experimentos in vitro. Finalmente, el cuarto capítulo cuantificó las diferencias genéticas entre las poblaciones de D. andina, utilizando polimorfismos de nucleótido simple (SNPs) como marcadores genéticos, y evaluó la superposición entre las distancias genéticas y geográficas para evaluar posibles patrones congruentes. Encontramos que hubo poca diferenciación genética entre las poblaciones de la orquídea y que la geografía no parece estar explicando las mínimas distancias genéticas detectadas. Bajo este escenario, proponemos que se ha mantenido un flujo de genes considerable para prevenir la diferenciación, probablemente explicado por el gran potencial de dispersión a larga distancia de las diminutas semillas.Ministerio de Ciencia Tecnología e InnovaciónSan Diego County Orchid SocietyFondo de Investigaciones de la Facultad de Ciencias de la Universidad de Los AndesConsejo Profesional de BiologíaDoctor en Ciencias - BiologíaDoctoradoEcología Evolutiva177 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - BiologíaFacultad de CienciasDepartamento de Ciencias BiológicasExamining geographic mosaics of interactions in an orchid-pollinator-fungi system of the tropical andesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDDichaeaEuglossine beesGene flowGenetic structureGeographic Mosaic of Coevolution TheoryIsolation by distanceTropical AndesOrchidaceaeOrchid endophytic fungiOrchid mycorrhizal fungiOrchid seedsAbejasGenética de insectosOrquídeasHongos endófitosEndosimbiosisBiologíaAckerman, J. D. (1983a). Specificity and mutual dependency of the orchid euglossine bee interaction. Biological Journal of the Linnean Society, 20(3): 301-314.Ackerman, J.D. (1983b). Euglossine bee pollination of the orchid Cochleanthes lipscombiae: a food source mimic. American Journal of Botany, 70: 830-834.Ackerman, J. D. (1989). Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Systematic Botany, 14(1):101-109.Ackerman, J. D. (1998). Evolutionary potential in orchids: patterns and strategies for conservation. Selbyana, 19 (1):8-14.Ackerman, J. D., Mesler, M. R., Lu, K. L., & Montalvo, A. M. (1982). Food foraging behavior of male Euglossini (Hymenoptera: Apidae): vagabonds or trapliners? Biotropica, 14 (4): 241-248.Ackerman, J. D., & Montero, J. C. (1985). Reproductive Biology of Oncidium variegatum: Moon Phases, Pollination, and Fruit Set. American Orchid Society Bulletin, 54(3):326-329.Ackerman, J. D., & Ward, S. (1999). Genetic variation in a widespread, epiphytic orchid: where is the evolutionary potential Systematic Botany, 282-291Ackerman, J.D. (2021). Orchids on the move: go forth & proliferate! In: Wang, Y.T., Chang, Y.C.A., Lee, Y.I., Chen, F.C. & Tsai, W.C (Eds.) Proceedings of the 2021 Virtual World Orchid Conference, Taiwan Orchid Growers Association, Tainan City, Taiwan, pp. 262-266.Allen, C. F. H.; Gates, J. W., Jr (1955). "o Eugenol". Organic Syntheses. Collective Volume, vol. 3, p. 418.Almakarem, A. S. A., Heilman, K. L., Conger, H. L., Shtarkman, Y. M., & Rogers, S. O. (2012). Extraction of DNA from plant and fungus tissues in situ. BMC Research Notes, 5(1): 1-11.Alomía, Y. A., Mosquera¿Espinosa, A.T., Flanagan, N. & Otero, J.T. (2017). Seed viability and symbiotic seed germination in Vanilla spp. (Orchidaceae). Research Journal of Seed Science, 10 (2): 43-52.Alomía, Y. A., Otero, J. T., Jersáková, J. & Stevenson, P. R. (2022). Cultivable fungal community associated with the tropical orchid Dichaea andina. Fungal Ecology, 57-58: 101158.Alomía, Y. A., Sambin, A., Otero, J. T. & Stevenson, P. R. (2021). A New Species of Dichaea (Orchidaceae: Zygopetalinae) from the Andes of Colombia. Phytotaxa, 521 (1): 39-47.Alomía, Y.A., Stevenson, P.R., Otero, J.T. & Stashenko, E. (2018) Breeding system and pollination mechanism of Dichaea pendula (Aubl.) Cogn. (Orchidaceae). 6th International Orchid Workshop, Bia ystok, 28 May 1 June 2018, 59 pp.Anderson, B., & Johnson, S. D. (2008). The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution: International Journal of Organic Evolution, 62(1): 220-225.Anderson, M. J. (2008). A new method for non¿parametric multivariate analysis of variance. Austral ecology, 26(1):32-46.Antonelli, A., Nylander, J.A.A., Persson, C & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 106(24): 9749¿9754.Aranda, M., Li, Y., Liew, Y. J., Baumgarten, S., Simakov, O., Wilson, M. C., ... & Ryu, T. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6, 39734.Arbelaez, J. D., Moreno, L. T., Singh, N., Tung, C. W., Maron, L. G., Ospina, Y., ... & McCouch, S. (2015). Development and GBS¿genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga. Molecular Breeding, 35(2): 1-18.ArcGIS [software GIS]. Versión 10.0. Redlands. CA: Environmental Systems Research Institute. Inc., 2010.Arditti, J. (1967). Factors affecting the germination of orchid seeds. Botanical Review, 33:1-197.Arditti, J., & Ghani, A. K. A. (2000). Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145: 367-421.Armenteras, D., Cadena, V.C. & Moreno, R.P. (2007) Evaluación del estado de los bosques de niebla y de la meta 2010 en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, 72 pp.Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse Ecology letters, 3(4): 267-274.Aublet, J.B.C.F. (1775) Histoire des Plantes de la Guiane Françoise 2. Catalogue des libres nouveaux, Paris.Ávila Díaz, I., & Oyama, K. (2007). Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). American Journal of Botany, 94(2): 184-193.Bánki, O., Roskov, Y., Vandepitte, L., DeWalt, R. E., Remsen, D., Schalk, P., Orrell, T., Keping, M., Miller, J., Aalbu, R., Adlard, R., Adriaenssens, E., Aedo, C., Aescht, E., Akkari, N., Alonso Zarazaga, M. A., Alvarez, B., Alvarez, F., Anderson, G., et al. (2021).Catalogue of Life Checklist (Version 2021 09 21). https://www.catalogueoflife.org/data/taxon/DPL. Accessed: 25 March 2022Barkman, T. J., Beaman, J. H., & Gage, D. A. (1997). Floral fragrance variation in Cypripedium: implications for evolutionary and ecological studies. Phytochemistry, 44(5): 875-882.Barnes, E. C., Jumpathong, J., Lumyong, S., Voigt, K. & Hertweck, C. (2016). Daldionin, an unprecedented binaphthyl derivative, and diverse polyketide congener from a fungal orchid endophyte. Chemistry¿A European Journal, 22(13): 4551-4555.Barthlott, W., Große Veldmann, B. & Korotkova, N. (2014). Orchid seed diversity. A scanning electron microscopy survey. Botanic Garden and Botanical Museum Berlin Dahlem Englera, 32. Germany, 245 pp.Baskin, C.C. & Baskin, J. (2014). Seeds Ecology, Biogeography and Evolution of Dormancy and Germination. Academic Press, Elsevier, 1600 pp.Batty, A. L., Dixon, K. W., Brundrett, M., & Sivasithamparam, K. (2001). Constraints to symbiotic germination of terrestrial orchid seed in a Mediterranean bushland. New phytologist, 152(3): 511-520.Batygina, T. B., Bragina, E. A., & Vasilyeva, V. E. (2003). The reproductive system and germination in orchids. Acta Biologica Cracoviensia, Series Botanica, 45(2): 21-34.Bayman, P. & Otero, J. T. (2006). Microbial endophytes of orchid roots. In: Barbara J. E. Schulz, B., Boyle, C. & Sieber, T. (Eds). Microbial root endophytes. Springer, Berlin, Heidelberg, pp. 153-177.Bayman, P., Lebron, L. L., Tremblay, R. L. & Lodge, D. J. (1997). Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). The New Phytologist, 135(1): 143-149.Begum, S. R. & Tamilselvi, K. S. (2019). Biotechnological Application of Talaromyces Radicus Associated with Cucumis Dipsaceusehrenb. Ex Spach. Plant Archives, 19(1): 1938-1946.Bell, C.D. & Donoghue, M.J. (2005). Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms Diversity & Evolution, 5:147-159.Beltrán Nambo, M., Martínez Trujillo, M., Montero Castro, J. C., Salgado¿Garciglia, R., Otero¿Ospina, J. T. & Carreón Abud, Y. (2018). Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere, 7, 49-56.Berg, R.L. 1960. The ecological significance of correlation pleiades. Evolution, 14: 171-180.Bernal, R., Gradstein, S.R. & Celis, M. (2015) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Available from: http://catalogoplantasdecolombia.unal.edu.co/es/ Accessed: 10-January-2021.Bernard, N. (1904). Recherches experimentales sur les Orchidées I-III. Methodes de culture; champignon endophyte; La germination des orchidées. Reveu Générale de Botanique, 16, 405-451.Bertrand, A. R., Kadri, N. K., Flori, L., Gautier, M., & Druet, T. (2019). RZooRoH: an R package to characterize individual genomic autozygosity and identify homozygous by descent segments. Methods in Ecology and Evolution, 10(6): 860-866.Betancur, J., Sarmiento, H., Toro González, L. & Valencia, J. (2015) Plan para el estudio y la conservación de las orquídeas en Colombia. Ministerio de Ambiente y Desarrollo Sostenible, Universidad Nacional de Colombia, Bogotá, 336 pp.Betancur, J., Sarmiento, H., Toro González, L. & Valencia, J. (2015). Plan para el estudio y la conservación de las orquídeas en Colombia. Ministerio de Ambiente y Desarrollo Sostenible, Universidad Nacional de Colombia, Bogotá, 336 pp.Bhattarai, U., & Subudhi, P. K. (2018). Identification of drought responsive QTLs during vegetative growth stage of rice using a saturated GBS based SNP linkage map. Euphytica, 214(2):1-17.Bonilla-Gómez, M. A., & Nates Parra, G. (1992). Abejas euglosinas de Colombia (Hymenoptera: Apidae) I. Claves ilustradas. Caldasia, 149-172.Bonnardeaux, Y., Brundrett, M., Batty, A., Dixon, K., Koch, J. & Sivasithamparam, K. (2007). Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research, 111(1): 51-61.Borba, E. L., Felix, J. M., Solferini, V. N., & Semir, J. (2001). Fly pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. American Journal of Botany, 88(3): 419-428.Borchert, R. (1980). Phenology and ecophysiology of tropical trees: Erythrina poeppigiana O.F. Cook. Ecology, 61: 1065-1074.Borchert, R., Calle, Z., Strahler, A. H., Baertschi, A., Magill, R. E., Broadhead, J. S., ... & Muthuri, C. (2015). Insolation and photoperiodic control of tree development near the equator. New Phytologist, 205(1): 7-13.Borchert, R., Renner, S. S., Calle, Z., Navarrete, D., Tye, A., Gautier, L. & von Hildebrand, P. (2005). Photoperiodic induction of synchronous flowering near the Equator. Nature, 433(7026): 627.Borras, O., Santos, R., Matos, A. P., Cabral, R. S. & Arzola, M. (2001). A first attempt to use a Fusarium subglutinans culture filtrate for the selection of pineapple cultivars resistant to fusariose disease. Plant Breeding, 120(5): 435-438.Brundrett, M. C. (2017). Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Tedersoo, L. (Ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham, pp. 533-556.Brundrett, M.C. (2004). Diversity and classification of mycorrhizal associations. Biological reviews, 79(3): 473-495.Brundrett, M.C. (2006). Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (Eds.), Microbial root endophytes. Springer Verlag , Berlin, Germany, pp. 281-293.Bungtongdee, N., Sopalun, K., Laosripaiboon, W. & Iamtham, S. (2019). The chemical composition, antifungal, antioxidant and antimutagenicity properties of bioactive compounds from fungal endophytes associated with Thai orchids. Journal of Phytopathology, 167(1): 56-64.Burney, C. W. & Brumfield, R. T. (2009). Ecology predicts levels of genetic differentiation in neotropical birds. American Naturalist, 174: 358-368.Caballero, A. & Toro, M. A. (2002). Analysis of genetic diversity for the management of conserved subdivided populations. Conservation genetics, 3(3), 289-299.Calle, Z. (2002). Temporal variation in the reproductive phenology of Montanoa quadrangularis in the Andes of Colombia: declining photoperiod as a likely environmental trigger. Biotropica 34: 621-622.Calle, Z., Schlumpberger, B. O., Piedrahita, L., Leftin, A., Hammer, S. A., Tye, A., & Borchert, R. (2010). Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees, 24(5): 865¿877.Cameron, D. D., Leake, J. R. & Read, D. J. (2006). Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfer in the green-leaved terrestrial orchid Goodyera repens. New Phytologist, 171: 405-416.Cameron, K.M. & Chase, M.W. (1998). Seed morphology of the vanilloid orchids. Lindleyana, 13: 148-169.Cameron, S. A. (2004). Phylogeny and biology of neotropical orchid bees (Euglossini). Annual Reviews in Entomology, 49(1): 377-404.Carrieri, R., Borriello, G., Piccirillo, G., Lahoz, E., Sorrentino, R., Cermola, M., ... & Vinale, F. (2020). Antibiotic Activity of a Paraphaeosphaeria sporulosa produced Diketopiperazine against Salmonella enterica. Journal of Fungi, 6(2): 83.Cavaglieri, L., Orlando, J. R. M. I., Rodríguez, M. I., Chulze, S. & Etcheverry, M. (2005). Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 156(5-6): 748-754.Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics, 19(4): 220-234.Cevallos, S., Herrera, P., Sánchez¿Rodríguez, A., Declerck, S. & Suárez, J. P. (2018). Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. Fungal Ecology, 34, 67-75.Cevallos, S., Sánchez Rodríguez, A., Decock, C., Declerck, S. & Suárez, J. P. (2017). Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids Mycorrhiza, 27(3): 225-232.Chambers, A., Cibrián¿Jaramillo, A., Karremans, A. P., Martinez, D. M., Hernandez¿Hernandez, J., Brym, M., Resende Jr., M.F.R., Moloney, R., Sierra, S.N., Hasing, T. Alomía, Y.A., Ying, H. & Vanilla Genotyping Consortium. (2021). Genotyping¿By¿Sequencing diversity analysis of international Vanilla collections uncovers hidden diversity and enables plant improvement. Plant Science, 311: 111019.Chase, M. W., Cameron, K. M., Freudenstein, J. V., Pridgeon, A. M., Salazar, G., Van den Berg, C. & Schuiteman, A. (2015). An updated classification of Orchidaceae. Botanical Journal of the Linnean Society, 177(2): 151-174.Chen, J., Hu, K. X., Hou, X. Q. & Guo, S. X. (2011). Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World Journal of Microbiology and Biotechnology, 27(5): 1009-1016.Chung, M. Y., Nason, J. D., & Chung, M. G. (2004). Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). American Journal of Botany, 91(1): 52¿57.Chung, M. Y., Nason, J. D., & Chung, M. G. (2005). Spatial genetic structure in populations of the terrestrial orchid Orchis cyclochila (Orchidaceae). Plant Systematics and Evolution, 254(3): 209-219.Claro, A., Mujica, M. I., Cisternas, M., Armesto, J. J., & Pérez, F. (2020). Low mycorrhizal diversity in the endangered and rare orchids Bipinnula volckmannii and B. apinnula of Central Chile. Symbiosis, 80(2): 145-154.Clay, K. & Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285: 1742-1745.Clements, M. A., & R. K. Ellyard. (1979). The symbiotic germination of Australian terrestrial orchids. American Orchid Society Bulletin, 48:810-816.Clements, M. A., Muir, H., & Cribb, P. J. (1986). A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bulletin, 437-445.Close, R.C., Moore, N.T., Tomlinson, A.I. & Low, A.D. (1978). Aerial dispersal of biological material from Australia to New Zealand. International Journal of Biometeorology, 22: 1-19.Cogniaux, A. (1903) Dichaea Lindl. Symbolae Antillanae seu Fundamenta Florae Indiae Occidentalis 4: 182-183.Cogniaux, A. (1906) Orchidaceae III, Dichaea. In: Martius, C.F.P., Eichler, A.G. & Urban, I. (eds.) Flora Brasiliensis. Fleischer, Munich, pp. 484-504.Conner, J. K., & Sterling, A. (1995). Testing hypotheses of functional relationships: a comparative survey of correlation patterns among floral traits in five insect pollinated plants. American Journal of Botany, 82(11): 1399-1406.Cotxarrera, L., Trillas Gay, M. I., Steinberg, C. & Alabouvette, C. (2002). Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry, 34(4): 467-476.Cozzolino, S. & Widmer, A. (2005). Orchid diversity: An evolutionary consequence of deception? Trends in Ecology & Evolution, 20: 487-494.Crossa, J., Beyene, Y., Kassa, S., Pérez, P., Hickey, J. M., Chen, C., de los Campos, G., Burgueño, J., Windhausen, V.S., Buckler, E., Jannink, J., López, M.A.& Babu, R. (2013). Genomic prediction in maize breeding populations with genotyping¿by¿sequencing. G3: Genes, Genomes, Genetics, 3(11): 1903-1926.Currah, R.S., Zelmer, C.D., Hambleton, S. & Richardson, K.A. (1997). Fungi from orchid mycorrhizas. In: Arditti & Pridgeon (Eds.), Orchid Biology: Reviews and Perspectives, Kluwer Academic Publishers, 7:117-170.Dai, J., Krohn, K., Flörke, U., Draeger, S., Schulz, B., Kiss Szikszai, A., ... & van Ree, T. (2006). Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. European Journal of Organic Chemistry: 3498-3506.Darwin, C. R. (1877). On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London.Davies, K. L., & Stpiczy ska, M. (2008). Labellar micromorphology of two euglossine¿pollinated orchid genera; Scuticaria Lindl. and Dichaea Lindl. Annals of botany, 102(5): 805-824.De Amorim, M. R., Hilário, F., dos Santos Junior, F. M., Junior, J. M. B., Bauab, T. M., Araújo, A. R., ... & Dos Santos, L. C. (2019). New benzaldehyde and benzopyran compounds from the endophytic fungus Paraphaeosphaeria sp. F03 and their antimicrobial and cytotoxic activities. Planta medica, 85(11/12): 957-964.De Leon, T. B., Linscombe, S., & Subudhi, P. K. (2016). Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high¿density GBS based SNP linkage map. Rice, 9(1): 1-22.Dearnaley, J., F. Martos, & M.A. Selosse. (2012). Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In: Hock, B. (Ed.), Fungal associations. Springer Verlag, Heidelberg, Germany, pp. 207-230.Dearnaley, J., S. Perotto, & M.A. Selosse. (2016). Structure and development of orchid mycorrhizas. In: Martin, F. (Ed.), Molecular mycorrhizal symbiosis, John Wiley & Sons Inc., Hoboken, New Yersey, USA, pp. 63-86.Delaye, L., Guzman, G. G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens are fungal lifestyles evolutionarily stable traits Fungal Divers, 60, 125-135.Díaz, J. A. C., Gerlach, G. & Otero, T. (2017). Hongos endófitos de Stanhopea tricornis (Orchidaceae) en Colombia. Orquideología, 32(1): 4-13.Dick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long distance gene flow and cross Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology, 13(12): 3775-3785.Diez, J.M. (2007). Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. Journal of Ecology, 95: 159-170.Díez, M. C. (2002) Notas de ecología forestal. Biología reproductiva de las plantas de los bosques tropicales. Departamento de Ciencias Forestales. Repositorio Institucional, Universidad Nacional de Colombia, 74 pp.Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re¿implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1): 209-214.Dodson, C. H. (1966). Ethology of some bees of the tribe Euglossini (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 607-629.Dodson, C. H., Dressler, R. L., Hills, H. G., Adams, R. M., & Williams, N. H. (1969). Biologically active compounds in orchid fragrances. Science, 164(3885): 1243-1249.Dodson, C.H. & Escobar, R. (1993) Dichaea Lindley. In: Dodson, C.H. & Escobar, R. (Eds.) Native Ecuadorian Orchids (V. 1) Aa Dracula. Compañía Litográfica Nacional S.A., Medellín, pp. 176-186.Dodson, C.H. & Luer, C.A. (2010) Flora of Ecuador (225). Botanical Institute, University of Göteborg, Stockholm, 438 pp.Dodson, C.H. (1989) Icones Plantarum Tropicarum: Series II. Missouri Botanical Garden, St. Louis, pp. 1-404.Dodson, C.H. (1992) Checklist of the Orchids of the Western Hemisphere. Draft manuscript deposited in Missouri Botanical Garden Library, St. Louis.Dodson, C.H. (2004) Ecuador orchid list. In: Dodson, C.H. (Ed.) Native Ecuadorian Orchids (V. 5) Rodriguezia Zygosepalum. Dodson Publishing, Sarasota, pp. 1112-1156.Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1): 11-15.Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22: 1-20.Dressler R. L. (1981). The orchids: their natural history and classification. MA: Harvard University Press, Cambridge. 352 pp.Dressler, R. L. (1968). Pollination by euglossine bees. Evolution, 22(1): 202-210.Dressler, R. L. (1976). Una Sievekingia Nueva de Colombia. Orquideologia, 11, 215-221.Dressler, R. L. (1982). Biology of orchid bees (Euglossini). Annual Review of Ecology and Systematics, 13: 373-394.Druet, T. & Gautier, M. (2017). A model¿based approach to characterize individual inbreeding at both global and local genomic scales. Molecular Ecology, 26: 5820-5841.Duncan, K. E. & Howard, R. J. (2010). Biology of maize kernel infection by Fusarium verticillioides. Molecular plant-microbe interactions, 23(1): 6-16.El Shafie, H. A. F., & Faleiro, J. R. (2017). Optimizing components of pheromone¿baited trap for the management of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date palm agro ecosystem. Journal of Plant Diseases and Protection, 124(3): 279-287.Eltz, T., Roubik, D. W., & Whitten, M. W. (2003). Fragrances, male display and mating behaviour of Euglossa hemichlora: a flight cage experiment. Physiological Entomology, 28(4): 251-260.Esposito, Lawrence J.; Formanek, K.; Kientz, G.; Mauger, F.; Maureaux, V.; Robert, G.; Truchet, F. (1997). "Vanillin". Kirk Othmer Encyclopedia of Chemical Technology. Vol. 24 (4th ed.). New York, NY: John Wiley & Sons. pp. 812-825.Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611-2620.Farsi, M. & Farokhi, S. (2018). Biosynthesis of antibacterial silver nanoparticles by endophytic fungus Nemania sp. isolated from Taxus baccata L. (Iranian yew). Zahedan Journal of Research in Medical Sciences, 20(6).Fenner, M. (1998). The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics, 1(1): 78-91.Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., & Thomson, J. D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35: 375-403.Fine, P.V.A. (2015). Ecological and Evolutionary Drivers of Geographic Variation in Species Diversity. Annual Review of Ecology, Evolution, and Systematics, 46:369-392.Folsom, J.P. (1985). Pollination floral strategy and pollen flow in Dichaea sp. (Orchidaceae). American Journal of Botany, 72: 953- 954.Folsom, J.P. (1987) A systematic monograph of Dichaea section Dichaea (Orchidaceae). Ph.D. thesis, Department of Botany, University of Texas, Austin, 266 pp.Folsom, J.P. (1990) Dichaea Lindl. In: Escobar, R. (Ed.) Orquídeas Nativas de Colombia (1) Acacallis Dryadella. Sociedad Colombiana de Orquideología, Compañía Litográfica Nacional S.A., Medellín, pp. 112-115.Folsom, J.P. (1994). Pollination of a fragrant orchid. Orchid Digest, 58:83-99.Forrest, A. D., Hollingsworth, M. L., Hollingsworth, P. M., Sydes, C., & Bateman, R. M. (2004). Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity, 92(3): 218-227.Fracchia, S., Silvani, V., Flachsland, E. Terada, G. & Sede, S. (2014). Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza, 24(1): 35-43.Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). Introduction to Conservation Genetics. Cambridge: Cambridge University Press.Franklin, I. R. (1980). Evolutionary change in small populations. In: Soulé, M. & Wilcox, B. (Eds.), Conservation biology: An evolutionary¿ecological perspective. MA: Sinauer Associates, Sunderland, pp. 135-149.Frantine Silva, W., Giangarelli, D. C., Penha, R. E., Suzuki, K. M., Dec, E., Gaglianone, M. C., ... & Sofia, S. H. (2017). Phylogeography and historical demography of the orchid bee Euglossa iopoecila: signs of vicariant events associated to Quaternary climatic changes. Conservation Genetics, 18(3): 539-552.Friberg, M., Schwind, C., Roark, L. C., Raguso, R. A., & Thompson, J. N. (2014). Floral scent contributes to interaction specificity in coevolving plants and their insect pollinators. Journal of Chemical Ecology, 40(9): 955-965.Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8): 925-929.Gabaldón, T. (2021). Origin and early evolution of the eukaryotic cell. Annual review of microbiology, 75: 631-647.Galen, C. (1999). Why do flowers vary The functional ecology of variation in flower size and form within natural plant populations. Bioscience, 49(8): 631-640.Galletti, G. C., Russo, M. T., & Bocchini, P. (1995). Pyrolysis gas chromatography/mass spectrometry used to simultaneously determine essential oil and phenolic compounds in the monks' pepper vitex agnus¿castus L. Rapid communications in mass spectrometry, 9(13): 1252 1260.Gamboa Gaitán, M. Á. (2014). Vainillas colombianas y su microbiota II. Diversidad, cultivo y microorganismos endófitos. Universitas Scientiarum, 19(3): 287-300.Gang, G. H., Cho, G., Kwak, Y. S. & Park, E. H. (2017). Distribution of rhizosphere and endosphere fungi on the first-class endangered plant Cypripedium japonicum. Mycobiology, 45(2): 97-100.Gao, J. Y., & Yin, W. P. (2016). Flower Essential Oil Composition of Chionanthus retusus. Chemistry of Natural Compounds, 52(5): 934-935.Gao, Y., Zhao, Z., Li, J., Liu, N., Jacquemyn, H., Guo, S., & Xing, X. (2020). Do fungal associates of co-occurring orchids promote seed germination of the widespread orchid species Gymnadenia conopsea Mycorrhiza, 30(2): 221-228.Gardes, M. & Bruns, T. D. (1993). ITS primers with enhanced specificity for Basidiomycetes¿application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113-118.Gebauer, G. & Meyer, M. (2003). 15N and 13C natural abundance studies of autotrophic and mycoheterotrophic orchids provide insight into nitrogen and carbon gain from fungal associations. New Phytologist, 160: 209-223.Gentry, A. H., & Dodson, C. H. (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74(2): 205-233.Gerlach, G., & Schill, R. (1991). Composition of orchid scents attracting euglossine bees. Botanica Acta, 104(5): 379-384.Gubiani, J. R., Habeck, T. R., Chapla, V. M., Silva, G. H., Bolzani, V. S. & Araujo, A. R. (2016). One strain¿many compounds (OSMAC) method for production of phenolic compounds using Camarops sp., an endophytic fungus from Alibertia macrophylla (Rubiaceae). Química Nova, 39(10): 1221-1224.Gubiani, J. R., Zeraik, M. L., Oliveira, C. M., Ximenes, V. F., Nogueira, C. R., Fonseca, L. M., ... & Araujo, A. R. (2014). Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla. Journal of Natural Products, 77(3): 668-672.Gupta, R. S. & Golding, G. B. (1996). The origin of the eukaryotic cell. Trends in biochemical sciences, 21(5): 166-171.Hadley, G. (1969). Cellulose as a Carbon Source for Orchid Mycorrhiza. New Phytologist, 68 (4): 933-939.Harley, J.L. & Smith, S.E. (1983). Mycorrhizal Symbiosis. Academic Press Inc. Ltd., London, UK, 483 pp.Hartl, D.L. & Clark, A.G. (1989). Principles of population genetics, 2nd ed. Sinauer associates, Sunderland, Massachusetts, 682 pp.Hassan, S. R. U., Strobel, G. A., Geary, B. & Sears, J. (2013). An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. Journal of microbiology and biotechnology, 23(1): 29-35.Hernández L.V. & Alomía Y.A. (2020). Hongos endófitos en orquídeas: un meta análisis global. Undergraduate Monograph. Facultad de Ciencias, Universidad de Los Andes, Bogotá, Colombia. 61 pp. Available in: https://documentodegrado.uniandes.edu.co/acepto201699.php?id=21930.pdfHetherington Rauth, M. C., & Ramírez, S. R. (2015). Evolutionary trends and specialization in the euglossine bee-pollinated orchid genus Gongora. Annals of the Missouri Botanical Garden, 271-299.Hietz, P., Winkler, M., Cruz Paredes, L., & Jiménez Aguilar, A. (2006). Breeding systems, fruit set, and flowering phenology of epiphytic bromeliads and orchids in a Mexican humid montane forest. Selbyana, 156¿164.Hills, H. G., Williams, N. H. & Dodson, C. H. (1972). Floral fragrances and isolation mechanisms in the genus Catasetum (Orchidaceae). Biotropica, 4:61-76.Hilty, S.L. (1980). Flowering and fruiting periodicity in a premontane rain forest in Pacific Colombia. Biotropica, 12: 292-306.Hoeksema, J. D., Hernandez, J. V., Rogers, D. L., Mendoza, L. L., & Thompson, J. N. (2012). Geographic divergence in a species¿rich symbiosis: interactions between Monterey pines and ectomycorrhizal fungi. Ecology, 93(10): 2274-2285.Hogbin, P. M., Peakall, R., & Sydes, M. A. (2000). Achieving practical outcomes from genetic studies of rare Australian plants. Australian Journal of Botany, 48(3): 375-382.Holdridge, L.R. 1967. Life Zone Ecology. First edition. Tropical Science Center, San José, Costa Rica.Hollens Kuhr, H., van der Niet, T., Cozien, R., & Kuhlmann, M. (2021). Pollinator Community Predicts Trait Matching between Oil Producing Flowers and a Guild of Oil¿Collecting Bees. The American Naturalist, 198(6): 750 758.Holsinger, K. E., & Weir, B. S. (2009). Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics, 10(9), 639-650.Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., ... & Jaramillo, C. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330 (6006): 927-931.Hopper, S. D. (2000). How well do phylogenetic studies inform the conservation of Australian plants. Australian Journal of Botany, 48(3): 321-328.Hu, Y., Resende, M., Bombarely, A., Brym, M., Bassil, E., Chambers, A. (2019). Genomics based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and Genotyping By Sequencing. Scientific Reports, 9(1): 1-16.Huang, C. L., Jian, F. Y., Huang, H. J., Chang, W. C., Wu, W. L., Hwang, C. C., ... & Chiang, T. Y. (2014). Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 66(1): 77-88.Hughes, C. & Eastwood, R. (2006). Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103:10334-10339.Hume, B. C., Voolstra, C. R., Arif, C., D¿Angelo, C., Burt, J. A., Eyal, G., ... & Wiedenmann, J. (2016). Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proceedings of the National Academy of Sciences, 113(16): 4416-4421.Hyung, J.J., Kang, H., Joong, J.J. & Soo, K.Y. (2013). Paecilomyces variotii extracts for preventing and treating infections caused by fish pathogenic microorganisms. KR Patent, 2013051523.Ibrahim, A., Sørensen, D., Jenkins, H. A., Ejim, L., Capretta, A. & Sumarah, M. W. (2017). Epoxynemanione A, nemanifuranones A F, and nemanilactones A C, from Nemania serpens, an endophytic fungus isolated from Riesling grapevines. Phytochemistry, 140, 16-26.Idárraga Piedrahita, A., Ortiz, R.D.C., Callejas Posada, R. & Merello, M. (2011) Flora de Antioquia. Universidad de Antioquia, Medellín, 939 pp.Jacquemyn, H., Brys, R., Vandepitte, K., Honnay, O., Roldán¿Ruiz, I., & Wiegand, T. (2007). A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytologist, 176(2): 448-459.Jacquemyn, H., Waud, M., Lievens, B. & Brys, R. (2016). Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany, 118(1): 105 114.Jacquemyn, H., Waud, M., Merckx, V. S., Lievens, B., & Brys, R. (2015). Mycorrhizal diversity, seed germination and long term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Molecular Ecology, 24(13): 3269-3280.Janzen, D. H. (1971). Euglossine bees as long-distance pollinators of tropical plants. Science, 171(3967): 203-205.Janzen, D. H. (1986). The future of tropical ecology. Annual Review of Ecology and Systematics, 17:305-324.Janzen, D.H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101: 233-249.Jersáková, J., & Malinová, T. (2007). Spatial aspects of seed dispersal and seedling recruitment in orchids. New phytologist, 237-241.Johnson, S. D., & Steiner, K. E. (1997). Long¿tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 51(1): 45-53.Jørgensen, P.M. & León Yánez, S. (1999) Catalogue of the Vascular Plants of Ecuador (V. 75). Missouri Botanical Garden, St. Louis, 1182 pp.Jumpponen, A., Herrera, J., Porras Alfaro, A. & Rudgers, J. (2017). Chapter 10¿Biogeography of root-associated fungal endophytes. In: Tedersoo, L. (Ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 195-222.Kamvar, Z. N., Brooks, J. C., & Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in genetics, 208.Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2: e281.Katoh, K., Rozewicki, J. & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, 20(4): 1160-1166.Keller, M. (2015). Phenology and Growth Cycle. In: The science of grapevines: anatomy and physiology. Academic Press. pp. 59-99.Kharwar, R. N., Verma, V. C., Kumar, A., Gond, S. K., Harper, J. K., Hess, W. M., ... & Strobel, G. A. (2009). Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Current microbiology, 58(3): 233-238.Kite, G. C., & Hetterschieid, W. L. (1997). Inflorescence odours of Amorphophallus and Pseudodracontium (Araceae). Phytochemistry, 46(1): 71-75.Knaus, B. J., & Grünwald, N. J. (2017). vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17(1): 44-53.Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. The botanical review, 72(1): 1-120.Ko, T. W. K., Stephenson, S. L., Bahkali, A. H. & Hyde, K. D. (2011). From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Diversity, 50(1): 113.Kohout, P., T¿¿itelová, T., Roy, M., Vohník, M. & Jersáková, J. (2013). A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology, 6(1): 50-64.Kottke, I. & Suárez, J.P. (2009). Mutualistic, root inhabiting fungi of orchids identification and functional types. In: Pridgeon A. M. & Suárez, J.P. (Eds.), Proceedings of the Second Scientific Conference on Andean Orchids. Universidad Técnica Particular De Loja, Loja, Ecuador, pp. 84 99.Kottke, I., & Suárez, J. P. (2009). Mutualistic, root¿inhabiting fungi of orchids, identification and functional types. In: Proceedings of the Second Scientific Conference on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador. pp.84-99Kovach Computing Services (2011). Oriana for Windows, ver. 4. Pentraeth, Wales, UK.Kristiansen, K. A., Taylor, D. L., Kjøller, R., Rasmussen, H. N. & Rosendahl, S. (2001). Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single¿strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Molecular Ecology, 10(8): 2089-2093.Kumar, N., & Motto, M. G. (1985). Volatile constituents of peony flowers. Phytochemistry, 25(1): 250-253.Kuntze, C.E.O. (1904) Dichaea. In: von Post, T.E. (Ed.) Lexicon Generum Phanerogamarum. Stuttgart, Deutsche Verlags Anstalt, 171 pp.Kurzweil, H. (1993). The unusual seeds of the Disa uniflora group with notes on their dispersal. In: Pridgeon, A.M., ed. Proceedings of the 14th World Orchid Conference. Glasgow 1993. London, UK: HMSO, pp. 397-399.Li, T., Wu, S., Yang, W., Selosse, M. A., & Gao, J. (2021a). How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. Frontiers in Plant Science, 12, 833.Li, T., Yang, W., Wu, S., Selosse, M. A. & Gao, J. (2021b). Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. Frontiers in Plant Science, 12, 820.Lindley, J. (1833) Dichaea. The genera and species of Orchidaceous plants. Ridgways, London.Luukas, E. (2015). Root associated fungi of Patagonian endemic orchids. Master Thesis, University of Tartu, Tartu Estonia, 25 pp.Ma, X., Kang, J., Nontachaiyapoom, S., Wen, T. & Hyde, K. D. (2015). Non mycorrhizal endophytic fungi from orchids. Current Science, 72-87.Maddison, W.P. & Maddison, D.R. (2007). Mesquite: a modular system for evolutionary analysis. Mesquite v. 2.72. http://mesquiteproject.orgMaia, A. C. D., de Lima, C. T., Navarro, D. M. D. A. F., Chartier, M., Giulietti, A. M., & Machado, I. C. (2014). The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators. PhytochemistryMaldonado, G. P., Yarzábal, L. A., Cevallos Cevallos, J. M., Chica, E. J. & Peña, D. F. (2020). Root endophytic fungi promote in vitro seed germination in Pleurothallis coriacardia (Orchidaceae). Lankesteriana, 20(1): 107-122.Malécot, G. (1969). The mathematics of heredity. The mathematics of heredity. Rev. ed. San Francisco, W.H. Freeman, 88 pp.Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. International Journal of Plant Genomics, 2012:1-11.Martos, F., Dulormne, M., Pailler, T., Bonfante, P., Faccio, A., Fournel, J., ... & Selosse, M. A. (2009). Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist, 184(3): 668-681.McCormack, J. E., Maley, J. M., Hird, S. M., Derryberry, E. P., Graves, G. R., & Brumfield, R. T. (2012). Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences. Molecular Phylogenetics and Evolution, 62(1): 397-406.McCormick, M. K. & Jacquemyn, H. (2014). What constrains the distribution of orchid populations? New Phytologist, 202(2): 392-400.Mccormick, M. K., Taylor, D.L, Juhaszova, K., Burnett Jr, R. K., Whigham, D. F., & O neill, J. P. (2012). Limitations on orchid recruitment: not a simple picture. Molecular Ecology, 21(6): 1511-1523.Mends, M. T., Yu, E., Strobel, G. A., Hassan, S. R. U., Booth, E., Geary, B., ... & Hadi, M. (2012). An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. Journal of Petroleum & Environmental Biotechnology, 3(3).Menéndez, J., Álvarez, I., Fernandez, I., Menéndez Arias, N. A., & Goyache, F. (2016). Assessing performance of single¿sample molecular genetic methods to estimate effective population size: Empirical evidence from the endangered Gochu Asturcelta pig breed. Ecology and Evolution, 6(14): 4971-4980.Meng, Y. Y., Shao, S. C., Liu, S. J., & Gao, J. Y. (2019). Do the fungi associate with roots of adult plants support seed germination A case study on Dendrobium exile (Orchidaceae). Global Ecology and Conservation, 17, e00582.Merchant, N., Lyons, E., Goff, S., Vaughn, M., Ware, D., Micklos, D., Antin, P. (2016). The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLoS biology, 14(1): e1002342MichelnAceves, A. C., Otero Sánchez, M. A., Solano Pascacio, L. Y., ArizaFlores, R., Barrios¿Ayala, A. & Rebolledo¿Martínez, A. (2009). Biocontrol in vitro con Trichoderma spp. de Fusarium subglutinans (Wollenweb. y Reinking) Nelson, Toussoun y Marasas y F. oxysporum Schlecht., Agentes Causales de la" Escoba de Bruja" del Mango (Mangifera indica L.). Revista Mexicana de Fitopatología, 27(1): 18-26.201421176PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/14b0899d-696c-417e-81c2-ba8903aa70be/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILALOMIA_2022_DOCTORAL THESIS_ALOMIA_LOW GENETIC DIFFERENTIATION IN GEOGRAPHICALLY SEPARATE POPULATIONS OF AN ANDEAN ORCHID.pdf.jpgALOMIA_2022_DOCTORAL THESIS_ALOMIA_LOW GENETIC DIFFERENTIATION IN GEOGRAPHICALLY SEPARATE POPULATIONS OF AN ANDEAN ORCHID.pdf.jpgIM Thumbnailimage/jpeg9645https://repositorio.uniandes.edu.co/bitstreams/e4655b0f-ab22-4512-a53d-7448fa9a02e8/downloadef66766c0914d0647ef91d62e3bc0ff4MD56Alomia_Formato Biblioteca_TESIS (1).pdf.jpgAlomia_Formato Biblioteca_TESIS (1).pdf.jpgIM Thumbnailimage/jpeg16547https://repositorio.uniandes.edu.co/bitstreams/c69c510d-b472-4698-afb6-81030f555d9e/downloadc50dfbb2b4cb23ac1179dace30f687f4MD58ORIGINALALOMIA_2022_DOCTORAL THESIS_ALOMIA_LOW GENETIC DIFFERENTIATION IN GEOGRAPHICALLY SEPARATE POPULATIONS OF AN ANDEAN ORCHID.pdfALOMIA_2022_DOCTORAL THESIS_ALOMIA_LOW GENETIC DIFFERENTIATION IN GEOGRAPHICALLY SEPARATE POPULATIONS OF AN ANDEAN ORCHID.pdfDOCUMENTO DE TESIS DOCTORALapplication/pdf7756751https://repositorio.uniandes.edu.co/bitstreams/46f30d3d-df61-46b4-b34d-7c9ba7d3166e/download819d92c4d2f192fa1732c67f415d792eMD53Alomia_Formato Biblioteca_TESIS (1).pdfAlomia_Formato Biblioteca_TESIS (1).pdfHIDEapplication/pdf198734https://repositorio.uniandes.edu.co/bitstreams/0d53912b-1253-45d0-b1e6-0c237f787d29/downloadb854f01b540b848547bcc3c9f050b173MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/3d25ad44-6167-4467-9716-faceaacc6e8d/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTALOMIA_2022_DOCTORAL THESIS_ALOMIA_LOW GENETIC DIFFERENTIATION IN GEOGRAPHICALLY SEPARATE POPULATIONS OF AN ANDEAN ORCHID.pdf.txtALOMIA_2022_DOCTORAL THESIS_ALOMIA_LOW GENETIC DIFFERENTIATION IN GEOGRAPHICALLY SEPARATE POPULATIONS OF AN ANDEAN ORCHID.pdf.txtExtracted texttext/plain377279https://repositorio.uniandes.edu.co/bitstreams/4613cfb0-eea0-47e7-a329-4451294af6de/download6895575cbc4eed21eb40349eddc74377MD55Alomia_Formato Biblioteca_TESIS (1).pdf.txtAlomia_Formato Biblioteca_TESIS (1).pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/e8e618f2-e565-40dc-883b-abfa46a9ace4/download4491fe1afb58beaaef41a73cf7ff2e27MD571992/58670oai:repositorio.uniandes.edu.co:1992/586702024-08-26 15:25:24.491http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |