The Oracle Local Polynomial Estimator

Códigos JEL: C14, C46, C52

Autores:
Torres, Santiago
Tipo de recurso:
Work document
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/70960
Acceso en línea:
https://hdl.handle.net/1992/70960
Palabra clave:
Regression discontinuity designs
Non-parametric estimation
Local polynomial sstimators
Causal inference
Mean-squared error
Economía
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_1bd113f4567608351394122fd57258b5
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/70960
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv The Oracle Local Polynomial Estimator
title The Oracle Local Polynomial Estimator
spellingShingle The Oracle Local Polynomial Estimator
Regression discontinuity designs
Non-parametric estimation
Local polynomial sstimators
Causal inference
Mean-squared error
Economía
title_short The Oracle Local Polynomial Estimator
title_full The Oracle Local Polynomial Estimator
title_fullStr The Oracle Local Polynomial Estimator
title_full_unstemmed The Oracle Local Polynomial Estimator
title_sort The Oracle Local Polynomial Estimator
dc.creator.fl_str_mv Torres, Santiago
dc.contributor.author.none.fl_str_mv Torres, Santiago
dc.subject.keyword.none.fl_str_mv Regression discontinuity designs
Non-parametric estimation
Local polynomial sstimators
Causal inference
Mean-squared error
topic Regression discontinuity designs
Non-parametric estimation
Local polynomial sstimators
Causal inference
Mean-squared error
Economía
dc.subject.themes.none.fl_str_mv Economía
description Códigos JEL: C14, C46, C52
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-25T20:18:41Z
dc.date.available.none.fl_str_mv 2023-10-25T20:18:41Z
dc.date.issued.none.fl_str_mv 2023-10
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1657-7191
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/70960
dc.identifier.doi.none.fl_str_mv 10.57784/1992/70960
identifier_str_mv 1657-7191
10.57784/1992/70960
url https://hdl.handle.net/1992/70960
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Documentos CEDE; 2023-33
dc.relation.repec.spa.fl_str_mv https://ideas.repec.org/p/col/000089/020937.html
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 54 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Andes
dc.publisher.faculty.none.fl_str_mv Facultad de Economía
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/71d9bad0-0f3a-47dd-a929-3f6fc02eab00/download
https://repositorio.uniandes.edu.co/bitstreams/4c21b7c8-48b1-4c37-a222-d98cad67ae01/download
https://repositorio.uniandes.edu.co/bitstreams/b783f908-e62d-4b39-b314-f3be50e19562/download
https://repositorio.uniandes.edu.co/bitstreams/d970ffd9-0e20-4efe-a98c-2808d218d909/download
bitstream.checksum.fl_str_mv ae9e573a68e7f92501b6913cc846c39f
b68beaa286eba3e23ccd7dd5f93f0784
ef552eadecf5ef063f7dbc4d05e72434
91e947f9dcb7dc41fd1bf28c693a736e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134031159984128
spelling Torres, Santiago2023-10-25T20:18:41Z2023-10-25T20:18:41Z2023-101657-7191https://hdl.handle.net/1992/7096010.57784/1992/70960Códigos JEL: C14, C46, C52This paper introduces a new estimator for continuity-based Regression Discontinuity (RD) designs named the estimated Oracle Local Polynomial Estimator (OLPE). The OLPE is a weighted average of a collection of local polynomial estimators, each of which is characterized by a unique bandwidth sequence, polynomial order, and kernel weighting schemes, and whose weights are chosen to minimize the Mean-Squared Error (MSE) of the combination. This procedure yields a new consistent estimator of the target causal effect exhibiting lower bias and/or variance than its components. The precision gains stem from two factors. First, the method allocates more weight to estimators with lower asymptotic mean squared error, allowing it to select the specifications that are best suited to the specific estimation problem. Second, even if the individual estimators are not optimal, averaging mechanically leads to bias reduction and variance shrinkage. Although the OLPE weights are unknown, an “estimated” OLPE can be constructed by replacing unobserved MSE-optimal weights with those derived from a consistent estimator. Monte Carlo simulations indicate that the estimated OLPE can significantly enhance precision compared to conventional local polynomial methods, even in small sample sizes. The estimated OLPE remains consistent and asymptotically normal without imposing additional assumptions beyond those required for local polynomial estimators. Moreover, this approach applies to sharp, fuzzy, and kink RD designs, with or without covariates.54 páginasapplication/pdfengUniversidad de los AndesFacultad de EconomíaDocumentos CEDE; 2023-33https://ideas.repec.org/p/col/000089/020937.htmlhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The Oracle Local Polynomial EstimatorDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPRegression discontinuity designsNon-parametric estimationLocal polynomial sstimatorsCausal inferenceMean-squared errorEconomíaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/71d9bad0-0f3a-47dd-a929-3f6fc02eab00/downloadae9e573a68e7f92501b6913cc846c39fMD51ORIGINALdcede2023-33.pdfdcede2023-33.pdfapplication/pdf11187529https://repositorio.uniandes.edu.co/bitstreams/4c21b7c8-48b1-4c37-a222-d98cad67ae01/downloadb68beaa286eba3e23ccd7dd5f93f0784MD52TEXTdcede2023-33.pdf.txtdcede2023-33.pdf.txtExtracted texttext/plain96042https://repositorio.uniandes.edu.co/bitstreams/b783f908-e62d-4b39-b314-f3be50e19562/downloadef552eadecf5ef063f7dbc4d05e72434MD53THUMBNAILdcede2023-33.pdf.jpgdcede2023-33.pdf.jpgGenerated Thumbnailimage/jpeg10232https://repositorio.uniandes.edu.co/bitstreams/d970ffd9-0e20-4efe-a98c-2808d218d909/download91e947f9dcb7dc41fd1bf28c693a736eMD541992/70960oai:repositorio.uniandes.edu.co:1992/709602024-06-04 15:44:18.481https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K