Altruism and cooperation in plasmids: an initial experimental approach
The existence of altruistic behavior, and the intricate mechanisms that allow the fixation of cooperation within populations constitute a mystery that has been unanswered since the birth of evolutionary biology. In this context, multilevel selection arises as one of the theoretical frameworks for th...
- Autores:
-
Hernández, Juan Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73880
- Acceso en línea:
- https://hdl.handle.net/1992/73880
- Palabra clave:
- Biología de sistemas
Biología evolutiva
Cooperación
Experimentos de evolución a largo plazo
Biofilm
Biología
Microbiología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_186903b941c11a44fba5f92029cc2c5e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73880 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Altruism and cooperation in plasmids: an initial experimental approach |
dc.title.alternative.none.fl_str_mv |
Altruismo y cooperación en plásmidos: un acercamiento experimental |
title |
Altruism and cooperation in plasmids: an initial experimental approach |
spellingShingle |
Altruism and cooperation in plasmids: an initial experimental approach Biología de sistemas Biología evolutiva Cooperación Experimentos de evolución a largo plazo Biofilm Biología Microbiología |
title_short |
Altruism and cooperation in plasmids: an initial experimental approach |
title_full |
Altruism and cooperation in plasmids: an initial experimental approach |
title_fullStr |
Altruism and cooperation in plasmids: an initial experimental approach |
title_full_unstemmed |
Altruism and cooperation in plasmids: an initial experimental approach |
title_sort |
Altruism and cooperation in plasmids: an initial experimental approach |
dc.creator.fl_str_mv |
Hernández, Juan Sebastián |
dc.contributor.advisor.none.fl_str_mv |
Pedraza Leal, Juan Manuel |
dc.contributor.author.none.fl_str_mv |
Hernández, Juan Sebastián |
dc.contributor.jury.none.fl_str_mv |
Leidy, Chad |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Biofísica |
dc.subject.keyword.none.fl_str_mv |
Biología de sistemas Biología evolutiva Cooperación Experimentos de evolución a largo plazo Biofilm |
topic |
Biología de sistemas Biología evolutiva Cooperación Experimentos de evolución a largo plazo Biofilm Biología Microbiología |
dc.subject.themes.none.fl_str_mv |
Biología Microbiología |
description |
The existence of altruistic behavior, and the intricate mechanisms that allow the fixation of cooperation within populations constitute a mystery that has been unanswered since the birth of evolutionary biology. In this context, multilevel selection arises as one of the theoretical frameworks for the evolution of cooperation. This phenomenon, which introduces the idea that competition not only transpires at the individual level, but also between groups, has been described analytically in simple biological instances such as the replication control genes of bacterial plasmids. In this system, plasmids encounter competition at the individual level, inside their host, and at the group level, which corresponds to competition between bacteria. In this way, plasmid that consistently experience replication compared to their cellular counterparts are more likely to dominate in descendant cells. However, bacteria with such overreplicated plasmids generally face a reduced likelihood of fixating in the overall population. With this in mind, Johan Paulsson in his article Multilevel Selection on Plasmid Replication describes which conditions need to be met so that altruist individuals have a higher chance of establishing in the bacterial population. However, no experimental confirmation of this expression has been carried out. Hence, this project is the first step towards completing the task of reproducing and studying multilevel selection in this biological system. This endeavor consists on executing long term evolution experiments (LTEE) but while maintaining a fairly constant population of bacteria. This is why they need to be carried out in a turbidostat, a machine that automatizes the process of dilution of the bacterial sample based on turbidity data. Thus, this project focuses in the development and documentation of a comprehensive guide for utilizing and maintaining the turbidostat. The guide encompasses a rebuilding process and protocols for tube system changes, tube sterilization, media changes, pump speed measurements, machine calibration, and ideal dilution time calculations. Furthermore, a dynamic model for bacterial growth within the machine was developed, in order to facilitate accurate LTEE simulations. Extensive experimental data from several trial runs are used to characterize growth curve behaviors, including biofilm formation instances. Additionally, initial findings from LTEE experiments done in the machine suggest changes in bacterial duplication times, indicative of adaptation. However, further experiments are required for confirmation. Finally, the results obtained enhances the understanding of the machine operational principles, and exhibit the turbidostat's mechanical reliability for its use in LTEEs. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-03T02:56:12Z |
dc.date.available.none.fl_str_mv |
2024-02-03T02:56:12Z |
dc.date.issued.none.fl_str_mv |
2024-01-02 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73880 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73880 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Martin A. Nowak. “Five rules for the evolution of Cooperation”. In: Science 314.5805 (2006), pp. 1560–1563. doi: 10.1126/science.1133755. Charles Darwin. In: The descent of man, and selection in relation to sex (1872). doi: 10.5962/bhl.title.2112. Mark E. Borrello. “The rise, fall and resurrection of group selection”. In: Endeavour 29.1 (2005), pp. 43–47. doi: 10.1016/j.endeavour.2004.11.003. Arne Traulsen and Martin A. Nowak. “Evolution of cooperation by Multilevel Selection”. In: Proceedings of the National Academy of Sciences 103.29 (2006), pp. 10952–10955. doi: 10.1073/pnas.0602530103. Johan Paulsson. “Multileveled selection on plasmid replication”. In: Genetics 161.4 (2002), pp. 1373–1384. doi: 10.1093/genetics/161.4.1373. Catalina María Bernal Murcia. “Multilevel Selection in Escherichia coli Plasmids: a theoretical and experimental approach”. In: Repositorio Institucional Séneca (2021). doi: https://repositorio.uniandes.edu.co/entities/publication/8f92029d-e5b9-47c3-86fe-920c474499fe. María Alejandra Ramírez. “Cost calculation of an altruistic act for the plasmids-in-bacteria system through probabilistic simulations”. In: Repositorio Institucional Séneca (2020). doi: https://repositorio.uniandes.edu.co/entities/publication/d8c17b0d-7c58-402f-b3d3-7d1221b26531. Erdal Toprak et al. “Building a morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition”. In: Nature Protocols 8.3 (2013), pp. 555–567. doi: 10.1038/nprot.2013.021. Richard E Lenski. “Experimental evolution and the dynamics of adaptation and Genome Evolution in microbial populations”. In: The ISME Journal 11.10 (2017), pp. 2181–2194. doi: 10.1038/ismej.2017.69. Michael J Wiser and Richard E Lenski. “A Comparison of Methods to Measure Fitness in Escherichia coli”. In: PloS one 10.5 (May 2015). e0126210. Farida Vasi, Michael Travisano, and Richard E. Lenski. “Long-Term Experimental Evolution in Escherichia coli. II. Changes in Life-History Traits During Adaptation to a Seasonal Environment”. In: The American Naturalist 144.3 (1994) pp. 432–456. Jorge Luis Romero Becerra. “Bacterial evolution under optimal conditions : a new method for the development of long term evolutionary experiments with E. coli”. In: Repositorio Institucional Séneca (2018). doi: https://repositorio.uniandes.edu.co/entities/publication/fbf57bca-14b8-408a-9330-9c3a4a1eff34. C. Beloin, A. Roux, and J. -M. Ghigo. “Escherichia coli biofilms”. In: Current Topics in Microbiology and Immunology (2008), pp. 249–289. doi: 10.1007/978-3-540-75418-3_12. An-Chun Chien, Norbertnbsp;S. Hill, and Petranbsp;Anne Levin. “Cell size control in bacteria”. In: Current Biology 22.9 (2012). doi: 10.1016/j.cub.2012.02.032. Dustin J. Marshall et al. “Long-term experimental evolution decouples size and production costs in Escherichia coli”. In: Proceedings of the National Academy of Sciences 119.21 (May 2022). Nkrumah A Grant et al. “Changes in Cell Size and Shape during 50,000 Generations of Experimental Evolution with Escherichia coli”. In: Journal of bacteriology 203.10 (Apr. 2021). e00469–20. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
63 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/93b0bee8-d259-4d24-86d1-7b311df9281f/download https://repositorio.uniandes.edu.co/bitstreams/6d0b2b73-54c2-4620-b06b-21f81ef4a426/download https://repositorio.uniandes.edu.co/bitstreams/64206308-4807-4f4a-acaa-83e0bee026f5/download https://repositorio.uniandes.edu.co/bitstreams/d42b3145-8f16-401d-8ebf-52cfd6715196/download https://repositorio.uniandes.edu.co/bitstreams/b29da309-97e3-4353-aed7-546da460bcb8/download https://repositorio.uniandes.edu.co/bitstreams/28306979-d0a3-4347-86ed-fe2d7af96566/download https://repositorio.uniandes.edu.co/bitstreams/975b5a8a-5f52-497d-baf4-d039bf8abdc6/download https://repositorio.uniandes.edu.co/bitstreams/e0126c5a-761a-4fab-b128-9b188da50cbb/download |
bitstream.checksum.fl_str_mv |
ae9e573a68e7f92501b6913cc846c39f 4f31654fbf73dd9f0a7d87b69300071f 243d9971fadea6644358adce0c06ad48 4460e5956bc1d1639be9ae6146a50347 69c517ec5e60ccf4c7216f9a93ff918c b6027a8fda0f01120154494c3d85b75b a0c9f23e18efd7e52dc0c5b7440dbc79 3e497c91a41664d0b3036ab6609ed1bc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133878000779264 |
spelling |
Pedraza Leal, Juan ManuelHernández, Juan SebastiánLeidy, ChadFacultad de Ciencias::Biofísica2024-02-03T02:56:12Z2024-02-03T02:56:12Z2024-01-02https://hdl.handle.net/1992/73880instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The existence of altruistic behavior, and the intricate mechanisms that allow the fixation of cooperation within populations constitute a mystery that has been unanswered since the birth of evolutionary biology. In this context, multilevel selection arises as one of the theoretical frameworks for the evolution of cooperation. This phenomenon, which introduces the idea that competition not only transpires at the individual level, but also between groups, has been described analytically in simple biological instances such as the replication control genes of bacterial plasmids. In this system, plasmids encounter competition at the individual level, inside their host, and at the group level, which corresponds to competition between bacteria. In this way, plasmid that consistently experience replication compared to their cellular counterparts are more likely to dominate in descendant cells. However, bacteria with such overreplicated plasmids generally face a reduced likelihood of fixating in the overall population. With this in mind, Johan Paulsson in his article Multilevel Selection on Plasmid Replication describes which conditions need to be met so that altruist individuals have a higher chance of establishing in the bacterial population. However, no experimental confirmation of this expression has been carried out. Hence, this project is the first step towards completing the task of reproducing and studying multilevel selection in this biological system. This endeavor consists on executing long term evolution experiments (LTEE) but while maintaining a fairly constant population of bacteria. This is why they need to be carried out in a turbidostat, a machine that automatizes the process of dilution of the bacterial sample based on turbidity data. Thus, this project focuses in the development and documentation of a comprehensive guide for utilizing and maintaining the turbidostat. The guide encompasses a rebuilding process and protocols for tube system changes, tube sterilization, media changes, pump speed measurements, machine calibration, and ideal dilution time calculations. Furthermore, a dynamic model for bacterial growth within the machine was developed, in order to facilitate accurate LTEE simulations. Extensive experimental data from several trial runs are used to characterize growth curve behaviors, including biofilm formation instances. Additionally, initial findings from LTEE experiments done in the machine suggest changes in bacterial duplication times, indicative of adaptation. However, further experiments are required for confirmation. Finally, the results obtained enhances the understanding of the machine operational principles, and exhibit the turbidostat's mechanical reliability for its use in LTEEs.La existencia de los comportamientos altruistas y los intrincados mecanismos que permiten la fijación de la cooperación en las poblaciones constituyen un misterio sin respuesta desde el nacimiento de la biología evolutiva. En este contexto, la selección multinivel surge como uno de los marcos teóricos para explicar la evolución de la cooperación. Este fenómeno, que introduce la idea de que la competencia no solo ocurre a nivel individual, sino también entre grupos, ha sido descrito analíticamente en sistemas biológicos simples, como los genes de control de replicación de los plásmidos bacterianos. En este sistema, los plásmidos compiten a nivel individual, por gobernar la población dentro de su huésped, y a nivel de grupo, que corresponde a la competencia entre bacterias. De esta manera, los plásmidos que se replican considerablemente más que sus contrapartes celulares tienen más probabilidades de dominar en las células descendientes. Sin embargo, las bacterias con plásmidos sobre-replicados generalmente enfrentan una probabilidad reducida de fijarse en la población general. Con esto en mente, Johan Paulsson, en su artículo Multilevel Selection on Plasmid Replication, describe las condiciones que deben cumplirse para que los individuos altruistas tengan una mayor probabilidad de establecerse en la población bacteriana. Sin embargo, no se ha llevado a cabo ninguna confirmación experimental de esta expresión. Por lo tanto, este proyecto es el primer paso para completar la tarea de reproducir y estudiar la selección multinivel en este sistema biológico. Este proceso consiste en llevar a cabo experimentos de evolución a largo plazo (LTEE), pero manteniendo una población de bacterias aproximadamente constante. Es por eso que deben realizarse en un turbidostato, una máquina que automatiza el proceso de dilución de la muestra con bacterias, midiendo constantemente su turbidez. Así, este proyecto se centra en el desarrollo y documentación de una guía integral para utilizar y mantener el turbidostato. La guía abarca un proceso de reconstrucción y protocolos para cambios en el sistema de tubos, esterilización de tubos, cambios de medio, mediciones de velocidad de las bombas, la calibración de la máquina y cálculos del tiempo ideal de dilución. Además, se desarrolló un modelo dinámico para el crecimiento bacteriano dentro de la máquina, con el fin de facilitar la realización de simulaciones precisas de LTEEs. Se utilizan datos experimentales de varios ensayos para caracterizar comportamientos de curvas de crecimiento, incluyendo instancias de formación de biofilm. Además, los hallazgos iniciales de experimentos de LTEE realizados en la máquina sugieren cambios en los tiempos de duplicación bacteriana, indicación de adaptación. Sin embargo, se requieren experimentos adicionales para su confirmación. Finalmente, los resultados obtenidos mejoran considerablemente el entendimiento de los principios operativos de la máquina y muestran la gran consistencia del turbidostato, convirtiéndolo en una gran herramienta para LTEEs.FísicoPregradoBiología de sistemas63 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Altruism and cooperation in plasmids: an initial experimental approachAltruismo y cooperación en plásmidos: un acercamiento experimentalTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBiología de sistemasBiología evolutivaCooperaciónExperimentos de evolución a largo plazoBiofilmBiologíaMicrobiologíaMartin A. Nowak. “Five rules for the evolution of Cooperation”. In: Science 314.5805 (2006), pp. 1560–1563. doi: 10.1126/science.1133755.Charles Darwin. In: The descent of man, and selection in relation to sex (1872). doi: 10.5962/bhl.title.2112.Mark E. Borrello. “The rise, fall and resurrection of group selection”. In: Endeavour 29.1 (2005), pp. 43–47. doi: 10.1016/j.endeavour.2004.11.003.Arne Traulsen and Martin A. Nowak. “Evolution of cooperation by Multilevel Selection”. In: Proceedings of the National Academy of Sciences 103.29 (2006), pp. 10952–10955. doi: 10.1073/pnas.0602530103.Johan Paulsson. “Multileveled selection on plasmid replication”. In: Genetics 161.4 (2002), pp. 1373–1384. doi: 10.1093/genetics/161.4.1373.Catalina María Bernal Murcia. “Multilevel Selection in Escherichia coli Plasmids: a theoretical and experimental approach”. In: Repositorio Institucional Séneca (2021). doi: https://repositorio.uniandes.edu.co/entities/publication/8f92029d-e5b9-47c3-86fe-920c474499fe.María Alejandra Ramírez. “Cost calculation of an altruistic act for the plasmids-in-bacteria system through probabilistic simulations”. In: Repositorio Institucional Séneca (2020). doi: https://repositorio.uniandes.edu.co/entities/publication/d8c17b0d-7c58-402f-b3d3-7d1221b26531.Erdal Toprak et al. “Building a morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition”. In: Nature Protocols 8.3 (2013), pp. 555–567. doi: 10.1038/nprot.2013.021.Richard E Lenski. “Experimental evolution and the dynamics of adaptation and Genome Evolution in microbial populations”. In: The ISME Journal 11.10 (2017), pp. 2181–2194. doi: 10.1038/ismej.2017.69.Michael J Wiser and Richard E Lenski. “A Comparison of Methods to Measure Fitness in Escherichia coli”. In: PloS one 10.5 (May 2015). e0126210.Farida Vasi, Michael Travisano, and Richard E. Lenski. “Long-Term Experimental Evolution in Escherichia coli. II. Changes in Life-History Traits During Adaptation to a Seasonal Environment”. In: The American Naturalist 144.3 (1994) pp. 432–456.Jorge Luis Romero Becerra. “Bacterial evolution under optimal conditions : a new method for the development of long term evolutionary experiments with E. coli”. In: Repositorio Institucional Séneca (2018). doi: https://repositorio.uniandes.edu.co/entities/publication/fbf57bca-14b8-408a-9330-9c3a4a1eff34.C. Beloin, A. Roux, and J. -M. Ghigo. “Escherichia coli biofilms”. In: Current Topics in Microbiology and Immunology (2008), pp. 249–289. doi: 10.1007/978-3-540-75418-3_12.An-Chun Chien, Norbertnbsp;S. Hill, and Petranbsp;Anne Levin. “Cell size control in bacteria”. In: Current Biology 22.9 (2012). doi: 10.1016/j.cub.2012.02.032.Dustin J. Marshall et al. “Long-term experimental evolution decouples size and production costs in Escherichia coli”. In: Proceedings of the National Academy of Sciences 119.21 (May 2022).Nkrumah A Grant et al. “Changes in Cell Size and Shape during 50,000 Generations of Experimental Evolution with Escherichia coli”. In: Journal of bacteriology 203.10 (Apr. 2021). e00469–20.202011077PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/93b0bee8-d259-4d24-86d1-7b311df9281f/downloadae9e573a68e7f92501b6913cc846c39fMD51ORIGINALAltruism and cooperation in plasmids: an initial experimental approach.pdfAltruism and cooperation in plasmids: an initial experimental approach.pdfapplication/pdf37403466https://repositorio.uniandes.edu.co/bitstreams/6d0b2b73-54c2-4620-b06b-21f81ef4a426/download4f31654fbf73dd9f0a7d87b69300071fMD52autorizacion_jshv.pdfautorizacion_jshv.pdfHIDEapplication/pdf443254https://repositorio.uniandes.edu.co/bitstreams/64206308-4807-4f4a-acaa-83e0bee026f5/download243d9971fadea6644358adce0c06ad48MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/d42b3145-8f16-401d-8ebf-52cfd6715196/download4460e5956bc1d1639be9ae6146a50347MD53TEXTAltruism and cooperation in plasmids: an initial experimental approach.pdf.txtAltruism and cooperation in plasmids: an initial experimental approach.pdf.txtExtracted texttext/plain98578https://repositorio.uniandes.edu.co/bitstreams/b29da309-97e3-4353-aed7-546da460bcb8/download69c517ec5e60ccf4c7216f9a93ff918cMD55autorizacion_jshv.pdf.txtautorizacion_jshv.pdf.txtExtracted texttext/plain37https://repositorio.uniandes.edu.co/bitstreams/28306979-d0a3-4347-86ed-fe2d7af96566/downloadb6027a8fda0f01120154494c3d85b75bMD57THUMBNAILAltruism and cooperation in plasmids: an initial experimental approach.pdf.jpgAltruism and cooperation in plasmids: an initial experimental approach.pdf.jpgGenerated Thumbnailimage/jpeg7784https://repositorio.uniandes.edu.co/bitstreams/975b5a8a-5f52-497d-baf4-d039bf8abdc6/downloada0c9f23e18efd7e52dc0c5b7440dbc79MD56autorizacion_jshv.pdf.jpgautorizacion_jshv.pdf.jpgGenerated Thumbnailimage/jpeg9001https://repositorio.uniandes.edu.co/bitstreams/e0126c5a-761a-4fab-b128-9b188da50cbb/download3e497c91a41664d0b3036ab6609ed1bcMD581992/73880oai:repositorio.uniandes.edu.co:1992/738802024-02-16 14:48:27.34http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |