Using machine learning algorithms in the search for a Z' vector boson at LHC
Six hundred million events per second and one million bytes per each, constitute the rate of raw data production, that experiments at the Large Hadron Collider (LHC) have to handle on average. Analyzing large amounts of data is an important task in high energy physics (HEP), the area of physical sci...
- Autores:
-
Torroledo Peña, Iván Darío
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/45681
- Acceso en línea:
- http://hdl.handle.net/1992/45681
- Palabra clave:
- Bosones Z
Aprendizaje automático (Inteligencia artificial)
Partículas (Física nuclear)
Aceleradores de partículas
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_1836e03181a46f602b1f7b5b9e26f7d7 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/45681 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
title |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
spellingShingle |
Using machine learning algorithms in the search for a Z' vector boson at LHC Bosones Z Aprendizaje automático (Inteligencia artificial) Partículas (Física nuclear) Aceleradores de partículas Física |
title_short |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
title_full |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
title_fullStr |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
title_full_unstemmed |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
title_sort |
Using machine learning algorithms in the search for a Z' vector boson at LHC |
dc.creator.fl_str_mv |
Torroledo Peña, Iván Darío |
dc.contributor.advisor.none.fl_str_mv |
Flórez Bustos, Carlos Andrés |
dc.contributor.author.none.fl_str_mv |
Torroledo Peña, Iván Darío |
dc.contributor.jury.none.fl_str_mv |
Sabogal Martínez, Beatriz Eugenia |
dc.subject.armarc.es_CO.fl_str_mv |
Bosones Z Aprendizaje automático (Inteligencia artificial) Partículas (Física nuclear) Aceleradores de partículas |
topic |
Bosones Z Aprendizaje automático (Inteligencia artificial) Partículas (Física nuclear) Aceleradores de partículas Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
Six hundred million events per second and one million bytes per each, constitute the rate of raw data production, that experiments at the Large Hadron Collider (LHC) have to handle on average. Analyzing large amounts of data is an important task in high energy physics (HEP), the area of physical sciences that studies elementary particles and their interaction at the most fundamental level. Although, in the beginning this task was made through the study of astrophysical cosmic rays, posterior years led to the use of particle accelerators and detectors, progressively higher in scale. At present, the main HEP project is the LHC located at the European Organization for Nuclear Research (CERN). Several experiments at the LHC, such as ATLAS and CMS analyze data from proton-proton and/or heavy ion collisions. Thus, the large amount of data that HEP experiments have to process, represents a computational challenge. To overcome this challenge, there has been a progress in data analysis techniques used to study the amount of data produced by experiments, along with the development of particle accelerators. In the beginning of 1960 the main technique was multivariate analysis (MVA), but in later years this would be known as machine learning (ML). Over time, ML algorithms, such as Boosted Decision Trees or Neural Networks, started to become commonly used in trigger systems and particle reconstruction in HEP experiments. However, in recent years there is a lack of implementation of newer techniques in HEP, as opposed to the boost of novel techniques in other areas such technology, artificial intelligence or business. As a result, recent papers have proposed the use of others machine learning algorithms like support vector machine (SVM) or deep learning (DL), convolutional neural networks (CNN), region based CNNs, generative adversarial networks (GANs) and deep boltzmann machines, arguing improvements in model performance and data fitting. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T16:10:13Z |
dc.date.available.none.fl_str_mv |
2020-09-03T16:10:13Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/45681 |
dc.identifier.pdf.none.fl_str_mv |
u826972.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/45681 |
identifier_str_mv |
u826972.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
73 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0be22f3d-cb95-42ba-b05e-1def533c1618/download https://repositorio.uniandes.edu.co/bitstreams/226e0c77-8466-4eb4-85e0-fb66b76cfd0e/download https://repositorio.uniandes.edu.co/bitstreams/2877362c-5e39-49d5-8ab3-5f3d3b7d2a52/download |
bitstream.checksum.fl_str_mv |
48d137669c06434713fe956a7d539e6f 565080b4252751ce860f85f6eaa2c3c6 d8a5f37dbb33db4828acbcc8c6c895c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133953872592896 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Flórez Bustos, Carlos Andrésvirtual::9802-1Torroledo Peña, Iván Darío20299970-6401-4664-b3ba-3ad1f7175ac7600Sabogal Martínez, Beatriz Eugenia2020-09-03T16:10:13Z2020-09-03T16:10:13Z2017http://hdl.handle.net/1992/45681u826972.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Six hundred million events per second and one million bytes per each, constitute the rate of raw data production, that experiments at the Large Hadron Collider (LHC) have to handle on average. Analyzing large amounts of data is an important task in high energy physics (HEP), the area of physical sciences that studies elementary particles and their interaction at the most fundamental level. Although, in the beginning this task was made through the study of astrophysical cosmic rays, posterior years led to the use of particle accelerators and detectors, progressively higher in scale. At present, the main HEP project is the LHC located at the European Organization for Nuclear Research (CERN). Several experiments at the LHC, such as ATLAS and CMS analyze data from proton-proton and/or heavy ion collisions. Thus, the large amount of data that HEP experiments have to process, represents a computational challenge. To overcome this challenge, there has been a progress in data analysis techniques used to study the amount of data produced by experiments, along with the development of particle accelerators. In the beginning of 1960 the main technique was multivariate analysis (MVA), but in later years this would be known as machine learning (ML). Over time, ML algorithms, such as Boosted Decision Trees or Neural Networks, started to become commonly used in trigger systems and particle reconstruction in HEP experiments. However, in recent years there is a lack of implementation of newer techniques in HEP, as opposed to the boost of novel techniques in other areas such technology, artificial intelligence or business. As a result, recent papers have proposed the use of others machine learning algorithms like support vector machine (SVM) or deep learning (DL), convolutional neural networks (CNN), region based CNNs, generative adversarial networks (GANs) and deep boltzmann machines, arguing improvements in model performance and data fitting.600 millones de eventos por segundo y por cada uno un millón de bytes, constituyen la tasa promedio de producción de datos, que los experimentos de física de altas energías (FAE) en el LHC tienen que analizar. Aunque en un principio, esta tarea se realizaba a través del estudio de rayos cósmicos, posteriores años llevaron al uso de aceleradores y detectores de partículas, progresivamente mayores en escala, con el fin de analizar colisiones protón-protón y/o iones pesados. Teniendo en cuenta esto, el procesamiento y análisis de grandes cantidades de información, representa un gran desafío estadístico y computacional para la FAE. Para enfrentar este desafío, décadas atrás inició un avance progresivo de los aceleradores de partículas y las técnicas de análisis de datos. A principios de 1960, la técnica predominante era el análisis multivariado, sin embargo en años posteriores se convertiría en aprendizaje automático (AA). De este modo, con el tiempo los algoritmos de AA, como árboles de decisión mejorados o redes neuronales, comenzaron a utilizarse comúnmente en sistemas de rastreo y reconstrucción de partículas en experimentos de FAE. A pesar de esto, en los últimos años se ha evidenciado una falta de innovación en las técnicas usadas, opuesto a lo que ha pasado en otras áreas como tecnología, inteligencia artificial o negocios. El objetivo de este documento es explorar el uso de algoritmos de AA, para llevar a cabo un análisis fenomenológico del grupo de altas energías de la Universidad de los Andes. En particular, se centrará el análisis en la búsqueda de un nueva partícula bosónica neutra de alta masa llamada Z' usando el proceso de fusión de bosones vectoriales para explorar su posterior decaimiento en partículas leptónicas. Al final, se desea determinar si existe una mejora en la discriminación de señal a fondo, debido al uso de algoritmos de aprendizaje automático.FísicoPregrado73 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaUsing machine learning algorithms in the search for a Z' vector boson at LHCTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPBosones ZAprendizaje automático (Inteligencia artificial)Partículas (Física nuclear)Aceleradores de partículasFísicaPublicationhttps://scholar.google.es/citations?user=SUG6ga0AAAAJvirtual::9802-10000-0002-3222-0249virtual::9802-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001541878virtual::9802-136748a10-0a15-454e-8153-6373f14be738virtual::9802-136748a10-0a15-454e-8153-6373f14be738virtual::9802-1ORIGINALu826972.pdfapplication/pdf16973758https://repositorio.uniandes.edu.co/bitstreams/0be22f3d-cb95-42ba-b05e-1def533c1618/download48d137669c06434713fe956a7d539e6fMD51THUMBNAILu826972.pdf.jpgu826972.pdf.jpgIM Thumbnailimage/jpeg7003https://repositorio.uniandes.edu.co/bitstreams/226e0c77-8466-4eb4-85e0-fb66b76cfd0e/download565080b4252751ce860f85f6eaa2c3c6MD55TEXTu826972.pdf.txtu826972.pdf.txtExtracted texttext/plain119334https://repositorio.uniandes.edu.co/bitstreams/2877362c-5e39-49d5-8ab3-5f3d3b7d2a52/downloadd8a5f37dbb33db4828acbcc8c6c895c9MD541992/45681oai:repositorio.uniandes.edu.co:1992/456812024-03-13 14:01:39.549http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |