Using machine learning algorithms in the search for a Z' vector boson at LHC

Six hundred million events per second and one million bytes per each, constitute the rate of raw data production, that experiments at the Large Hadron Collider (LHC) have to handle on average. Analyzing large amounts of data is an important task in high energy physics (HEP), the area of physical sci...

Full description

Autores:
Torroledo Peña, Iván Darío
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/45681
Acceso en línea:
http://hdl.handle.net/1992/45681
Palabra clave:
Bosones Z
Aprendizaje automático (Inteligencia artificial)
Partículas (Física nuclear)
Aceleradores de partículas
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_1836e03181a46f602b1f7b5b9e26f7d7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/45681
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Using machine learning algorithms in the search for a Z' vector boson at LHC
title Using machine learning algorithms in the search for a Z' vector boson at LHC
spellingShingle Using machine learning algorithms in the search for a Z' vector boson at LHC
Bosones Z
Aprendizaje automático (Inteligencia artificial)
Partículas (Física nuclear)
Aceleradores de partículas
Física
title_short Using machine learning algorithms in the search for a Z' vector boson at LHC
title_full Using machine learning algorithms in the search for a Z' vector boson at LHC
title_fullStr Using machine learning algorithms in the search for a Z' vector boson at LHC
title_full_unstemmed Using machine learning algorithms in the search for a Z' vector boson at LHC
title_sort Using machine learning algorithms in the search for a Z' vector boson at LHC
dc.creator.fl_str_mv Torroledo Peña, Iván Darío
dc.contributor.advisor.none.fl_str_mv Flórez Bustos, Carlos Andrés
dc.contributor.author.none.fl_str_mv Torroledo Peña, Iván Darío
dc.contributor.jury.none.fl_str_mv Sabogal Martínez, Beatriz Eugenia
dc.subject.armarc.es_CO.fl_str_mv Bosones Z
Aprendizaje automático (Inteligencia artificial)
Partículas (Física nuclear)
Aceleradores de partículas
topic Bosones Z
Aprendizaje automático (Inteligencia artificial)
Partículas (Física nuclear)
Aceleradores de partículas
Física
dc.subject.themes.none.fl_str_mv Física
description Six hundred million events per second and one million bytes per each, constitute the rate of raw data production, that experiments at the Large Hadron Collider (LHC) have to handle on average. Analyzing large amounts of data is an important task in high energy physics (HEP), the area of physical sciences that studies elementary particles and their interaction at the most fundamental level. Although, in the beginning this task was made through the study of astrophysical cosmic rays, posterior years led to the use of particle accelerators and detectors, progressively higher in scale. At present, the main HEP project is the LHC located at the European Organization for Nuclear Research (CERN). Several experiments at the LHC, such as ATLAS and CMS analyze data from proton-proton and/or heavy ion collisions. Thus, the large amount of data that HEP experiments have to process, represents a computational challenge. To overcome this challenge, there has been a progress in data analysis techniques used to study the amount of data produced by experiments, along with the development of particle accelerators. In the beginning of 1960 the main technique was multivariate analysis (MVA), but in later years this would be known as machine learning (ML). Over time, ML algorithms, such as Boosted Decision Trees or Neural Networks, started to become commonly used in trigger systems and particle reconstruction in HEP experiments. However, in recent years there is a lack of implementation of newer techniques in HEP, as opposed to the boost of novel techniques in other areas such technology, artificial intelligence or business. As a result, recent papers have proposed the use of others machine learning algorithms like support vector machine (SVM) or deep learning (DL), convolutional neural networks (CNN), region based CNNs, generative adversarial networks (GANs) and deep boltzmann machines, arguing improvements in model performance and data fitting.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-09-03T16:10:13Z
dc.date.available.none.fl_str_mv 2020-09-03T16:10:13Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/45681
dc.identifier.pdf.none.fl_str_mv u826972.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/45681
identifier_str_mv u826972.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 73 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0be22f3d-cb95-42ba-b05e-1def533c1618/download
https://repositorio.uniandes.edu.co/bitstreams/226e0c77-8466-4eb4-85e0-fb66b76cfd0e/download
https://repositorio.uniandes.edu.co/bitstreams/2877362c-5e39-49d5-8ab3-5f3d3b7d2a52/download
bitstream.checksum.fl_str_mv 48d137669c06434713fe956a7d539e6f
565080b4252751ce860f85f6eaa2c3c6
d8a5f37dbb33db4828acbcc8c6c895c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133953872592896
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Flórez Bustos, Carlos Andrésvirtual::9802-1Torroledo Peña, Iván Darío20299970-6401-4664-b3ba-3ad1f7175ac7600Sabogal Martínez, Beatriz Eugenia2020-09-03T16:10:13Z2020-09-03T16:10:13Z2017http://hdl.handle.net/1992/45681u826972.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Six hundred million events per second and one million bytes per each, constitute the rate of raw data production, that experiments at the Large Hadron Collider (LHC) have to handle on average. Analyzing large amounts of data is an important task in high energy physics (HEP), the area of physical sciences that studies elementary particles and their interaction at the most fundamental level. Although, in the beginning this task was made through the study of astrophysical cosmic rays, posterior years led to the use of particle accelerators and detectors, progressively higher in scale. At present, the main HEP project is the LHC located at the European Organization for Nuclear Research (CERN). Several experiments at the LHC, such as ATLAS and CMS analyze data from proton-proton and/or heavy ion collisions. Thus, the large amount of data that HEP experiments have to process, represents a computational challenge. To overcome this challenge, there has been a progress in data analysis techniques used to study the amount of data produced by experiments, along with the development of particle accelerators. In the beginning of 1960 the main technique was multivariate analysis (MVA), but in later years this would be known as machine learning (ML). Over time, ML algorithms, such as Boosted Decision Trees or Neural Networks, started to become commonly used in trigger systems and particle reconstruction in HEP experiments. However, in recent years there is a lack of implementation of newer techniques in HEP, as opposed to the boost of novel techniques in other areas such technology, artificial intelligence or business. As a result, recent papers have proposed the use of others machine learning algorithms like support vector machine (SVM) or deep learning (DL), convolutional neural networks (CNN), region based CNNs, generative adversarial networks (GANs) and deep boltzmann machines, arguing improvements in model performance and data fitting.600 millones de eventos por segundo y por cada uno un millón de bytes, constituyen la tasa promedio de producción de datos, que los experimentos de física de altas energías (FAE) en el LHC tienen que analizar. Aunque en un principio, esta tarea se realizaba a través del estudio de rayos cósmicos, posteriores años llevaron al uso de aceleradores y detectores de partículas, progresivamente mayores en escala, con el fin de analizar colisiones protón-protón y/o iones pesados. Teniendo en cuenta esto, el procesamiento y análisis de grandes cantidades de información, representa un gran desafío estadístico y computacional para la FAE. Para enfrentar este desafío, décadas atrás inició un avance progresivo de los aceleradores de partículas y las técnicas de análisis de datos. A principios de 1960, la técnica predominante era el análisis multivariado, sin embargo en años posteriores se convertiría en aprendizaje automático (AA). De este modo, con el tiempo los algoritmos de AA, como árboles de decisión mejorados o redes neuronales, comenzaron a utilizarse comúnmente en sistemas de rastreo y reconstrucción de partículas en experimentos de FAE. A pesar de esto, en los últimos años se ha evidenciado una falta de innovación en las técnicas usadas, opuesto a lo que ha pasado en otras áreas como tecnología, inteligencia artificial o negocios. El objetivo de este documento es explorar el uso de algoritmos de AA, para llevar a cabo un análisis fenomenológico del grupo de altas energías de la Universidad de los Andes. En particular, se centrará el análisis en la búsqueda de un nueva partícula bosónica neutra de alta masa llamada Z' usando el proceso de fusión de bosones vectoriales para explorar su posterior decaimiento en partículas leptónicas. Al final, se desea determinar si existe una mejora en la discriminación de señal a fondo, debido al uso de algoritmos de aprendizaje automático.FísicoPregrado73 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaUsing machine learning algorithms in the search for a Z' vector boson at LHCTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPBosones ZAprendizaje automático (Inteligencia artificial)Partículas (Física nuclear)Aceleradores de partículasFísicaPublicationhttps://scholar.google.es/citations?user=SUG6ga0AAAAJvirtual::9802-10000-0002-3222-0249virtual::9802-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001541878virtual::9802-136748a10-0a15-454e-8153-6373f14be738virtual::9802-136748a10-0a15-454e-8153-6373f14be738virtual::9802-1ORIGINALu826972.pdfapplication/pdf16973758https://repositorio.uniandes.edu.co/bitstreams/0be22f3d-cb95-42ba-b05e-1def533c1618/download48d137669c06434713fe956a7d539e6fMD51THUMBNAILu826972.pdf.jpgu826972.pdf.jpgIM Thumbnailimage/jpeg7003https://repositorio.uniandes.edu.co/bitstreams/226e0c77-8466-4eb4-85e0-fb66b76cfd0e/download565080b4252751ce860f85f6eaa2c3c6MD55TEXTu826972.pdf.txtu826972.pdf.txtExtracted texttext/plain119334https://repositorio.uniandes.edu.co/bitstreams/2877362c-5e39-49d5-8ab3-5f3d3b7d2a52/downloadd8a5f37dbb33db4828acbcc8c6c895c9MD541992/45681oai:repositorio.uniandes.edu.co:1992/456812024-03-13 14:01:39.549http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co