Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural

El trabajo cuenta con la caracterización de los dos cocristales encontrados.

Autores:
Sánchez Sánchez, Cristian Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69155
Acceso en línea:
http://hdl.handle.net/1992/69155
Palabra clave:
Cocristales farmacéuticos
Cristalografía
Rayos X
Caracterización
Cristalización
Química
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNIANDES2_182e06ed4e740fa8003289c6a6d595f7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69155
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
title Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
spellingShingle Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
Cocristales farmacéuticos
Cristalografía
Rayos X
Caracterización
Cristalización
Química
title_short Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
title_full Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
title_fullStr Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
title_full_unstemmed Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
title_sort Cocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructural
dc.creator.fl_str_mv Sánchez Sánchez, Cristian Camilo
dc.contributor.advisor.none.fl_str_mv Macías López, Mario Alberto
dc.contributor.author.none.fl_str_mv Sánchez Sánchez, Cristian Camilo
dc.contributor.jury.none.fl_str_mv Hurtado Belalcazar, John Jady
Zapata Rivera, Jhon Enrique
Miscione, Gian Pietro
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de investigación: Cristalografía y Química de Materiales
dc.subject.keyword.none.fl_str_mv Cocristales farmacéuticos
Cristalografía
Rayos X
Caracterización
Cristalización
topic Cocristales farmacéuticos
Cristalografía
Rayos X
Caracterización
Cristalización
Química
dc.subject.themes.es_CO.fl_str_mv Química
description El trabajo cuenta con la caracterización de los dos cocristales encontrados.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-06-01
dc.date.accessioned.none.fl_str_mv 2023-08-03T14:09:03Z
dc.date.available.none.fl_str_mv 2023-08-03T14:09:03Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69155
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69155
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Jaskolski M, Dauter Z, Wlodawer A. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS J. 2014 Sep;281(18):3985-4009. doi: 10.1111/febs.12796. Epub 2014 Apr 17. PMID: 24698025; PMCID: PMC6309182
Schwarzenbach, Dieter. (2013). History of Crystallography
Steurer, W. (2007). What is a crystal?: Introductory remarks to an ongoing discussion. Zeitschrift Für Kristallographie, 222(6). doi:10.1524/zkri.2007.222.6.308
Lifshitz, Ron. (2007). What is a crystal?. Zeitschrift Fur Kristallographie. 222. 313-317. 10.1524/zkri.2007.222.6.313
Yu, L., & Reutzel-Edens, S. M. (2003). CRYSTALLIZATION | Basic Principles. Encyclopedia of Food Sciences and Nutrition, 1697-1702. doi:10.1016/b0-12-227055-x/00313-8
Sauter, Claude & Lorber, Bernard & McPherson, Alexander & Giegé, Richard. (2012). Crystallization - General Methods
Prasad, M. R., Deb, P. K., Chandrasekaran, B., Maheshwari, R., & Tekade, R. K. (2018). Basics of Crystallization Process Applied in Drug Exploration. Dosage Form Design Parameters, 67-103. doi:10.1016/b978-0-12-814421-3.00003-8
Chen, Y., Ma, P., & Gui, S. (2014). Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems. BioMed Research International, 2014, 1-12. doi:10.1155/2014/815981
Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., ... Zaworotko, M. J. (2012). Polymorphs, Salts, and Cocrystals: What's in a Name? Crystal Growth & Design, 12(5), 2147-2152. doi:10.1021/cg3002948
Yadav A., Shete A., Dabke A., Kulkarni P., Sakhare S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009;71:359. doi: 10.4103/0250-474X.5728
Kumar, Sandeep & Nanda, Arun. (2017). Pharmaceutical Cocrystals: An Overview. Indian Journal of Pharmaceutical Sciences. 79. 10.4172/pharmaceutical-sciences.1000302
Dutt B, Choudhary M, Budhwar V. Cocrystallization: An innovative route toward better medication. J Rep Pharma Sci 2020;9:256-70
Childs, S. L., & Zaworotko, M. J. (Eds.). (2009). The Reemergence of Cocrystals: The Crystal Clear Writing Is on the WallIntroduction to Virtual Special Issue on Pharmaceutical Cocrystals. Crystal Growth & Design, 9(10), 4208-4211. doi:10.1021/cg901002y
Ascierto, P.A., Marincola, F.M. Combination therapy: the next opportunity and challenge of medicine. J Transl Med 9, 115 (2011). https://doi.org/10.1186/1479-5876-9-115
McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L., & Zaworotko, M. J. (2005). Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Zeitschrift Für Kristallographie - Crystalline Materials, 220(4). doi:10.1524/zkri.220.4.340.61624
Grobelny, P., Mukherjee, A., & Desiraju, G. R. (2011). Drug-drug co-crystals: Temperature dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm, 13(13), 4358. doi:10.1039/c0ce00842g
Cherukuvada, S., & Nangia, A. (2012). Fast dissolving eutectic compositions of two antitubercular drugs. CrystEngComm, 14(7), 2579. doi:10.1039/c2ce06391c
Adalder, T. K., Sankolli, R., & Dastidar, P. (2012). Homo- or Heterosynthon? A Crystallographic Study on a Series of New Cocrystals Derived from Pyrazinecarboxamide and Various Carboxylic Acids Equipped with Additional Hydrogen Bonding Sites. Crystal Growth & Design, 12(5), 2533-2542. doi:10.1021/cg300140w
Luo, Y.-H., & Sun, B.-W. (2013). Pharmaceutical Co-Crystals of Pyrazinecarboxamide (PZA) with Various Carboxylic Acids: Crystallography, Hirshfeld Surfaces, and Dissolution Study. Crystal Growth & Design, 13(5), 2098-2106. doi:10.1021/cg400167w
Lou, M., Mao, S.-H., Luo, Y.-H., Zhao, P., & Sun, B.-W. (2013). Synthesis, co-crystal structure and characterization of pyrazinamide with m-hydroxybenzoic acid, p-hydroxybenzoic acid and 3,4-dihydroxy benzolic acid. Research on Chemical Intermediates, 41(5), 2939-2951. doi:10.1007/s11164-013-1402-y
Wang, J.-R., Ye, C., Zhu, B., Zhou, C., & Mei, X. (2015). Pharmaceutical cocrystals of the anti tuberculosis drug pyrazinamide with dicarboxylic and tricarboxylic acids. CrystEngComm, 17(4), 747-752. doi:10.1039/c4ce02044h
Abourahma, H., Shah, D. D., Melendez, J., Johnson, E. J., & Holman, K. T. (2015). A Tale of Two Stoichiometrically Diverse Cocrystals. Crystal Growth & Design, 15(7), 3101-3104. doi:10.1021/acs.cgd.5b00357
Thorat, S. H., Sahu, S. K., & Gonnade, R. G. (2015). Crystal structures of the pyrazinamide-p-aminobenzoic acid (1/1) cocrystal and the transamidation reaction product 4-(pyrazine-2- carboxamido)benzoic acid in the molten state. Acta Crystallographica Section C Structural Chemistry, 71(11), 1010-1016. doi:10.1107/s2053229615019828
Kulla, H., Greiser, S., Benemann, S., Rademann, K., & Emmerling, F. (2016). In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid. Molecules, 21(7), 917. doi:10.3390/molecules21070917
Jarzembska, K. N., Hoser, A. A., Varughese, S., Kaminski, R., Malinska, M., Stachowicz, M., ... Wozniak, K. (2017). Structural and Energetic Analysis of Molecular Assemblies in a Series of Nicotinamide and Pyrazinamide Cocrystals with Dihydroxybenzoic Acids. Crystal Growth & Design, 17(9), 4918-4931. doi:10.1021/acs.cgd.7b00868
Sarmah, K. K., Rajbongshi, T., Bhowmick, S., & Thakuria, R. (2017). First-line antituberculosis drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 73(5), 1007-1016. doi:10.1107/s2052520617011477
Liu, F., Song, Y., Liu, Y.-N., Li, Y.-T., Wu, Z.-Y., & Yan, C.-W. (2018). Drug-Bridge-Drug Ternary Cocrystallization Strategy for Antituberculosis Drugs Combination. Crystal Growth & Design, 18(3), 1283-1286. doi:10.1021/acs.cgd.7b01738
Bommaka, M. K., Mannava, M. K. C., Suresh, K., gunnam, anilkumar, & Nangia, A. (2018). Entacapone: Improving Aqueous Solubility, Diffusion Permeability and Cocrystal Stability with Theophylline. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00921
Rajbongshi, T., Sarmah, K. K., Sarkar, A., Ganduri, R., Cherukuvada, S., Thakur, T. S., & Thakuria, R. (2018). Preparation of Pyrazinamide Eutectics Vs. Cocrystals Based on Supramolecular Synthon Variations. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00878
Kulla, H., Michalchuk, A. A. L., & Emmerling, F. (2019). Manipulating the Dynamics of Mechanochemical Ternary Co-Crystal Formation. Chemical Communications. doi:10.1039/c9cc03034d
Kulla, H., Becker, C., Michalchuk, A. A. L., Linberg, K., Paulus, B., & Emmerling, F. (2019). Tuning the apparent stability of polymorphic cocrystals through mechanochemistry. Crystal Growth & Design. doi:10.1021/acs.cgd.9b01158
32. Who.int. 2021. Tuberculosis. [online] Available at: https://www.who.int/es/newsroom/fact-sheets/detail/tuberculosis
Tuberculosis - OPS/OMS | Organización Panamericana de la Salud. https://www.paho.org/es/temas/tuberculosis
Churchyard, G., Kim, P., Shah, N. S., Rustomjee, R., Gandhi, N., Mathema, B., Dowdy, D., Kasmar, A., & Cardenas, V. (2017). What We Know About Tuberculosis Transmission: An Overview. The Journal of infectious diseases, 216(suppl_6), S629-S635. https://doi.org/10.1093/infdis/jix362
History of Tuberculosis. (1994). Tuberculosis, 13-24. doi:10.1128/9781555818357.ch2
Manual operativo de la OMS sobre la tuberculosis. Módulo 4: Tratamiento. Tratamiento de la tuberculosis farmacorresistente. Washington, D.C.: Organización Panamericana de la Salud; 2022. Licencia: CC BY-NC-SA 3.0 IGO. https://doi. org/10.37774/9789275325575
Nahid, P., Dorman, S. E., Alipanah, N., Barry, P. M., Brozek, J. L., Cattamanchi, A., Chaisson, L. H., Chaisson, R. E., Daley, C. L., Grzemska, M., Higashi, J. M., Ho, C. S., Hopewell, P. C., Keshavjee, S. A., Lienhardt, C., Menzies, R., Merrifield, C., Narita, M., O'Brien, R., Peloquin, C. A., ... Vernon, A. (2016). Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 63(7), e147-e195. https://doi.org/10.1093/cid/ciw376
Harmon, R. C. (2007). Pyrazinamide. xPharm: The Comprehensive Pharmacology Reference, 1-5. doi:10.1016/b978-008055232-3.62492-4
Cherukuvada, S., Thakuria, R., & Nangia, A. (2010). Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy. Crystal Growth & Design, 10(9), 3931-3941. doi:10.1021/cg1004424
Takaki, Y., Sasada, Y., & Watanabé, T. (1960). The crystal structure of alpha-pyrazinamide. Acta Crystallographica, 13(9), 693-702. doi:10.1107/s0365110x60001680
Wang, D., Yang, Z., Zhu, B., Mei, X., & Luo, X. (2020). Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Crystal Growth & Design, 20(10), 6610-6621. doi:10.1021/acs.cgd.0c00767
dc.rights.license.*.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 32 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Química
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3dcb274f-8df4-40b4-9f62-357d2732a42b/download
https://repositorio.uniandes.edu.co/bitstreams/c9e226c7-bd59-4099-8243-6b1a192fda8c/download
https://repositorio.uniandes.edu.co/bitstreams/a41f3fe8-b45a-44d5-ab3a-dc2740b19f71/download
https://repositorio.uniandes.edu.co/bitstreams/1db34f75-7aa3-4151-bd37-51da88f75d28/download
https://repositorio.uniandes.edu.co/bitstreams/da0cb606-9678-42ea-a168-c9a9b7e7959f/download
https://repositorio.uniandes.edu.co/bitstreams/26ae5325-9b6e-4a0c-8390-556b690e5a68/download
https://repositorio.uniandes.edu.co/bitstreams/48509138-81ca-49ec-adb4-dbf7f17e4a6a/download
https://repositorio.uniandes.edu.co/bitstreams/f6972029-40cc-4ad5-8368-df49ef4f47a1/download
bitstream.checksum.fl_str_mv f6a6a8caf603a5d56b8de13e6ae60ab3
d929b5627e7433fcf30abdf070dccb44
5aa5c691a1ffe97abd12c2966efcb8d6
23c7d9e1253d3daa2c82add7dcdaaf97
08b106dfeb12472e88207a069e15ba30
24aabd9efd53727a14c36d81c8ea6cee
542c307f170129c8e78fdaba2b393228
934f4ca17e109e0a05eaeaba504d7ce4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133855100928000
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Macías López, Mario Albertovirtual::3744-1Sánchez Sánchez, Cristian Camilo08cd8272-a207-4bf9-b8b9-6f88f50fea5e600Hurtado Belalcazar, John JadyZapata Rivera, Jhon EnriqueMiscione, Gian PietroGrupo de investigación: Cristalografía y Química de Materiales2023-08-03T14:09:03Z2023-08-03T14:09:03Z2022-06-01http://hdl.handle.net/1992/69155instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El trabajo cuenta con la caracterización de los dos cocristales encontrados.Dos nuevos cocristales farmacéuticos: 1. PZA-ATE (pirazinamida-ácido tereftálico), 2. PZA-ATR (pirazinamida-ácido trimésico) fueron sintetizados y caracterizados mediante difracción de rayos-X de monocristal (DRXM). Como resultado se encontró que la PZA formó un cocristal 1:1 con ATE, mientras con ATR formó un cocristal 2:1. Este trabajo muestra, describe y analiza la estructura molecular y supramolecular de ambas estructuras cristalinas no reportadas previamenteQuímicoPregrado32 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaCocristales farmacéuticos de pirazinamida con dos ácidos carboxílicos: cristalización y caracterización cristalográfica estructuralTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCocristales farmacéuticosCristalografíaRayos XCaracterizaciónCristalizaciónQuímicaJaskolski M, Dauter Z, Wlodawer A. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS J. 2014 Sep;281(18):3985-4009. doi: 10.1111/febs.12796. Epub 2014 Apr 17. PMID: 24698025; PMCID: PMC6309182Schwarzenbach, Dieter. (2013). History of CrystallographySteurer, W. (2007). What is a crystal?: Introductory remarks to an ongoing discussion. Zeitschrift Für Kristallographie, 222(6). doi:10.1524/zkri.2007.222.6.308Lifshitz, Ron. (2007). What is a crystal?. Zeitschrift Fur Kristallographie. 222. 313-317. 10.1524/zkri.2007.222.6.313Yu, L., & Reutzel-Edens, S. M. (2003). CRYSTALLIZATION | Basic Principles. Encyclopedia of Food Sciences and Nutrition, 1697-1702. doi:10.1016/b0-12-227055-x/00313-8Sauter, Claude & Lorber, Bernard & McPherson, Alexander & Giegé, Richard. (2012). Crystallization - General MethodsPrasad, M. R., Deb, P. K., Chandrasekaran, B., Maheshwari, R., & Tekade, R. K. (2018). Basics of Crystallization Process Applied in Drug Exploration. Dosage Form Design Parameters, 67-103. doi:10.1016/b978-0-12-814421-3.00003-8Chen, Y., Ma, P., & Gui, S. (2014). Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems. BioMed Research International, 2014, 1-12. doi:10.1155/2014/815981Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., ... Zaworotko, M. J. (2012). Polymorphs, Salts, and Cocrystals: What's in a Name? Crystal Growth & Design, 12(5), 2147-2152. doi:10.1021/cg3002948Yadav A., Shete A., Dabke A., Kulkarni P., Sakhare S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009;71:359. doi: 10.4103/0250-474X.5728Kumar, Sandeep & Nanda, Arun. (2017). Pharmaceutical Cocrystals: An Overview. Indian Journal of Pharmaceutical Sciences. 79. 10.4172/pharmaceutical-sciences.1000302Dutt B, Choudhary M, Budhwar V. Cocrystallization: An innovative route toward better medication. J Rep Pharma Sci 2020;9:256-70Childs, S. L., & Zaworotko, M. J. (Eds.). (2009). The Reemergence of Cocrystals: The Crystal Clear Writing Is on the WallIntroduction to Virtual Special Issue on Pharmaceutical Cocrystals. Crystal Growth & Design, 9(10), 4208-4211. doi:10.1021/cg901002yAscierto, P.A., Marincola, F.M. Combination therapy: the next opportunity and challenge of medicine. J Transl Med 9, 115 (2011). https://doi.org/10.1186/1479-5876-9-115McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L., & Zaworotko, M. J. (2005). Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Zeitschrift Für Kristallographie - Crystalline Materials, 220(4). doi:10.1524/zkri.220.4.340.61624Grobelny, P., Mukherjee, A., & Desiraju, G. R. (2011). Drug-drug co-crystals: Temperature dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm, 13(13), 4358. doi:10.1039/c0ce00842gCherukuvada, S., & Nangia, A. (2012). Fast dissolving eutectic compositions of two antitubercular drugs. CrystEngComm, 14(7), 2579. doi:10.1039/c2ce06391cAdalder, T. K., Sankolli, R., & Dastidar, P. (2012). Homo- or Heterosynthon? A Crystallographic Study on a Series of New Cocrystals Derived from Pyrazinecarboxamide and Various Carboxylic Acids Equipped with Additional Hydrogen Bonding Sites. Crystal Growth & Design, 12(5), 2533-2542. doi:10.1021/cg300140wLuo, Y.-H., & Sun, B.-W. (2013). Pharmaceutical Co-Crystals of Pyrazinecarboxamide (PZA) with Various Carboxylic Acids: Crystallography, Hirshfeld Surfaces, and Dissolution Study. Crystal Growth & Design, 13(5), 2098-2106. doi:10.1021/cg400167wLou, M., Mao, S.-H., Luo, Y.-H., Zhao, P., & Sun, B.-W. (2013). Synthesis, co-crystal structure and characterization of pyrazinamide with m-hydroxybenzoic acid, p-hydroxybenzoic acid and 3,4-dihydroxy benzolic acid. Research on Chemical Intermediates, 41(5), 2939-2951. doi:10.1007/s11164-013-1402-yWang, J.-R., Ye, C., Zhu, B., Zhou, C., & Mei, X. (2015). Pharmaceutical cocrystals of the anti tuberculosis drug pyrazinamide with dicarboxylic and tricarboxylic acids. CrystEngComm, 17(4), 747-752. doi:10.1039/c4ce02044hAbourahma, H., Shah, D. D., Melendez, J., Johnson, E. J., & Holman, K. T. (2015). A Tale of Two Stoichiometrically Diverse Cocrystals. Crystal Growth & Design, 15(7), 3101-3104. doi:10.1021/acs.cgd.5b00357Thorat, S. H., Sahu, S. K., & Gonnade, R. G. (2015). Crystal structures of the pyrazinamide-p-aminobenzoic acid (1/1) cocrystal and the transamidation reaction product 4-(pyrazine-2- carboxamido)benzoic acid in the molten state. Acta Crystallographica Section C Structural Chemistry, 71(11), 1010-1016. doi:10.1107/s2053229615019828Kulla, H., Greiser, S., Benemann, S., Rademann, K., & Emmerling, F. (2016). In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid. Molecules, 21(7), 917. doi:10.3390/molecules21070917Jarzembska, K. N., Hoser, A. A., Varughese, S., Kaminski, R., Malinska, M., Stachowicz, M., ... Wozniak, K. (2017). Structural and Energetic Analysis of Molecular Assemblies in a Series of Nicotinamide and Pyrazinamide Cocrystals with Dihydroxybenzoic Acids. Crystal Growth & Design, 17(9), 4918-4931. doi:10.1021/acs.cgd.7b00868Sarmah, K. K., Rajbongshi, T., Bhowmick, S., & Thakuria, R. (2017). First-line antituberculosis drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 73(5), 1007-1016. doi:10.1107/s2052520617011477Liu, F., Song, Y., Liu, Y.-N., Li, Y.-T., Wu, Z.-Y., & Yan, C.-W. (2018). Drug-Bridge-Drug Ternary Cocrystallization Strategy for Antituberculosis Drugs Combination. Crystal Growth & Design, 18(3), 1283-1286. doi:10.1021/acs.cgd.7b01738Bommaka, M. K., Mannava, M. K. C., Suresh, K., gunnam, anilkumar, & Nangia, A. (2018). Entacapone: Improving Aqueous Solubility, Diffusion Permeability and Cocrystal Stability with Theophylline. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00921Rajbongshi, T., Sarmah, K. K., Sarkar, A., Ganduri, R., Cherukuvada, S., Thakur, T. S., & Thakuria, R. (2018). Preparation of Pyrazinamide Eutectics Vs. Cocrystals Based on Supramolecular Synthon Variations. Crystal Growth & Design. doi:10.1021/acs.cgd.8b00878Kulla, H., Michalchuk, A. A. L., & Emmerling, F. (2019). Manipulating the Dynamics of Mechanochemical Ternary Co-Crystal Formation. Chemical Communications. doi:10.1039/c9cc03034dKulla, H., Becker, C., Michalchuk, A. A. L., Linberg, K., Paulus, B., & Emmerling, F. (2019). Tuning the apparent stability of polymorphic cocrystals through mechanochemistry. Crystal Growth & Design. doi:10.1021/acs.cgd.9b0115832. Who.int. 2021. Tuberculosis. [online] Available at: https://www.who.int/es/newsroom/fact-sheets/detail/tuberculosisTuberculosis - OPS/OMS | Organización Panamericana de la Salud. https://www.paho.org/es/temas/tuberculosisChurchyard, G., Kim, P., Shah, N. S., Rustomjee, R., Gandhi, N., Mathema, B., Dowdy, D., Kasmar, A., & Cardenas, V. (2017). What We Know About Tuberculosis Transmission: An Overview. The Journal of infectious diseases, 216(suppl_6), S629-S635. https://doi.org/10.1093/infdis/jix362History of Tuberculosis. (1994). Tuberculosis, 13-24. doi:10.1128/9781555818357.ch2Manual operativo de la OMS sobre la tuberculosis. Módulo 4: Tratamiento. Tratamiento de la tuberculosis farmacorresistente. Washington, D.C.: Organización Panamericana de la Salud; 2022. Licencia: CC BY-NC-SA 3.0 IGO. https://doi. org/10.37774/9789275325575Nahid, P., Dorman, S. E., Alipanah, N., Barry, P. M., Brozek, J. L., Cattamanchi, A., Chaisson, L. H., Chaisson, R. E., Daley, C. L., Grzemska, M., Higashi, J. M., Ho, C. S., Hopewell, P. C., Keshavjee, S. A., Lienhardt, C., Menzies, R., Merrifield, C., Narita, M., O'Brien, R., Peloquin, C. A., ... Vernon, A. (2016). Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 63(7), e147-e195. https://doi.org/10.1093/cid/ciw376Harmon, R. C. (2007). Pyrazinamide. xPharm: The Comprehensive Pharmacology Reference, 1-5. doi:10.1016/b978-008055232-3.62492-4Cherukuvada, S., Thakuria, R., & Nangia, A. (2010). Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy. Crystal Growth & Design, 10(9), 3931-3941. doi:10.1021/cg1004424Takaki, Y., Sasada, Y., & Watanabé, T. (1960). The crystal structure of alpha-pyrazinamide. Acta Crystallographica, 13(9), 693-702. doi:10.1107/s0365110x60001680Wang, D., Yang, Z., Zhu, B., Mei, X., & Luo, X. (2020). Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Crystal Growth & Design, 20(10), 6610-6621. doi:10.1021/acs.cgd.0c00767201721900Publicationhttps://scholar.google.es/citations?user=WVqdEMkAAAAJvirtual::3744-10000-0003-2749-8489virtual::3744-17cbde288-913a-4810-b1d1-0c5784a4bfa5virtual::3744-17cbde288-913a-4810-b1d1-0c5784a4bfa5virtual::3744-1THUMBNAILTrabajo de grado 2022-1-Final - Biblioteca.pdf.jpgTrabajo de grado 2022-1-Final - Biblioteca.pdf.jpgIM Thumbnailimage/jpeg5836https://repositorio.uniandes.edu.co/bitstreams/3dcb274f-8df4-40b4-9f62-357d2732a42b/downloadf6a6a8caf603a5d56b8de13e6ae60ab3MD56autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgIM Thumbnailimage/jpeg15872https://repositorio.uniandes.edu.co/bitstreams/c9e226c7-bd59-4099-8243-6b1a192fda8c/downloadd929b5627e7433fcf30abdf070dccb44MD58LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/a41f3fe8-b45a-44d5-ab3a-dc2740b19f71/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTTrabajo de grado 2022-1-Final - Biblioteca.pdf.txtTrabajo de grado 2022-1-Final - Biblioteca.pdf.txtExtracted texttext/plain59564https://repositorio.uniandes.edu.co/bitstreams/1db34f75-7aa3-4151-bd37-51da88f75d28/download23c7d9e1253d3daa2c82add7dcdaaf97MD55autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/da0cb606-9678-42ea-a168-c9a9b7e7959f/download08b106dfeb12472e88207a069e15ba30MD57ORIGINALTrabajo de grado 2022-1-Final - Biblioteca.pdfTrabajo de grado 2022-1-Final - Biblioteca.pdfTrabajo de gradoapplication/pdf1219857https://repositorio.uniandes.edu.co/bitstreams/26ae5325-9b6e-4a0c-8390-556b690e5a68/download24aabd9efd53727a14c36d81c8ea6ceeMD53autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf366061https://repositorio.uniandes.edu.co/bitstreams/48509138-81ca-49ec-adb4-dbf7f17e4a6a/download542c307f170129c8e78fdaba2b393228MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/f6972029-40cc-4ad5-8368-df49ef4f47a1/download934f4ca17e109e0a05eaeaba504d7ce4MD521992/69155oai:repositorio.uniandes.edu.co:1992/691552024-03-13 12:30:49.438http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==