Temporal dynamics in systems of qubits coupled to a bosonic mode

Through the numerical study of the properties of the temporal evolution of a state of a spin-boson system in the deep strong coupling regime, a rich structure of probability collapses and revivals is discovered. By analyzing the geometric properties of the trajectories of the Loschmidt amplitude ass...

Full description

Autores:
Betancourt Valencia, José Manuel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/54582
Acceso en línea:
http://hdl.handle.net/1992/54582
Palabra clave:
Dynamic quantum phase transitions
Quantum optics
Perturbation theory
Qubit
Bosones
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nd/4.0/
id UNIANDES2_179910b947a428fdf8a0ea7ca4b29ad1
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/54582
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Temporal dynamics in systems of qubits coupled to a bosonic mode
title Temporal dynamics in systems of qubits coupled to a bosonic mode
spellingShingle Temporal dynamics in systems of qubits coupled to a bosonic mode
Dynamic quantum phase transitions
Quantum optics
Perturbation theory
Qubit
Bosones
Física
title_short Temporal dynamics in systems of qubits coupled to a bosonic mode
title_full Temporal dynamics in systems of qubits coupled to a bosonic mode
title_fullStr Temporal dynamics in systems of qubits coupled to a bosonic mode
title_full_unstemmed Temporal dynamics in systems of qubits coupled to a bosonic mode
title_sort Temporal dynamics in systems of qubits coupled to a bosonic mode
dc.creator.fl_str_mv Betancourt Valencia, José Manuel
dc.contributor.advisor.none.fl_str_mv Rodríguez Dueñas, Ferney Javier
dc.contributor.author.none.fl_str_mv Betancourt Valencia, José Manuel
dc.contributor.jury.none.fl_str_mv Quiroga Puello, Luis
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de materia condensada
dc.subject.keyword.none.fl_str_mv Dynamic quantum phase transitions
Quantum optics
Perturbation theory
topic Dynamic quantum phase transitions
Quantum optics
Perturbation theory
Qubit
Bosones
Física
dc.subject.armarc.none.fl_str_mv Qubit
Bosones
dc.subject.themes.es_CO.fl_str_mv Física
description Through the numerical study of the properties of the temporal evolution of a state of a spin-boson system in the deep strong coupling regime, a rich structure of probability collapses and revivals is discovered. By analyzing the geometric properties of the trajectories of the Loschmidt amplitude associated to the problem, a connection between rotation directions and the probability collapses is made. The sources of this structure are then related to systems with a higher number of qubits, shedding light on the possible emergence of dynamic quantum phase transitions in these systems. Lastly, various perturbative approaches are presented to attempt a theoretical understanding for the emergence of such a structure.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-13
dc.date.accessioned.none.fl_str_mv 2022-02-08T14:03:49Z
dc.date.available.none.fl_str_mv 2022-02-08T14:03:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/54582
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/54582
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv C Cohen-Tannoudji, J Dupont-Roc, and G Grynberg.Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.
I. Thanopulos, E. Paspalakis, and Z. Kis. Laser-driven coherent manipulation of molecularchirality. Chemical Physics Letters, 390(1-3):228¿235, 5 2004.
Michael A Nielsen and Isaac L Chuang.Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
. I. Rabi. On the process of space quantization.Physical Review, 49(4):324¿328, 2 1936.
R. H. Dicke. Coherence in spontaneous radiation processes.Physical Review, 93(1):99¿110, 1 1954
D. Braak. Integrability of the Rabi model.Physical Review Letters, 107(10):100401, 8 2011.
F. Alexander Wolf, Marcus Kollar, and Daniel Braak. Exact real-time dynamics of the quantum Rabi model.Physical Review A - Atomic, Molecular, and Optical Physics, 85(5):053817, 5 2012
Daniel Z. Rossatto, Celso J. Villas-Bôas, Mikel Sanz, and Enrique Solano. Spectral classification of coupling regimes in the quantum Rabi model.Physical Review A, 96(1):013849, 7 2017.
E. T. Jaynes and F. W. Cummings. Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser.Proceedings of the IEEE, 51(1):89¿109, 1963
A Auffèves, D Gerace, M Richard, S Portolan, L C Kwek, M F Santos, and C Miniatura.Strong Light-matter Coupling: From Atoms to Solid-state Systems. World Scientific, 2014
Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori. Ultrastrong light-matter coupling regime with polariton dots.Physical Review Letters, 105(19):196402, 11 2010
P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E. Solano, C. J.P.M. Harmans, and J. E. Mooij. Observation of the bloch-siegert shift in a qubit-oscillator system in the ultrastrongcoupling regime. Physical Review Letters, 105(23):237001, 11 2010.
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross. Circuit quantum electrodynamics in the ultrastrong-coupling regime.Nature Physics, 6(10):772¿776, 7 2010.
Fumiki Yoshihara, Tomoko Fuse, Sahel Ashhab, Kosuke Kakuyanagi, Shiro Saito, and Kouichi Semba. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime.Nature Physics, 13(1):44¿47, 1 2017
Harvey Gould and Jan Tobochnik.Statistical and thermal physics : with computer applications. Princeton University Press, 2010.
Markus Heyl. Dynamical quantum phase transitions: A brief survey.EPL, 125(2):26001, 2 2019.
M. Heyl, A. Polkovnikov, and S. Kehrein. Dynamical quantum phase transitions in the transverse-field ising model. Physical Review Letters, 110(13):135704, 3 2013
Klaus Hepp and Elliott H. Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model.Annals of Physics, 76(2):360¿404, 4 1973.
Ricardo Puebla. Finite-component dynamical quantum phase transitions.Physical Review B, 102(22):220302, 12 2020.
Myung Joong Hwang, Ricardo Puebla, and Martin B. Plenio. Quantum Phase Transition and Universal Dynamics in the Rabi Model.Physical Review Letters, 115(18):180404, 10 2015.
Markus Heyl. Dynamical quantum phase transitions: a review.Reports on Progress in Physics, 81(5):054001, 4 2018.
T. D. Lee and C. N. Yang. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model.Physical Review, 87(3):410, 8 1952.
Steven M Girvin and Kun Yang Frontmatter.Modern Condensed Matter Physics Science. Cambridge University Press, 2019.
Ricardo Puebla, Myung Joong Hwang, and Martin B. Plenio. Excited-state quantum phase transition in the Rabi model.Physical Review A, 94(2):023835, 8 2016.
Barry M. Garraway. The Dicke model in quantum optics: Dicke model revisited.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1939): 1137¿1155, 3 2011.
Chengxiang Ding. Dynamical quantum phase transition from a critical quantum quench.Physical Review B, 102(6):060409, 8 2020.
Alessia Allevi and Maria Bondani. Nonlinear and Quantum Optical Properties and Applications of Intense Twin-Beams.Advances in Atomic, Molecular and Optical Physics, 66:49¿110, 1 2017.
R. M. Wilcox. Exponential Operators and Parameter Differentiation in Quantum Physics.Journal of Mathematical Physics, 8(4):962, 12 1967.
J. R. Schrieffer and P. A. Wolff. Relation between the Anderson and Kondo Hamiltonians. Physical Review, 149(2):491, 9 1966.
Myung Joong Hwang, Ricardo Puebla, and Martin B. Plenio. Quantum Phase Transition and Universal Dynamics in the Rabi Model.Physical Review Letters, 115(18):180404, 10 2015.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 58 páginas
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/9a075a0b-1a9c-4350-a65d-a3420fe59d7c/download
https://repositorio.uniandes.edu.co/bitstreams/24e78b30-4954-4095-879a-cba51c0f67a2/download
https://repositorio.uniandes.edu.co/bitstreams/6c95668f-72c5-4297-a1fb-a1909538da44/download
https://repositorio.uniandes.edu.co/bitstreams/080cc24c-8489-45d7-a87e-a2b2caeb72cf/download
https://repositorio.uniandes.edu.co/bitstreams/65aeed9c-e3b3-436f-9ec5-7d4c0d68fd0c/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
5f4a3af1e718787ec51f929d22d849c0
f7d494f61e544413a13e6ba1da2089cd
044fd45b9db4271cca15a9991d399965
98b513642d8bc0d5200e83b6f22e6992
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133806862237696
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Dueñas, Ferney Javiervirtual::978-1Betancourt Valencia, José Manuela6c198db-979c-4fad-b773-fb7bf107660d600Quiroga Puello, LuisGrupo de materia condensada2022-02-08T14:03:49Z2022-02-08T14:03:49Z2021-12-13http://hdl.handle.net/1992/54582instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Through the numerical study of the properties of the temporal evolution of a state of a spin-boson system in the deep strong coupling regime, a rich structure of probability collapses and revivals is discovered. By analyzing the geometric properties of the trajectories of the Loschmidt amplitude associated to the problem, a connection between rotation directions and the probability collapses is made. The sources of this structure are then related to systems with a higher number of qubits, shedding light on the possible emergence of dynamic quantum phase transitions in these systems. Lastly, various perturbative approaches are presented to attempt a theoretical understanding for the emergence of such a structure.FísicoPregrado58 páginasengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaTemporal dynamics in systems of qubits coupled to a bosonic modeTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPDynamic quantum phase transitionsQuantum opticsPerturbation theoryQubitBosonesFísicaC Cohen-Tannoudji, J Dupont-Roc, and G Grynberg.Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.I. Thanopulos, E. Paspalakis, and Z. Kis. Laser-driven coherent manipulation of molecularchirality. Chemical Physics Letters, 390(1-3):228¿235, 5 2004.Michael A Nielsen and Isaac L Chuang.Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.. I. Rabi. On the process of space quantization.Physical Review, 49(4):324¿328, 2 1936.R. H. Dicke. Coherence in spontaneous radiation processes.Physical Review, 93(1):99¿110, 1 1954D. Braak. Integrability of the Rabi model.Physical Review Letters, 107(10):100401, 8 2011.F. Alexander Wolf, Marcus Kollar, and Daniel Braak. Exact real-time dynamics of the quantum Rabi model.Physical Review A - Atomic, Molecular, and Optical Physics, 85(5):053817, 5 2012Daniel Z. Rossatto, Celso J. Villas-Bôas, Mikel Sanz, and Enrique Solano. Spectral classification of coupling regimes in the quantum Rabi model.Physical Review A, 96(1):013849, 7 2017.E. T. Jaynes and F. W. Cummings. Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser.Proceedings of the IEEE, 51(1):89¿109, 1963A Auffèves, D Gerace, M Richard, S Portolan, L C Kwek, M F Santos, and C Miniatura.Strong Light-matter Coupling: From Atoms to Solid-state Systems. World Scientific, 2014Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori. Ultrastrong light-matter coupling regime with polariton dots.Physical Review Letters, 105(19):196402, 11 2010P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E. Solano, C. J.P.M. Harmans, and J. E. Mooij. Observation of the bloch-siegert shift in a qubit-oscillator system in the ultrastrongcoupling regime. Physical Review Letters, 105(23):237001, 11 2010.T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross. Circuit quantum electrodynamics in the ultrastrong-coupling regime.Nature Physics, 6(10):772¿776, 7 2010.Fumiki Yoshihara, Tomoko Fuse, Sahel Ashhab, Kosuke Kakuyanagi, Shiro Saito, and Kouichi Semba. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime.Nature Physics, 13(1):44¿47, 1 2017Harvey Gould and Jan Tobochnik.Statistical and thermal physics : with computer applications. Princeton University Press, 2010.Markus Heyl. Dynamical quantum phase transitions: A brief survey.EPL, 125(2):26001, 2 2019.M. Heyl, A. Polkovnikov, and S. Kehrein. Dynamical quantum phase transitions in the transverse-field ising model. Physical Review Letters, 110(13):135704, 3 2013Klaus Hepp and Elliott H. Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model.Annals of Physics, 76(2):360¿404, 4 1973.Ricardo Puebla. Finite-component dynamical quantum phase transitions.Physical Review B, 102(22):220302, 12 2020.Myung Joong Hwang, Ricardo Puebla, and Martin B. Plenio. Quantum Phase Transition and Universal Dynamics in the Rabi Model.Physical Review Letters, 115(18):180404, 10 2015.Markus Heyl. Dynamical quantum phase transitions: a review.Reports on Progress in Physics, 81(5):054001, 4 2018.T. D. Lee and C. N. Yang. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model.Physical Review, 87(3):410, 8 1952.Steven M Girvin and Kun Yang Frontmatter.Modern Condensed Matter Physics Science. Cambridge University Press, 2019.Ricardo Puebla, Myung Joong Hwang, and Martin B. Plenio. Excited-state quantum phase transition in the Rabi model.Physical Review A, 94(2):023835, 8 2016.Barry M. Garraway. The Dicke model in quantum optics: Dicke model revisited.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1939): 1137¿1155, 3 2011.Chengxiang Ding. Dynamical quantum phase transition from a critical quantum quench.Physical Review B, 102(6):060409, 8 2020.Alessia Allevi and Maria Bondani. Nonlinear and Quantum Optical Properties and Applications of Intense Twin-Beams.Advances in Atomic, Molecular and Optical Physics, 66:49¿110, 1 2017.R. M. Wilcox. Exponential Operators and Parameter Differentiation in Quantum Physics.Journal of Mathematical Physics, 8(4):962, 12 1967.J. R. Schrieffer and P. A. Wolff. Relation between the Anderson and Kondo Hamiltonians. Physical Review, 149(2):491, 9 1966.Myung Joong Hwang, Ricardo Puebla, and Martin B. Plenio. Quantum Phase Transition and Universal Dynamics in the Rabi Model.Physical Review Letters, 115(18):180404, 10 2015.201724467Publication0000-0001-5383-4218virtual::978-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077216virtual::978-1e30cee58-f835-4d1b-97c9-3146b481c8b1virtual::978-1e30cee58-f835-4d1b-97c9-3146b481c8b1virtual::978-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/9a075a0b-1a9c-4350-a65d-a3420fe59d7c/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfTrabajo de gradoapplication/pdf11424447https://repositorio.uniandes.edu.co/bitstreams/24e78b30-4954-4095-879a-cba51c0f67a2/download5f4a3af1e718787ec51f929d22d849c0MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/6c95668f-72c5-4297-a1fb-a1909538da44/downloadf7d494f61e544413a13e6ba1da2089cdMD52TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain104788https://repositorio.uniandes.edu.co/bitstreams/080cc24c-8489-45d7-a87e-a2b2caeb72cf/download044fd45b9db4271cca15a9991d399965MD54THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgIM Thumbnailimage/jpeg6629https://repositorio.uniandes.edu.co/bitstreams/65aeed9c-e3b3-436f-9ec5-7d4c0d68fd0c/download98b513642d8bc0d5200e83b6f22e6992MD551992/54582oai:repositorio.uniandes.edu.co:1992/545822024-03-13 11:51:17.076http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==