Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling
Chemical product design has become an active area of research within the chemical industry in response to an increasingly demand for consumer-oriented products. The era of globalization has intensified competition generating strong market forces that play an essential role in the chemical industry....
- Autores:
-
Calvo Silva, Fernando Javier
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/70953
- Acceso en línea:
- https://hdl.handle.net/1992/70953
- Palabra clave:
- Emulsion
Product design
Population balance model
Multiscale approach
Integrated design
Cosmetic emulsion
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_17211217a5cbcbe9d05939a8259ce2eb |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/70953 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
title |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
spellingShingle |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling Emulsion Product design Population balance model Multiscale approach Integrated design Cosmetic emulsion Ingeniería |
title_short |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
title_full |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
title_fullStr |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
title_full_unstemmed |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
title_sort |
Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modeling |
dc.creator.fl_str_mv |
Calvo Silva, Fernando Javier |
dc.contributor.advisor.none.fl_str_mv |
Gómez Ramírez, Jorge Mario Ricardez-Sandoval, Luis Álvarez Solano, Oscar Alberto |
dc.contributor.author.none.fl_str_mv |
Calvo Silva, Fernando Javier |
dc.contributor.jury.none.fl_str_mv |
Pradilla Raguá, Diego Camilo Marchal, Philippe Mercado Ojeda, Ronald |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería::Grupo de Diseño de Productos y Procesos |
dc.subject.keyword.eng.fl_str_mv |
Emulsion Product design Population balance model Multiscale approach Integrated design Cosmetic emulsion |
topic |
Emulsion Product design Population balance model Multiscale approach Integrated design Cosmetic emulsion Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Chemical product design has become an active area of research within the chemical industry in response to an increasingly demand for consumer-oriented products. The era of globalization has intensified competition generating strong market forces that play an essential role in the chemical industry. Consequently, the chemical product industry has moved from the production of bulk commodities products towards higher value-added products, placing particular interest in the manufacture of specialty chemicals and consumer-oriented products such as emulsified products. Emulsions are thermodynamically unstable colloidal systems, in which there are droplets of a liquid dispersed in a second immiscible fluid. The use of emulsions in industry has a vast number of applications at different sectors, such as cosmetic, food, petrochemical, pharmacy, biotechnology and nanotechnology, leading to a great interest to understand the relationship between the formulation, the process variables and the properties of these systems. A multi-scale approach, whose primary purpose is to understand the links between the different temporal and spatial scales within a system and its overall impact on a finished product, is an appropriate way to study these relationships at different levels. As highlighted in previous studies, these links are key for the design and development of new products. The design process for chemical products could be addressed using different solution strategies, such as experiment-based (trial-and-error), model-based, and integrated approach. Recent studies have drawn particular attention to the application of an integrated approach to manage the design process of chemical products, for instance, emulsions The integrated approach is the most appropriate compared to classical design methodologies such as trial-and-error and model-based approaches since higher efficiency and reliability can be achieved at manufacturing an emulsified product. In this respect, it is worth mentioning the current need for dealing with the design of emulsified cosmetic products from an integral perspective, relating elements of the multi-scale approach of emulsion properties with the formulation and the process involved in the manufacturing of these systems. However, most of these products are still designed using heuristic or even artisanal considerations. Consequently, an active area of research in this field is focused on the product properties, formulation, and preparation of emulsions through an integrated approach. In particular, studies have used model-based techniques to predict the properties of emulsions. Most of these studies have focused on the calculation of emulsion properties (e.g., viscosity) using an average value of the drop diameter rather than considering the actual droplets size distribution (DSD). DSD for emulsions can be predicted using Population Balance Models (PBMs). PBM is a proven method and represents a comprehensive modeling framework for the description of the dynamics of properties characterized by distributions, as it is the case for emulsions droplets diameter. Although considerable attention has been devoted to the study and implementation of PBMs in emulsions, there is a lack of studies linking this modeling framework with the integrated design approach of emulsified cosmetic products. This coupling would represent a new feature for the implementation of integrated design strategies for emulsified products since the DSD has a significant effect on emulsified product properties and stability. Based on the above, this work performs an integrated design approach for emulsified cosmetic products. This approach utilizes model-based design techniques within a multiscale framework. In this study, the integrated design approach covers key elements for emulsified products: product formulation and composition, process operational conditions, product properties at different scales, the implementation of a Population Balance Model to couple the DSD for the estimation of product physical properties, as well as the consideration of consumer preference and economic criteria. These components are employed to formulate and solve an optimization problem aimed at achieving the optimal product formulation. Through this approach, we gain valuable insights into the interconnections between product properties at different scales, product formulation, operational conditions, and the product's performance in the market. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-24T16:13:12Z |
dc.date.available.none.fl_str_mv |
2023-10-24T16:13:12Z |
dc.date.issued.none.fl_str_mv |
2023-10-20 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/70953 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/70953 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/70953 |
identifier_str_mv |
10.57784/1992/70953 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Adewunmi, A.A., Kamal, M.S., Amao, A.O., Solling, T.I., 2021. Extracted quartz as efficient natural demulsifier for crude oil-water emulsions: Effect of monovalent/divalent salts, pH and modeling study. J Pet Sci Eng 206, 109069. https://doi.org/10.1016/j.petrol.2021.109069 Afoakwa, E.O., Paterson, A., Fowler, M., Vieira, J., 2008. Particle size distribution and compositional effects on textural properties and appearance of dark chocolates. J Food Eng 87, 181–190. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2007.11.025 Aguilera-Miguel, A., López-Gonzalez, E., Sadtler, V., Durand, A., Marchal, P., Castel, C., Choplin, L., 2018. Hydrophobically modified dextrans as stabilizers for O/W highly concentrated emulsions. Comparison with commercial non-ionic polymeric stabilizers. Colloids Surf A Physicochem Eng Asp 550, 155–166. https://doi.org/https://doi.org/10.1016/j.colsurfa.2018.04.022 Alvarez, O.A., Choplin, L., Sadtler, V., Marchal, P., Steíbeí, M.J., Mougel, J., Baravian, C., 2010. Influence of semibatch emulsification process conditions on the physical characteristics of highly concentrated water-in-oil emulsions. Ind Eng Chem Res. https://doi.org/10.1021/ie9020073 Anantasarn, N., Suriyapraphadilok, U., Babi, D.K., 2017. A computer-aided approach for achieving sustainable process design by process intensification. Comput Chem Eng 105, 56–73. https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.02.025 Aronson, M.P., Petko, M.F., 1993. Highly Concentrated Water-in-Oil Emulsions: Influence of Electrolyte on Their Properties and Stability. J Colloid Interface Sci 159, 134–149. https://doi.org/https://doi.org/10.1006/jcis.1993.1305 Arrhenius, S., 1917. The Viscosity of Solutions. Biochem J 11, 112–133. https://doi.org/10.1042/bj0110112 Arrieta-Escobar, J.A., Bernardo, F.P., Orjuela, A., Camargo, M., Morel, L., 2019. Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Comput Chem Eng 122, 265–274. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.08.032 Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., Hey Coradin, J., 2011. Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal 57, 160–177. https://doi.org/10.1002/aic.12242 Bagajewicz, M.J., 2007. On the role of microeconomics, planning, and finances in product design. AIChE Journal 53, 3155–3170. https://doi.org/10.1002/aic.11332 Barbosa-Póvoa, A.P., Pinto, J.M., 2018. Challenges and Perspectives of Process Systems Engineering in Supply Chain Management, in: Eden, M.R., Ierapetritou, M.G., Towler, G.P.B.T.-C.A.C.E. (Eds.), 13 International Symposium on Process Systems Engineering (PSE 2018). Elsevier, pp. 87–96. https://doi.org/https://doi.org/10.1016/B978-0-444-64241-7.50009-4 Barel, A.O., Paye, M., Maibach, H.I., 2010. Handbook of Cosmetic Science and Technology. Informa Healthcare USA, New York. Barnes, H.A., Hutton, J.F., Walters, Kenneth., 2005. An introduction to rheology, Rheology series. Elsevier, Amsterdam ; Becher, Paul., 1983. Encyclopedia of emulsion technology. M. Dekker, New York. Becker, P.J., Puel, F., Dubbelboer, A., Janssen, J., Sheibat-Othman, N., 2014. Coupled population balance–CFD simulation of droplet breakup in a high pressure homogenizer. Comput Chem Eng 68, 140–150. https://doi.org/https://doi.org/10.1016/j.compchemeng.2014.05.014 Bernardo, F.P., 2016. Integrated Process and Product Design Optimization, BS:CCE. Elsevier. https://doi.org/10.1016/B978-0-444-63683-6.00012-5 Bernardo, F.P., Pistikopoulos, E.N., Saraiva, P.M., 2001. Quality costs and robustness criteria in chemical process design optimization. Comput Chem Eng 25, 27–40. https://doi.org/https://doi.org/10.1016/S0098-1354(00)00630-X Bernardo, F.P., Saraiva, P.M., 2005. Integrated process and product design optimization: a cosmetic emulsion application, in: Puigjaner, L., Espuña, A.B.T.-C.A.C.E. (Eds.), European Symposium on Computer-Aided Process Engineering-15, 38 European Symposium of the Working Party on Computer Aided Process Engineering. Elsevier, pp. 1507–1512. https://doi.org/https://doi.org/10.1016/S1570-7946(05)80093-8 Bilal, M., Iqbal, H.M.N., 2020. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics 7, 24. https://doi.org/10.3390/cosmetics7020024 Bird, R.B., Stewart, W.E., Lightfoot, E.N., 2006. Transport Phenomena, Wiley International edition. Wiley. Blin, J.-L., Stébé, M.-J., Lebeau, B., 2016. Hybrid/porous materials obtained from nano-emulsions. Curr Opin Colloid Interface Sci 25, 75–82. https://doi.org/https://doi.org/10.1016/j.cocis.2016.07.002 Bogle, I.D.L., 2017. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers. Engineering 3, 161–165. https://doi.org/https://doi.org/10.1016/J.ENG.2017.02.003 Borthakur, P., Boruah, P.K., Sharma, B., Das, M.R., 2016. Nanoemulsion: preparation and its application in food industry. Emulsions 153–191. https://doi.org/10.1016/B978-0-12-804306-6.00005-2 Braatz, R.D., Alkire, R.C., Seebauer, E., Rusli, E., Gunawan, R., Drews, T.O., Li, X., He, Y., 2006. Perspectives on the design and control of multiscale systems. J Process Control 16, 193–204. https://doi.org/https://doi.org/10.1016/j.jprocont.2005.06.001 Brady, J., Dürig, T., Lee, P.I., Li, J.-X., 2017. Chapter 7 - Polymer Properties and Characterization, in: Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R. V (Eds.), Developing Solid Oral Dosage Forms (Second Edition). Academic Press, Boston, pp. 181–223. https://doi.org/https://doi.org/10.1016/B978-0-12-802447-8.00007-8 Briceño, M., Salager, J.L., Bertrand, J., 2001. Influence of Dispersed Phase Content and Viscosity on the Mixing of Concentrated Oil-in-Water Emulsions in the Transition Flow Regime. Chemical Engineering Research and Design 79, 943–948. https://doi.org/https://doi.org/10.1205/02638760152721794 Brinkman, H.C., 1952. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys 20, 571. https://doi.org/10.1063/1.1700493 Brummer, R., Godersky, S., 1999. Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin. Colloids Surf A Physicochem Eng Asp 152, 89–94. https://doi.org/https://doi.org/10.1016/S0927-7757(98)00626-8 Brunaud, B., Grossmann, I.E., 2017. Perspectives in multilevel decision-making in the process industry. Frontiers of Engineering Management. Buffo, R.A., Reineccius, G.A., Oehlert, G.W., 2001. Factors affecting the emulsifying and rheological properties of gum acacia in beverage emulsions. Food Hydrocoll 15, 53–66. https://doi.org/https://doi.org/10.1016/S0268-005X(00)00050-3 Buitrago Mora, H.M., Piñeros, M.A., Espinosa Moreno, D., Restrepo Restrepo, S., Cardona Jaramillo, J.E.C., Álvarez Solano, Ó.A., Fernandez-Niño, M., González Barrios, A.F., 2019. Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. J Dairy Sci 102, 9749–9762. https://doi.org/https://doi.org/10.3168/jds.2019-16729 Calabrese, R. V, Chang, T.P.K., Dang, P.T., 1986. Drop Breakup in Turbulent Stirred-Tank Contactors Part I: Effect of Dispersed-Phase Viscosity 32, 657–666. Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022a. Trends and perspectives on emulsified product design. Curr Opin Chem Eng 35, 100745. https://doi.org/10.1016/j.coche.2021.100745 Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022b. Effect of emulsification parameters on the rheology, texture, and physical stability of cosmetic emulsions: A multiscale approach. Chemical Engineering Research and Design 186, 407–415. https://doi.org/https://doi.org/10.1016/j.cherd.2022.08.011 Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022c. Effect of emulsification parameters on the rheology, texture, and physical stability of cosmetic emulsions: A multiscale approach. Chemical Engineering Research and Design 186, 407–415. https://doi.org/https://doi.org/10.1016/j.cherd.2022.08.011 Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2020a. Integrated design of emulsified cosmetic products: A review. Chemical Engineering Research and Design 161, 279–303. https://doi.org/https://doi.org/10.1016/j.cherd.2020.07.014 Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2020b. Integrated design of emulsified cosmetic products: A review. Chemical Engineering Research and Design 161, 279–303. https://doi.org/https://doi.org/10.1016/j.cherd.2020.07.014 Cao, C., Feng, Y., Kong, B., Xia, X., Liu, M., Chen, J., Zhang, F., Liu, Q., 2021. Textural and gel properties of frankfurters as influenced by various κ-carrageenan incorporation methods. Meat Sci 176, 108483. https://doi.org/https://doi.org/10.1016/j.meatsci.2021.108483 Capdevila, M., Maestro, A., Porras, M., Gutiérrez, J.M., 2010. Preparation of Span 80/oil/water highly concentrated emulsions: Influence of composition and formation variables and scale-up. J Colloid Interface Sci 345, 27–33. https://doi.org/https://doi.org/10.1016/j.jcis.2010.01.045 Cardona Jaramillo, J.E.C., Achenie, L.E.K., Álvarez, O.A., Carrillo Bautista, M.P., González Barrios, A.F., 2020. The multiscale approach t o the design of bio-based emulsions. Curr Opin Chem Eng 27, 65–71. https://doi.org/https://doi.org/10.1016/j.coche.2019.11.008 Chaffart, D., Rasoulian, S., Ricardez-Sandoval, L.A., 2016. Distributional uncertainty analysis and robust optimization in spatially heterogeneous multiscale process systems. AIChE Journal 62, 2374–2390. https://doi.org/10.1002/aic.15215 Chaffart, D., Ricardez-Sandoval, L.A., 2018a. Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach. Comput Chem Eng 119, 465–479. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.08.029 Chaffart, D., Ricardez-Sandoval, L.A., 2018b. Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach. Comput Chem Eng 119, 465–479. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.08.029 Chaim, O., Muschard, B., Cazarini, E., Rozenfeld, H., 2018. Insertion of sustainability performance indicators in an industry 4.0 virtual learning environment. Procedia Manuf 21, 446–453. https://doi.org/https://doi.org/10.1016/j.promfg.2018.02.143 Chao, C., Génot, C., Rodriguez, C., Magniez, H., Lacourt, S., Fievez, A., Len, C., Pezron, I., Luart, D., van Hecke, E., 2018. Emollients for cosmetic formulations: Towards relationships between physico-chemical properties and sensory perceptions. Colloids Surf A Physicochem Eng Asp 536, 156–164. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.07.025 Chen, G., Tao, D., 2005. An experimental study of stability of oil–water emulsion. Fuel Processing Technology 86, 499–508. https://doi.org/https://doi.org/10.1016/j.fuproc.2004.03.010 Chen, W., Hadde, E.K., Chen, J., 2021. Development of a ball back extrusion technique for texture analysis of fluid food. J Texture Stud 52, 461–469. https://doi.org/https://doi.org/10.1111/jtxs.12613 Chen, Z., Prüss, J., Warnecke, H.J., 1998. A population balance model for disperse systems: Drop size distribution in emulsion. Chem Eng Sci 53, 1059–1066. https://doi.org/10.1016/S0009-2509(97)00328-X Cheng, Y.S., Lam, K.W., Ng, K.M., Ko, R.K.M., Wibowo, C., 2009. An integrative approach to product development-A skin-care cream. Comput Chem Eng 33, 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010 Chhabra, R., Basavaraj, M., 2019. Chapter 12 - Product Design and Process Intensification, in: Chhabra, R., Basavaraj, M. (Eds.), Coulson and Richardson’s Chemical Engineering. Butterworth-Heinemann, pp. 657–692. https://doi.org/https://doi.org/10.1016/B978-0-08-101098-3.00013-5 Chiari, B.G., de Almeida, M.G.J., Corrêa, M.A., Isaac, V.L.B., 2019. Cosmetics’ Quality Control. https://doi.org/10.5772/51846 Chong, J.W., Ng, L.Y., Aboagwa, O.A., Thangalazhy-Gopakumar, S., Muthoosamy, K., Chemmangattuvalappil, N.G., 2021. Computer-Aided Framework for the Design of Optimal Bio-Oil/Solvent Blend with Economic Considerations. Processes 9, 2159. https://doi.org/10.3390/pr9122159 Cochran, S., Anthonavage, M., 2015. Fatty Acids, Fatty Alcohols, Synthetic Esters and Glycerin Applications in the Cosmetic Industry BT - Lipids and Skin Health, in: Pappas, A. (Ed.), . Springer International Publishing, Cham, pp. 311–319. https://doi.org/10.1007/978-3-319-09943-9_21 Conte, E., Gani, R., Ng, K.M., 2011. Design of formulated products: A systematic methodology. AIChE Journal. https://doi.org/10.1002/aic.12458 Corazza, M., Lauriola, M.M., Zappaterra, M., Bianchi, A., Virgili, A., 2010. Surfactants, skin cleansing protagonists. Journal of the European Academy of Dermatology and Venereology 24, 1–6. https://doi.org/10.1111/j.1468-3083.2009.03349.x Costa, R., Moggridge, G.D., Saraiva, P.M., 2006. Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal 52, 1976–1986. https://doi.org/10.1002/aic.10880 Costandy, J.G., Edgar, T.F., Baldea, M., 2019. Switching from Batch to Continuous Reactors Is a Trajectory Optimization Problem. Ind Eng Chem Res 58, 13718–13736. https://doi.org/10.1021/acs.iecr.9b01126 Coulaloglou, C.A., Tavlarides, L.L., 1977. Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32, 1289–1297. https://doi.org/https://doi.org/10.1016/0009-2509(77)85023-9 Cristini, V., Guido, S., Alfani, A., Bławzdziewicz, J., Loewenberg, M., 2003. Drop breakup and fragment size distribution in shear flow. J Rheol (N Y N Y) 47, 1283–1298. https://doi.org/10.1122/1.1603240 Crowley, T.J., Meadows, E.S., Kostoulas, E., Doyle III, F.J., 2000. Control of particle size distribution described by a population balance model of semibatch emulsion polymerization. J Process Control 10, 419–432. https://doi.org/https://doi.org/10.1016/S0959-1524(00)00017-2 Cussler, E.L., Moggridge, G.D., 2011. Chemical product design. Cambridge University Press. Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends® in Signal Processing 7, 197–387. https://doi.org/10.1561/2000000039 Deng, S., Aydin, R., Kwong, C.K., Huang, Y., 2014. Integrated product line design and supplier selection: A multi-objective optimization paradigm. Comput Ind Eng 70, 150–158. https://doi.org/https://doi.org/10.1016/j.cie.2014.01.011 Derkach, S.R., 2009. Rheology of emulsions. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2009.07.001 Desbrières, J., López-Gonzalez, E., Aguilera-miguel, A., Sadtler, V., Marchal, P., Castel, C., Choplin, L., Durand, A., 2017. Dilational rheology of oil/water interfaces covered by amphiphilic polysaccharides derived from dextran. Carbohydr Polym 177, 460–468. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.09.011 Dou, R., Lin, D., Nan, G., Lei, S., 2018. A method for product personalized design based on prospect theory improved with interval reference. Comput Ind Eng 125, 708–719. https://doi.org/https://doi.org/10.1016/j.cie.2018.04.056 Dubuisson, P., Picard, C., Grisel, M., Savary, G., 2018. How does composition influence the texture of cosmetic emulsions? Colloids Surf A Physicochem Eng Asp 536, 38–46. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.08.001 Edwards, M.F., 2006a. Product engineering: Some challenges for chemical engineers. Chemical Engineering Research and Design. https://doi.org/10.1205/cherd05030 Edwards, M.F., 2006b. Product engineering: Some challenges for chemical engineers. Chemical Engineering Research and Design 84, 255–260. https://doi.org/10.1205/cherd05030 Einstein, A., 1906. Eine neue Bestimmung der Moleküldimensionen. Ann Phys 324, 289–306. https://doi.org/10.1002/andp.19063240204 El-Aasser, M.S., Lack, C.D., Choi, Y.T., Min, T.I., Vanderhoff, J.W., Fowkes, F.M., 1984. Interfacial aspects of miniemulsions and miniemulsion polymers. Colloids and Surfaces 12, 79–97. https://doi.org/https://doi.org/10.1016/0166-6622(84)80091-8 El-Hamouz, A., 2009. Drop Size Distribution in a Standard Twin‐Impeller Batch Mixer at High Dispersed‐Phase Volume Fraction. Chem Eng Technol 32, 1203–1210. https://doi.org/10.1002/ceat.200900038 Eskin, D., Ma, S.M., Taylor, S., Abdallah, W., 2021. Modeling droplet dispersion in a turbulent tubing flow at a high droplet holdup. Chemical Engineering Research and Design 168, 71–83. https://doi.org/https://doi.org/10.1016/j.cherd.2021.01.026 Estanqueiro, M., Amaral, M.H., Sousa Lobo, J.M., 2016. Comparison between sensory and instrumental characterization of topical formulations: impact of thickening agents. Int J Cosmet Sci 38. https://doi.org/10.1111/ics.12302 Farn, R.J., 2006. Chemistry and Technology of Surfactants, First. ed, Chemistry and Technology of Surfactants. Blackwell Publishing Ltd, Oxford. https://doi.org/10.1002/9780470988596 Farris, P.K., 2014. Cosmeceuticals and Cosmetic Practice. Wiley-Blackwell. Farzad, R., Puttinger, S., Pirker, S., Schneiderbauer, S., 2018. Investigation of droplet size distribution for liquid-liquid emulsions in Taylor-Couette flows. J Dispers Sci Technol 39, 250–258. https://doi.org/10.1080/01932691.2017.1312431 Fuller, G.G., Vermant, J., 2012. Complex Fluid-Fluid Interfaces: Rheology and Structure. Annu Rev Chem Biomol Eng 3, 519–543. https://doi.org/10.1146/annurev-chembioeng-061010-114202 Fung, K.Y., Ng, K.M., Zhang, L., Gani, R., 2016. A grand model for chemical product design. Comput Chem Eng 91, 15–27. https://doi.org/https://doi.org/10.1016/j.compchemeng.2016.03.009 Galindo-Alvarez, J., Sadtler, V., Marchal, P., Perrin, P., Tribet, C., Marie, E., Durand, A., 2012. Nanoemulsions with enhanced temperature stability using thermo-sensitive association of nonionic surfactant and amphiphilic polyelectrolytes. Colloids Surf A Physicochem Eng Asp 396, 115–121. https://doi.org/https://doi.org/10.1016/j.colsurfa.2011.12.051 Gallegos, C., Franco, J.M., 1999. Rheology of food, cosmetics and pharmaceuticals. Curr Opin Colloid Interface Sci 4, 288–293. https://doi.org/https://doi.org/10.1016/S1359-0294(99)00003-5 Gallo-Molina, J.P., Ratkovich, N., Alvarez, O., 2018. The Application of Computational Fluid Dynamics to the Multiscale Study of Oil-in-Water Emulsions. Ind Eng Chem Res 57, 578–589. https://doi.org/10.1021/acs.iecr.7b03846 Galus, S., Kadzińska, J., 2015. Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45, 273–283. https://doi.org/10.1016/J.TIFS.2015.07.011 Gani, R., 2019. Group contribution-based property estimation methods: advances and perspectives. Curr Opin Chem Eng 23, 184–196. https://doi.org/https://doi.org/10.1016/j.coche.2019.04.007 Gani, R., 2005. Integrated chemical product-process design: CAPE perspectives. Computer Aided Chemical Engineering 20, 21–30. https://doi.org/10.1016/S1570-7946(05)80126-9 Gani, R., 2004. Chemical product design : challenges and opportunities 28, 2441–2457. https://doi.org/10.1016/j.compchemeng.2004.08.010 Gani, R., Dam-Johansen, K., Ng, K., 2007. Chapter 1 Chemical product design — A brief overview. Computer Aided Chemical Engineering 23. https://doi.org/10.1016/S1570-7946(07)80004-6 Garcia-Herreros, P., Zhang, L., Misra, P., Arslan, E., Mehta, S., Grossmann, I.E., 2016. Mixed-integer bilevel optimization for capacity planning with rational markets. Comput Chem Eng 86, 33–47. https://doi.org/https://doi.org/10.1016/j.compchemeng.2015.12.007 Garg, N., Woodley, J.M., Gani, R., Kontogeorgis, G.M., 2019. Sustainable solutions by integrating process synthesis-intensification. Comput Chem Eng 126, 499–519. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.04.030 Gaukel, V., Bernewitz, R., Schuchmann, H., 2015. Emulsions’ Drop Size Distribution, Measurement of BT - Encyclopedia of Membranes, in: Drioli, E., Giorno, L. (Eds.), . Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–2. https://doi.org/10.1007/978-3-642-40872-4_1885-1 Georgieva, D., Schmitt, V., Leal-Calderon, F., Langevin, D., 2009. On the Possible Role of Surface Elasticity in Emulsion Stability. Langmuir 25, 5565–5573. https://doi.org/10.1021/la804240e Ghobakhloo, M., 2020. Industry 4.0, digitization, and opportunities for sustainability. J Clean Prod 252, 119869. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119869 Gilbert, L., Loisel, V., Savary, G., Grisel, M., Picard, C., 2013a. Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydr Polym 93, 644–650. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.12.028 Gilbert, L., Picard, C., Savary, G., Grisel, M., 2013b. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids Surf A Physicochem Eng Asp 421, 150–163. https://doi.org/10.1016/j.colsurfa.2013.01.003 Gilbert, L., Picard, C., Savary, G., Grisel, M., 2012. Impact of Polymers on Texture Properties of Cosmetic Emulsions: A Methodological Approach. J Sens Stud 27, 392–402. https://doi.org/https://doi.org/10.1111/joss.12001 Gilbert, L., Savary, G., Grisel, M., Picard, C., 2013c. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometrics and Intelligent Laboratory Systems 124, 21–31. https://doi.org/https://doi.org/10.1016/j.chemolab.2013.03.002 Gómez, I., Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2022. A multiscale approach for the integrated design of emulsified cosmetic products. Chem Eng Sci 251, 117493. https://doi.org/https://doi.org/10.1016/j.ces.2022.117493 Gomez, J.D., Pradilla, D., Alvarez, O., 2021. A Multiscale Approach to the Design and Manipulation of Oil-in-Water Emulsion-Based Products. International Journal of Chemical Engineering 2021, 8897983. https://doi.org/10.1155/2021/8897983 Gore, E., Picard, C., Savary, G., 2018. Spreading behavior of cosmetic emulsions: Impact of the oil phase. Biotribology 16, 17–24. https://doi.org/https://doi.org/10.1016/j.biotri.2018.09.003 Govender, R., Abrahmsén-Alami, S., Larsson, A., Folestad, S., 2020. Therapy for the individual: Towards patient integration into the manufacturing and provision of pharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics 149, 58–76. https://doi.org/https://doi.org/10.1016/j.ejpb.2020.01.001 Gräbner, D., Hoffmann, H., 2017. Rheology of Cosmetic Formulations, in: Cosmetic Science and Technology. Elsevier, pp. 471–488. https://doi.org/10.1016/B978-0-12-802005-0.00027-6 Guerrero, A., Partal, P., Gallegos, C., 1998. Linear viscoelastic properties of sucrose ester-stabilized oil-in-water emulsions, Journal of Rheology. https://doi.org/10.1122/1.550965 Guindon, G.E., Paraje, G.R., Chaloupka, F.J., 2015. The Impact of Prices and Taxes on the Use of Tobacco Products in Latin America and the Caribbean. Am J Public Health 105, e9–e19. https://doi.org/10.2105/AJPH.2014.302396 Guth, E., Simha, R., 1936. Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen. Kolloid-Zeitschrift 74, 266–275. https://doi.org/10.1007/BF01428643 Gutiérrez, J.M., González, C., Maestro, A., Solè, I., Pey, C.M., Nolla, J., 2008. Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13, 245–251. https://doi.org/10.1016/j.cocis.2008.01.005 Håkansson, A., Innings, F., Trägårdh, C., Bergenståhl, B., 2013. A high-pressure homogenization emulsification model—Improved emulsifier transport and hydrodynamic coupling, Chemical Engineering Science. https://doi.org/10.1016/j.ces.2013.01.011 Hart, W.E., Laird, C.D., Watson, J.-P., Woodruff, D.L., Hackebeil, G.A., Nicholson, B.L., Siirola, J.D., 2017. Pyomo — Optimization Modeling in Python. Second Edition., Springer Optimization and Its Applications. Hayati, I.N., Che Man, Y. Bin, Tan, C.P., Aini, I.N., 2007. Stability and rheology of concentrated O/W emulsions based on soybean oil/palm kernel olein blends. Food Research International 40, 1051–1061. https://doi.org/https://doi.org/10.1016/j.foodres.2007.05.008 Hill, M., 2009. Chemical Product Engineering—The third paradigm. Comput Chem Eng 33, 947–953. https://doi.org/https://doi.org/10.1016/j.compchemeng.2008.11.013 Hinze, J.O., 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal 1, 289–295. https://doi.org/10.1002/aic.690010303 Hong, I.K., Kim, S.I., Lee, S.B., 2018. Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry 67, 123–131. https://doi.org/https://doi.org/10.1016/j.jiec.2018.06.022 Hua, X., Ding, P., Wang, M., Chi, K., Yang, R., Cao, Y., 2019. Emulsions prepared by ultrahigh methoxylated pectin through the phase inversion method. Int J Biol Macromol 128, 167–175. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.01.111 Huang, X., Kakuda, Y., Cui, W., 2001. Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocoll 15, 533–542. https://doi.org/https://doi.org/10.1016/S0268-005X(01)00091-1 Huibers, P.D.T., Lobanov, V.S., Katritzky, A.R., Shah, D.O., Karelson, M., 1996. Prediction of Critical Micelle Concentration Using a Quantitative Structure−Property Relationship Approach. 1. Nonionic Surfactants. Langmuir 12, 1462–1470. https://doi.org/10.1021/la950581j Hung, H.-F., Kao, H.-P., Juang, Y.-S., 2008. An integrated information system for product design planning. Expert Syst Appl 35, 338–349. https://doi.org/https://doi.org/10.1016/j.eswa.2007.07.030 Ingram, T.G., 1932. The viscosity of a fluid containing small drops of another fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 138, 41–48. https://doi.org/10.1098/rspa.1932.0169 Iwata, H., Shimada, K., 2013. Formulas, Ingredients and Production of Cosmetics, Formulas, Ingredients and Production of Cosmetics- technology of skin- and hair-care products in Japan. Springer Japan, Tokyo. https://doi.org/10.1007/978-4-431-54061-8 Jensen, G.V., Lund, R., Gummel, J., Monkenbusch, M., Narayanan, T., Pedersen, J.S., 2013. Direct Observation of the Formation of Surfactant Micelles under Nonisothermal Conditions by Synchrotron SAXS. J Am Chem Soc 135, 7214–7222. https://doi.org/10.1021/ja312469n Jia, F., Wang, X., Mustafee, N., Hao, L., 2016. Investigating the feasibility of supply chain-centric business models in 3D chocolate printing: A simulation study. Technol Forecast Soc Change 102, 202–213. https://doi.org/https://doi.org/10.1016/j.techfore.2015.07.026 Jiao, J., Ma, Q., Tseng, M.M., 2003. Towards high value-added products and services: mass customization and beyond. Technovation 23, 809–821. https://doi.org/https://doi.org/10.1016/S0166-4972(02)00023-8 Johannesson, J., Khan, J., Hubert, M., Teleki, A., Bergström, C.A.S., 2021. 3D-printing of solid lipid tablets from emulsion gels. Int J Pharm 597, 120304. https://doi.org/https://doi.org/10.1016/j.ijpharm.2021.120304 Kalakul, S., Cignitti, S., Zhang, L., Gani, R., 2016. Integrated Computer-aided Framework for Sustainable Chemical Product Design and Evaluation, Computer Aided Chemical Engineering. Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-63428-3.50395-7 Kékesi, T., Amberg, G., Prahl Wittberg, L., 2016. Drop deformation and breakup in flows with shear. Chem Eng Sci 140, 319–329. https://doi.org/https://doi.org/10.1016/j.ces.2015.10.019 Kempin, M.V., Kraume, M., Drews, A., 2020. W/O Pickering emulsion preparation using a batch rotor-stator mixer – Influence on rheology, drop size distribution and filtration behavior. J Colloid Interface Sci 573, 135–149. https://doi.org/https://doi.org/10.1016/j.jcis.2020.03.103 Kennedy, K., Cal, R., Casey, R., Lopez, C., Adelfio, A., Molloy, B., Wall, A.M., Holton, T.A., Khaldi, N., 2020. The anti-ageing effects of a natural peptide discovered by Artificial Intelligence. Int J Cosmet Sci n/a. https://doi.org/10.1111/ics.12635 Kent, P., Saunders, B.R., 2001. The Role of Added Electrolyte in the Stabilization of Inverse Emulsions. J Colloid Interface Sci 242, 437–442. https://doi.org/https://doi.org/10.1006/jcis.2001.7792 Keskin, N.B., Zeevi, A., 2014. Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies. Oper Res 62, 1142–1167. Khadem, B., Sheibat-Othman, N., 2019. Modeling of double emulsions using population balance equations. Chemical Engineering Journal 366, 587–597. https://doi.org/https://doi.org/10.1016/j.cej.2019.02.092 Khajehesamedini, A., Sadatshojaie, A., Parvasi, P., Reza Rahimpour, M., Mehdi Naserimojarad, M., 2018. Experimental and theoretical study of crude oil pretreatment using low-frequency ultrasonic waves. Ultrason Sonochem 48, 383–395. https://doi.org/https://doi.org/10.1016/j.ultsonch.2018.05.032 Kimaev, G., Ricardez-Sandoval, L.A., 2020. Artificial Neural Network Discrimination for Parameter Estimation and Optimal Product Design of Thin Films Manufactured by Chemical Vapor Deposition. The Journal of Physical Chemistry C 124, 18615–18627. https://doi.org/10.1021/acs.jpcc.0c05250 Kimaev, G., Ricardez-Sandoval, L.A., 2019. Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks. Chem Eng Sci 207, 1230–1245. https://doi.org/https://doi.org/10.1016/j.ces.2019.07.044 Klatt, K.U., Marquardt, W., 2009. Perspectives for process systems engineering-Personal views from academia and industry. Comput Chem Eng 33, 536–550. https://doi.org/10.1016/j.compchemeng.2008.09.002 Kolmogorov, A.N., 1949. Drop breakage in turbulent flow. Dokl Akad Nauk SSSR 66, 825–828. Kontogeorgis, G.M., Mattei, M., Ng, K.M., Gani, R., 2019. An Integrated Approach for the Design of Emulsified Products. AIChE Journal 65, 75–86. https://doi.org/10.1002/aic.16363 Korać, R., Krajisnik, D., Milić, J., 2015. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application. Int J Cosmet Sci 38. https://doi.org/10.1111/ics.12282 Krieger, I.M., Dougherty, T.J., 1959. A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres. Transactions of the Society of Rheology 3, 137–152. https://doi.org/10.1122/1.548848 Krstonošić, V., Dokić, L., Nikolić, I., Milanović, M., 2015. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll 45, 9–17. https://doi.org/https://doi.org/10.1016/j.foodhyd.2014.10.024 Krstonošić, V., Milanović, M., Dokić, L., 2019. Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction. Food Hydrocoll 87, 108–118. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.07.040 Kumar, S., Ramkrishna, D., 1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem Eng Sci 51, 1311–1332. https://doi.org/https://doi.org/10.1016/0009-2509(96)88489-2 Kundu, P., Kumar, V., Mishra, I.M., 2015. Modeling the steady-shear rheological behavior of dilute to highly concentrated oil-in-water (o/w) emulsions: Effect of temperature, oil volume fraction and anionic surfactant concentration. J Pet Sci Eng 129, 189–204. https://doi.org/https://doi.org/10.1016/j.petrol.2015.03.008 Lampe, M., Stavrou, M., Schilling, J., Sauer, E., Gross, J., Bardow, A., 2015. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Comput Chem Eng 81, 278–287. https://doi.org/https://doi.org/10.1016/j.compchemeng.2015.04.008 Langevin, D., 2019. Coalescence in foams and emulsions: Similarities and differences. Curr Opin Colloid Interface Sci 44, 23–31. https://doi.org/https://doi.org/10.1016/j.cocis.2019.09.001 Leal-Calderon, F., Schmitt, V., Bibette, J., 2007. Emulsion Science Basic Principles, Second. ed. Springer. Lebaz, N., Sheibat-Othman, N., 2019. A population balance model for the prediction of breakage of emulsion droplets in SMX+ static mixers. Chemical Engineering Journal 361, 625–634. https://doi.org/https://doi.org/10.1016/j.cej.2018.12.090 Leong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M., 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16, 721–727. https://doi.org/https://doi.org/10.1016/j.ultsonch.2009.02.008 Li, W., Leong, T.S.H., Ashokkumar, M., Martin, G.J.O., 2018. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics 20, 86–96. https://doi.org/10.1039/C7CP07133G Liao, Y., Lucas, D., 2010. A literature review on mechanisms and models for the coalescence process of fluid particles. Chem Eng Sci 65, 2851–2864. https://doi.org/https://doi.org/10.1016/j.ces.2010.02.020 Liao, Y., Lucas, D., 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci 64, 3389–3406. https://doi.org/https://doi.org/10.1016/j.ces.2009.04.026 Limthin, D., Phromyothin, D., 2019. Improving Stability of Nanoemulsion Containing Centella asiatica, Lycopersicon Esculentum Mil. and Moringa oleifera Lam. Extract. Mater Today Proc 17, 1852–1863. https://doi.org/https://doi.org/10.1016/j.matpr.2019.06.223 Lin, T.J., 2010. Manufacturing cosmetic emulsions: pragmatic troubleshooting and enrgy conservation. Lin, Y., Yu, S., Zheng, P., Qiu, L., Wang, Y., Xu, X., 2017. VR-based Product Personalization Process for Smart Products. Procedia Manuf 11, 1568–1576. https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.297 Liu, S., Lin, Y.-T., Bhat, B., Kuan, K.-Y., Kwon, J.S.-I., Akbulut, M., 2021. pH-responsive viscoelastic supramolecular viscosifiers based on dynamic complexation of zwitterionic octadecylamidopropyl betaine and triamine for hydraulic fracturing applications. RSC Adv 11, 22517–22529. https://doi.org/10.1039/D1RA00257K Lu, H., Shi, Q., Huang, Z., 2014. pH-Responsive Anionic Wormlike Micelle Based on Sodium Oleate Induced by NaCl. J Phys Chem B 118, 12511–12517. https://doi.org/10.1021/jp506809m Lyklema, J. (Ed.), 2000. Interfacial Tension: Measurement, in: Liquid-Fluid Interfaces. Academic Press, pp. 1.1-1.87. https://doi.org/https://doi.org/10.1016/S1874-5679(00)80004-5 Maa, Y.-F., Hsu, C., 1996. Microencapsulation reactor scale-up by dimensional analysis. J Microencapsul 13, 53–66. https://doi.org/10.3109/02652049609006803 Mahajan, V., Green, P.E., Goldberg, S.M., 1982. A Conjoint Model for Measuring Self- and Cross-Price/Demand Relationships. Journal of Marketing Research 19, 334–342. https://doi.org/10.2307/3151567 Maindarkar, S.N., Hoogland, H., Henson, M.A., 2015a. Achieving Target Emulsion Drop Size Distributions Using Population Balance Equation Models of High-Pressure Homogenization. Ind Eng Chem Res 54, 10301–10310. https://doi.org/10.1021/acs.iecr.5b01195 Maindarkar, S.N., Hoogland, H., Henson, M.A., 2015b. Predicting the combined effects of oil and surfactant concentrations on the drop size distributions of homogenized emulsions. Colloids Surf A Physicochem Eng Asp 467, 18–30. https://doi.org/10.1016/j.colsurfa.2014.11.032 Martin-Piñero, M.J., Carmona, J.A., Muñoz, J., Alfaro-Rodriguez, M.-C., 2019. Effect of heating temperature of a novel wheat-derived surfactant on a mixture of thyme essential oil/surfactant and on the final emulsions. Colloids Surf A Physicochem Eng Asp 579, 123649. https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.123649 Masalova, I., Malkin, a. Ya., 2008. Master curves for elastic and plastic properties of highly concentrated emulsions. Colloid Journal 70, 327–336. https://doi.org/10.1134/S1061933X08030101 Masalova, I., Malkin, A.Ya., 2007. Rheology of Highly Concentrated Emulsions – Concentration and Droplet Size Dependencies. Applied Rheology. https://doi.org/10.1515/arh-2007-0011 Mattei, M., Kontogeorgis, G.M., Gani, R., 2014. A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilib 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030 Mattei, M., Kontogeorgis, G.M., Gani, R., 2013. Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method. Ind Eng Chem Res 52, 12236–12246. https://doi.org/10.1021/ie4016232 Mattei, M., Kontogeorgis, G.M., Gani, R., 2012. A Systematic Methodology for Design of Emulsion Based Chemical Products, in: Karimi, I.A., Srinivasan, R.B.T.-C.A.C.E. (Eds.), 11 International Symposium on Process Systems Engineering. Elsevier, pp. 220–224. https://doi.org/https://doi.org/10.1016/B978-0-444-59507-2.50036-6 McClements, D.J., 2012. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 17, 235–245. https://doi.org/10.1016/j.cocis.2012.06.002 McClements, D.J., 2005. Food Emulsions: Principles, Practicies, and Techniques, Second. ed, Food Emulsions. CRC PRESS. McMullen, R.L., Gorcea, M., Chen, S., 2016. Emulsions and their Characterization by Texture Profile Analysis, in: Handbook of Formulating Dermal Applications. John Wiley & Sons, Ltd, pp. 129–153. https://doi.org/https://doi.org/10.1002/9781119364221.ch6 Mercado, R., Fuentes, L., 2017. Measure of asphalt emulsions stability by oscillatory rheology. Constr Build Mater 155, 838–845. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.08.095 Mercado, R., Fuentes Pumarejo, L., 2016. Asphalt emulsions formulation: State-of-the-art and dependency of formulation on emulsions properties. Constr Build Mater 123, 162–173. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.06.129 Mercado, R.A., Salager, J.L., Sadtler, V., Marchal, P., Choplin, L., 2014. Breaking of a cationic amine oil-in-water emulsion by pH increasing: Rheological monitoring to modelize asphalt emulsion rupture. Colloids Surf A Physicochem Eng Asp 458, 63–68. https://doi.org/https://doi.org/10.1016/j.colsurfa.2014.03.109 Miller, D.J., Henning, T., Grünbein, W., 2001. Phase inversion of W/O emulsions by adding hydrophilic surfactant — a technique for making cosmetics products. Colloids Surf A Physicochem Eng Asp 183–185, 681–688. https://doi.org/https://doi.org/10.1016/S0927-7757(01)00494-0 Mitsui, T., 1997. New Cosmetic Science. Elsevier Science. Mooney, M., 1951. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6, 162–170. https://doi.org/https://doi.org/10.1016/0095-8522(51)90036-0 Morrison, I.D., Ross, S., 2002. Colloidal dispersions : suspensions, emulsions, and foams. Wiley-Interscience, New York. Mougel, J., Alvarez, O., Baravian, C., Caton, F., Marchal, P., Stébé, M.-J., Choplin, L., 2006. Aging of an unstable w/o gel emulsion with a nonionic surfactant. Rheol Acta 45, 555–560. https://doi.org/10.1007/s00397-006-0089-z Muda, H., Aziz, A., Taher, Z., Aziz, R., 2017. Cosmeceuticals and Natural Cosmetics. pp. 126–175. Mulqueen, M., Blankschtein, D., 2002. Theoretical and Experimental Investigation of the Equilibrium Oil−Water Interfacial Tensions of Solutions Containing Surfactant Mixtures. Langmuir 18, 365–376. https://doi.org/10.1021/la010993u Myers, D., 2006. Surfactant Science and Technology, Third Edit. ed. WILEY-INTERSCIENCE. https://doi.org/10.1016/J.JCIS.2005.10.044 Myers, Drew., 1999. Surfaces, interfaces and colloids : principles and applications, 2nd ed. ed, TA - TT -. Wiley-Vch, New York SE - XIX, 501 p. ; 24 cm. Ng, K.M., Gani, R., 2019. Chemical product design: Advances in and proposed directions for research and teaching. Comput Chem Eng 126, 147–156. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.04.008 Ng, K.M., Gani, R., 2018. Chemical Product Design: Advances in Research and Teaching. Computer Aided Chemical Engineering 44, 21–32. https://doi.org/10.1016/B978-0-444-64241-7.50003-3 Ng, K.M., Gani, R., Kim, D.-J., 2006. Chemical Product Design Toward a Perspective Through Case Studies. Elsevier Science. Ng, L.Y., Chemmangattuvalappil, N.G., Ng, D.K.S., 2015. Robust chemical product design via fuzzy optimisation approach. Comput Chem Eng 83, 186–202. https://doi.org/https://doi.org/10.1016/j.compchemeng.2015.01.007 Niu, H., Wang, W., Dou, Z., Chen, Xianwei, Chen, Xianxiang, Chen, H., Fu, X., 2023. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 311, 102813. https://doi.org/https://doi.org/10.1016/j.cis.2022.102813 Nopens, I., Torfs, E., Ducoste, J., Vanrolleghem, P.A., Gernaey, K. V., 2015. Population balance models: A useful complementary modelling framework for future WWTP modelling. Water Science and Technology 71, 159–167. https://doi.org/10.2166/wst.2014.500 Oldroyd, J.G., 1955. The Effect of Interfacial Stabilizing Films on the Elastic and Viscous Properties of Emulsions. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 232, 567–577. https://doi.org/10.1098/rspa.1955.0240 Otsubo, Y., Prud’homme, R.K., 1994. Effect of drop size distribution on the flow behavior of oil-in-water emulsions. Rheol Acta 33, 303–306. https://doi.org/10.1007/BF00366956 Pacek, A.W., Man, C.C., Nienow, A.W., 1998. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem Eng Sci 53, 2005–2011. Pagano, A.P.E., Khalid, N., Kobayashi, I., Nakajima, M., Neves, M.A., Bastos, E.L., 2018. Microencapsulation of betanin in monodisperse W/O/W emulsions. Food Research International 109, 489–496. https://doi.org/10.1016/J.FOODRES.2018.04.053 Pahari, S., Bhadriraju, B., Akbulut, M., Kwon, J.S.-I., 2021a. A slip-spring framework to study relaxation dynamics of entangled wormlike micelles with kinetic Monte Carlo algorithm. J Colloid Interface Sci 600, 550–560. https://doi.org/10.1016/j.jcis.2021.05.032 Pahari, S., Moon, J., Akbulut, M., Hwang, S., Kwon, J.S.-I., 2021b. Model predictive control for wormlike micelles (WLMs): Application to a system of CTAB and NaCl. Chemical Engineering Research and Design 174, 30–41. https://doi.org/https://doi.org/10.1016/j.cherd.2021.07.023 Pal, R., 2011. Influence of interfacial rheology on the viscosity of concentrated emulsions. J Colloid Interface Sci 356, 118–122. https://doi.org/https://doi.org/10.1016/j.jcis.2010.12.068 Pal, R., 2001. Novel viscosity equations for emulsions of two immiscible liquids. J Rheol (N Y N Y) 45, 509–520. https://doi.org/10.1122/1.1339249 Parente, M.E., Gámbaro, A., Ares, G., 2008. Sensory characterization of emollients. J Sens Stud 23, 149–161. https://doi.org/10.1111/j.1745-459X.2007.00136.x Paruta-Tuarez, E., Marchal, P., 2013. Association of Percolation Theory with Princen’s Approach To Model the Storage Modulus of Highly Concentrated Emulsions. Ind Eng Chem Res 52, 11787–11791. https://doi.org/10.1021/ie401414u Paruta-Tuarez, E., Sadtler, V., Marchal, P., Choplin, L., Salager, J.-L., 2011. Making Use of the Formulation−Composition Map To Prepare Highly Concentrated Emulsions with Particular Rheological Properties. Ind Eng Chem Res 50, 2380–2387. https://doi.org/10.1021/ie101467h Pepicelli, M., Verwijlen, T., Tervoort, T.A., Vermant, J., 2017. Characterization and modelling of Langmuir interfaces with finite elasticity. Soft Matter 13, 5977–5990. https://doi.org/10.1039/C7SM01100H Petzold, L., 1983. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. SIAM Journal on Scientific and Statistical Computing 4, 136–148. https://doi.org/10.1137/0904010 Picchioni, F., Broekhuis, A.A., 2012. Material properties and processing in chemical product design. Curr Opin Chem Eng 1, 459–464. https://doi.org/10.1016/j.coche.2012.08.002 Piccione, P.M., 2019. Realistic interplays between data science and chemical engineering in the first quarter of the 21st century: Facts and a vision. Chemical Engineering Research and Design 147, 668–675. https://doi.org/10.1016/j.cherd.2019.05.046 Pichot, R., Spyropoulos, F., Norton, I.T., 2010. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J Colloid Interface Sci 352, 128–135. https://doi.org/https://doi.org/10.1016/j.jcis.2010.08.021 Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., Mirade, P.-S., 2019. Toward the design of functional foods and biobased products by 3D printing: A review. Trends Food Sci Technol 86, 188–198. https://doi.org/https://doi.org/10.1016/j.tifs.2019.02.023 Pourakaberian, A., Ayatollahi, S., Shirazi, M.M., Ghotbi, C., Sisakhti, H., 2021. A systematic study of asphaltic sludge and emulsion formation damage during acidizing process: Experimental and modeling approach. J Pet Sci Eng 207, 109073. https://doi.org/https://doi.org/10.1016/j.petrol.2021.109073 Pradilla, D., Barrera, A., Sætran, M.G., Sørland, G., Alvarez, O., 2018. Mechanisms of Physical Stabilization of Concentrated Water-In-Oil Emulsions Probed by Pulse Field Gradient Nuclear Magnetic Resonance and Rheology through a Multiscale Approach. Langmuir 34, 9489–9499. https://doi.org/10.1021/acs.langmuir.8b01393 Pradilla, D., Vargas, W., Alvarez, O., 2015. The application of a multi-scale approach to the manufacture of concentrated and highly concentrated emulsions. Chemical Engineering Research and Design 95, 162–172. https://doi.org/10.1016/j.cherd.2014.10.016 Princen, H.M., Kiss, A.D., 1989. Rheology of foams and highly concentrated emulsions: IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions. J Colloid Interface Sci 128, 176–187. https://doi.org/https://doi.org/10.1016/0021-9797(89)90396-2 Princen, H.M., Kiss, A.D., 1986. Rheology of foams and highly concentrated emulsions: III. Static shear modulus. J Colloid Interface Sci 112, 427–437. https://doi.org/https://doi.org/10.1016/0021-9797(86)90111-6 Qian, L., Zhang, H., 2011. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. Journal of Chemical Technology & Biotechnology 86, 172–184. https://doi.org/https://doi.org/10.1002/jctb.2495 Qin, C., Chen, C., Xiao, Q., Yang, N., Yuan, C., Kunkelmann, C., Cetinkaya, M., Mülheims, K., 2016. CFD-PBM simulation of droplets size distribution in rotor-stator mixing devices. Chem Eng Sci 155, 16–26. https://doi.org/https://doi.org/10.1016/j.ces.2016.07.034 Quemada, D., 1977. Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16, 82–94. https://doi.org/10.1007/BF01516932 Quintão, F.J.O., Tavares, R.S.N., Vieira-Filho, S.A., Souza, G.H.B., Santos, O.D.H., 2013. Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia 23, 101–107. https://doi.org/10.1590/S0102-695X2013005000001 Rafiei, M., Ricardez-Sandoval, L.A., 2020. New frontiers, challenges, and opportunities in integration of design and control for enterprise-wide sustainability. Comput Chem Eng 132, 106610. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.106610 Raikar, N.B., 2010. Prediction And Manipulation Of Drop Size Distribution Of Emulsions Using Population Balance Equation Models For High-Pressure Homogenization 1–174. Raikar, N.B., Bhatia, S.R., Malone, M.F., Henson, M.A., 2009. Experimental studies and population balance equation models for breakage prediction of emulsion drop size distributions. Chem Eng Sci 64, 2433–2447. https://doi.org/https://doi.org/10.1016/j.ces.2009.01.062 Ramaswamy, S., DeClerck, N., 2018a. Customer Perception Analysis Using Deep Learning and NLP. Procedia Comput Sci 140, 170–178. https://doi.org/https://doi.org/10.1016/j.procs.2018.10.326 Ramaswamy, S., DeClerck, N., 2018b. Customer Perception Analysis Using Deep Learning and NLP. Procedia Comput Sci 140, 170–178. https://doi.org/https://doi.org/10.1016/j.procs.2018.10.326 Rámirez, M., Bullón, J., Andérez, J., Mira, I., Salager, J.-L., 2002. Drop Size Distribution Bimodality and Its Effect on O/W Emulsion Viscosity. J Dispers Sci Technol 23, 309–321. https://doi.org/10.1080/01932690208984207 Rao, N., Lele, A.K., Patwardhan, A.W., 2022. Optimization of Liquid Organic Hydrogen Carrier (LOHC) dehydrogenation system. Int J Hydrogen Energy 47, 28530–28547. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.06.197 Rasoulian, S., Ricardez-Sandoval, L.A., 2015. Robust multivariable estimation and control in an epitaxial thin film growth process under uncertainty. J Process Control 34, 70–81. https://doi.org/https://doi.org/10.1016/j.jprocont.2015.07.002 Rasoulian, S., Ricardez-Sandoval, L.A., 2014. Uncertainty analysis and robust optimization of multiscale process systems with application to epitaxial thin film growth. Chem Eng Sci 116, 590–600. https://doi.org/https://doi.org/10.1016/j.ces.2014.05.027 Rhein, L.D., Schlossman, M., O’Lenick, A., Somasundaran, P., 2007. Surfactants in Personal Care Products and Decorative Cosmetics, Third Edit. ed. CRC PRESS, Boca Raton. https://doi.org/10.1016/J.JCIS.2006.12.065 Ricardez-Sandoval, L.A., 2011. Current challenges in the design and control of multiscale systems. Can J Chem Eng 89, 1324–1341. https://doi.org/10.1002/cjce.20607 Richardson, E.G., 1950. The formation and flow of emulsion. J Colloid Sci 5, 404–413. https://doi.org/https://doi.org/10.1016/0095-8522(50)90064-X Richardson, N.J., Booth, D.A., 1993. Multiple physical patterns in judgements of the creamy texture of milks and creams. Acta Psychol (Amst) 84, 93–101. https://doi.org/https://doi.org/10.1016/0001-6918(93)90075-3 Rodríguez Dorado, R., Landin, M., Altay Benetti, A., Russo, P., Aquino, R., Del Gaudio, P., 2018. A novel method for the production of core-shell microparticles by inverse gelation optimized with Artificial Intelligent Tools. Int J Pharm 538. https://doi.org/10.1016/j.ijpharm.2018.01.023 Rosen, M.J., 2004. Reduction of Surface and Interfacial Tension by Surfactants, in: Surfactants and Interfacial Phenomena. John Wiley & Sons, Ltd, pp. 208–242. https://doi.org/10.1002/0471670561.ch5 Rouco, H., Diaz-Rodriguez, P., Rama-Molinos, S., Remuñán-López, C., Landin, M., 2018. Delimiting the knowledge space and the design space of nanostructured lipid carriers through Artificial Intelligence tools. Int J Pharm 553, 522–530. https://doi.org/https://doi.org/10.1016/j.ijpharm.2018.10.058 Ruiz, M.C., Padilla, R., 2004. Analysis of breakage functions for liquid–liquid dispersions. Hydrometallurgy 72, 245–258. https://doi.org/https://doi.org/10.1016/S0304-386X(03)00184-1 Sagis, L.M.C., 2011. Dynamic properties of interfaces in soft matter: Experiments and theory. Rev Mod Phys 83, 1367–1403. https://doi.org/10.1103/RevModPhys.83.1367 Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Huber, P., 2017. Sensory Measurement—Evaluation and Testing of Cosmetic Products. Cosmetic Science and Technology 617–633. https://doi.org/10.1016/B978-0-12-802005-0.00037-9 Salager, J.-L., Antón, R.E., Anderez, J.M., Aubry, J.-M., 2001. Formulation des micro-émulsions par la méthode HLD. Techniques de l’Ingénieur 157, 2001. Salager, J.-L., Rondón, M., Tolosa, L., Pizzino, A., Bullon, J., 2007. Emulsion formulation engineering for the practitioner. Encyclopedia of Surface and Colloid Science 1–16. Savary, G., Grisel, M., Picard, C., 2013. Impact of emollients on the spreading properties of cosmetic products: A combined sensory and instrumental characterization. Colloids Surf B Biointerfaces 102, 371–378. https://doi.org/https://doi.org/10.1016/j.colsurfb.2012.07.028 Schmitt, U., Moser, B., Lorenz, C.S., Réfrégier, A., 2023. sympy2c: From symbolic expressions to fast C/C++ functions and ODE solvers in Python. Astronomy and Computing 42, 100666. https://doi.org/https://doi.org/10.1016/j.ascom.2022.100666 Schowalter, T.T., 1979. Mechanics of Secondary Hydrocarbon Migration and Entrapment. Am Assoc Pet Geol Bull 63. https://doi.org/10.1306/2F9182CA-16CE-11D7-8645000102C1865D Schramm, L.L., 2005. Emulsions, Foams and Suspensions: Fundamentals and Applications. WILEY-VCH, Weinheim. Schroën, K., Deng, B., Berton-Carabin, C., Marze, S., Corstens, M., Hinderink, E., 2023. Microfluidics-based observations to monitor dynamic processes occurring in food emulsions and foams. Curr Opin Food Sci 50, 100989. https://doi.org/https://doi.org/10.1016/j.cofs.2023.100989 Schwartz, N.O., 1975. Adaptation of the sensory texture profile method to skin care products. J Texture Stud 6, 33–42. https://doi.org/10.1111/j.1745-4603.1975.tb01116.x Schwarz, J.C., Klang, V., Karall, S., Mahrhauser, D., Resch, G.P., Valenta, C., 2012. Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int J Pharm 435, 69–75. https://doi.org/10.1016/J.IJPHARM.2011.11.038 Seider, W.D., 2009. Product and process design principles : synthesis, analysis, and evaluation., 3rd ed. ed, John Wiley & Sons, Ltd. John Wiley, Hoboken, NJ SE - xxxvi, 728 p. : il. ; 29 cm. Seider, W.D., Widagdo, S., Seader, J.D., Lewin, D.R., 2009. Perspectives on chemical product and process design. Comput Chem Eng 33, 930–935. https://doi.org/10.1016/j.compchemeng.2008.10.019 Seweryn, A., 2018. Interactions between surfactants and the skin – Theory and practice. Adv Colloid Interface Sci 256, 242–255. https://doi.org/https://doi.org/10.1016/j.cis.2018.04.002 Shafiei, M., Balhoff, M., Hayman, N.W., 2018. Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel. Polymer (Guildf) 139, 44–51. https://doi.org/https://doi.org/10.1016/j.polymer.2018.01.080 Shalaby, S., Yanagida, J.F., Hassler, J.B., 1988. United States Market Share of Latin American Wheat Imports: Disaggregated Analysis and Application of the Armington Model. Journal of Economic Studies 15, 24–33. https://doi.org/10.1108/eb002678 Shang, X., Ng, B.F., Wan, M.P., Ding, S., 2020. Investigation of CFD-PBM simulations based on fixed pivot method: Influence of the moment closure. Chemical Engineering Journal 382, 122882. https://doi.org/https://doi.org/10.1016/j.cej.2019.122882 Sharma, S., Shukla, P., Misra, A., Mishra, P.R., 2014. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective, in: Ohshima, H., Makino, K.B.T.-C. and I.S. in P.R. and D. (Eds.), . Elsevier, Amsterdam, pp. 149–172. https://doi.org/https://doi.org/10.1016/B978-0-444-62614-1.00008-9 Shinoda, K., Saito, H., 1969. The Stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. J Colloid Interface Sci 30, 258–263. https://doi.org/https://doi.org/10.1016/S0021-9797(69)80012-3 Silva, B.F.B., Rodríguez-abreu, C., Vilanova, N., 2016. Recent advances inmultiple emulsions and their application as templates. Curr Opin Colloid Interface Sci 25, 98–108. https://doi.org/10.1016/j.cocis.2016.07.006 Simovic, S., Milic-Askrabic, J., Vuleta, G., Ibric, S., Stupar, M., 1999. The Influence of Processing Variables on Performance of O/W Emulsion Gels Based on Polymeric Emulsifier (Pemulen ®TR-2NF). Int J Cosmet Sci 21, 119–125. https://doi.org/10.1046/j.1467-2494.1999.183572.x Sivamani, R.K., Goodman, J., Gitis, N. V, Maibach, H.I., 2003. Coefficient of friction: Tribological studies in man - An overview. Skin Research and Technology 9, 227–234. https://doi.org/10.1034/j.1600-0846.2003.02366.x Smith, R., 2005. Chemical Process Design and Integration, Second. ed, John Wiley & Sons, Ltd. Chichester, West Sussex, England. https://doi.org/10.1529/biophysj.107.124164 Smith, B. V, Ierapepritou, M.G., 2010. Integrative chemical product design strategies: Reflecting industry trends and challenges. Comput Chem Eng 34, 857–865. https://doi.org/https://doi.org/10.1016/j.compchemeng.2010.02.039 Smith, B. V., Ierapepritou, M.G., 2010. Integrative chemical product design strategies: Reflecting industry trends and challenges. Comput Chem Eng 34, 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039 Solans, C., Morales, D., Homs, M., 2016. Spontaneous emulsification. Curr Opin Colloid Interface Sci 22, 88–93. https://doi.org/https://doi.org/10.1016/j.cocis.2016.03.002 Spiess, E., 1992. Raw materials, in: Williams, D.F., Schmitt, W.H. (Eds.), Chemistry and Technology of the Cosmetics and Toiletries Industry. Springer Netherlands, Dordrecht, pp. 1–35. https://doi.org/10.1007/978-94-009-1555-8_1 Srour, M.H., Gomes, V.G., Romagnoli, J.A., 2007. Online inferential product attribute estimation for optimal operation of emulsion terpolymerisation: Application to styrene/MMA/MA. Chem Eng Sci 62, 4420–4438. https://doi.org/10.1016/J.CES.2007.04.046 Susuki, K., Watanabe, T., 1971. Relationship between sensory assessment and rheological properties of cosmetic creams. J Texture Stud 2, 431–440. https://doi.org/10.1111/j.1745-4603.1971.tb00591.x Tadros, T., 2004. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interface Sci 108–109, 227–258. https://doi.org/https://doi.org/10.1016/j.cis.2003.10.025 Tadros, T.F., 2015. Interfacial Phenomena and Colloid Stability: Industrial Applications, First. ed, Interfacial Phenomena and Colloid Stability. De Gruyter, Berlin/Boston, Germany. https://doi.org/10.1515/9783110366471-004 Tadros, T.F., 2013. Emulsion Formation and Stability. WILEY-VCH, Weinheim. Tadros, T.F., 2009. Emulsion Science and Technology: A General Introduction, in: Emulsion Science and Technology. John Wiley & Sons, Ltd, pp. 1–56. https://doi.org/10.1002/9783527626564.ch1 Tadros, T.F., 2005. Applied Surfactants: Principles and Applications. WILEY-VCH, Weinheim. Taifouris, M., Martín, M., Martínez, A., Esquejo, N., 2020a. Challenges in the design of formulated products: multiscale process and product design. Curr Opin Chem Eng 27, 1–9. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.001 Taifouris, M., Martín, M., Martínez, A., Esquejo, N., 2020b. Challenges in the design of formulated products: multiscale process and product design. Curr Opin Chem Eng 27, 1–9. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.001 Tal-Figiel, B., 2007. The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field. Chemical Engineering Research and Design 85, 730–734. https://doi.org/10.1205/CHERD06199 Taylor, P., Marti-mestres, G., Nielloud, Françoise, Nielloud, Francoise, 2010. Emulsions in Health Care Applications — An Overview. J Dispers Sci Technol 23, 419–439. https://doi.org/doi.org/10.1080/01932690208984214 Tcholakova, S., Lesov, I., Golemanov, K., Denkov, N.D., Judat, S., Engel, R., Danner, T., 2011. Efficient emulsification of viscous oils at high drop volume fraction. Langmuir 27, 14783–14796. https://doi.org/10.1021/la203474b Teoh, S.K., Rathi, C., Sharratt, P., 2016. Practical Assessment Methodology for Converting Fine Chemicals Processes from Batch to Continuous. Org Process Res Dev 20, 414–431. https://doi.org/10.1021/acs.oprd.5b00001 Terescenco, D., Picard, C., Clemenceau, F., Grisel, M., Savary, G., 2018. Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids Surf A Physicochem Eng Asp 536, 10–19. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.08.017 Tian, Y., Chen, L., Zhang, W., 2016. Influence of Ionic Surfactants on the Properties of Nanoemulsions Emulsified by Nonionic Surfactants Span 80/Tween 80. J Dispers Sci Technol 37, 1511–1517. https://doi.org/10.1080/01932691.2015.1048806 Tinjacá, C., Gallo-Molina, J.P., Álvarez, Ó., Gómez, J., 2018. Integrated Optimal Design Proposal Based on a Multiscale Approach: Validation and Experimental Adjustment of Properties, in: Eden, M.R., Ierapetritou, M.G., Towler, G.P.B.T.-C.A.C.E. (Eds.), 13 International Symposium on Process Systems Engineering (PSE 2018). Elsevier, pp. 289–294. https://doi.org/https://doi.org/10.1016/B978-0-444-64241-7.50043-4 Torres, J.J., Tinjaca, C.D., Alvarez, O.A., Gómez, J.M., 2020. Optimization proposal for emulsions formulation considering a multiscale approach. Chem Eng Sci 212, 115326. https://doi.org/https://doi.org/10.1016/j.ces.2019.115326 Torres, L.G., Zamora, E.R., 2002. Preparation and power consumption of surfactant–fuel oil–water emulsions using axial, radial, and mixed flow impellers. Fuel 81, 2289–2302. https://doi.org/https://doi.org/10.1016/S0016-2361(02)00137-0 Tula, A.K., Babi, D.K., Bottlaender, J., Eden, M.R., Gani, R., 2017. A computer-aided software-tool for sustainable process synthesis-intensification. Comput Chem Eng 105, 74–95. https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.01.001 Uhlemann, J., Costa, R., Charpentier, J.-C., 2020. Product design and engineering — past, present, future trends in teaching, research and practices: academic and industry points of view. Curr Opin Chem Eng 27, 10–21. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.003 Uhlemann, J., Costa, R., Charpentier, J.-C., 2019. Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chem Eng Technol 42, 2258–2274. https://doi.org/10.1002/ceat.201900236 Umar, A.A., Saaid, I.B.M., Sulaimon, A.A., Pilus, R.B.M., 2018. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J Pet Sci Eng 165, 673–690. https://doi.org/10.1016/J.PETROL.2018.03.014 Unnikrishnan, S., Donovan, J., Macpherson, R., Tormey, D., 2021a. In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chemical Engineering Research and Design 166, 281–294. https://doi.org/10.1016/j.cherd.2020.12.010 Unnikrishnan, S., Donovan, J., Macpherson, R., Tormey, D., 2021b. In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chemical Engineering Research and Design 166, 281–294. https://doi.org/https://doi.org/10.1016/j.cherd.2020.12.010 Van Nguyen, T., Zhou, L., Chong, A.Y.L., Li, B., Pu, X., 2020. Predicting customer demand for remanufactured products: A data-mining approach. Eur J Oper Res 281, 543–558. https://doi.org/https://doi.org/10.1016/j.ejor.2019.08.015 Vankova, N., Tcholakova, S., Denkov, N.D., Ivanov, I.B., Vulchev, V.D., Danner, T., 2007. Emulsification in turbulent flow. 1. Mean and maximum drop diameters in inertial and viscous regimes. J Colloid Interface Sci 312, 363–380. https://doi.org/10.1016/j.jcis.2007.03.059 Vanni, M., 2000. Approximate population balance equations for aggregation-breakage processes. J Colloid Interface Sci 221, 143–160. https://doi.org/10.1006/jcis.1999.6571 Vianna-Filho, R.P., Petkowicz, C.L.O., Silveira, J.L.M., 2013. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr Polym 93, 266–272. https://doi.org/10.1016/j.carbpol.2012.05.014 Villena de Francisco, E., García-Estepa, R.M., 2018. Nanotechnology in the agrofood industry. J Food Eng 238, 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024 Vladisavljević, G.T., Wang, B., Dragosavac, M.M., Holdich, R.G., 2014. Production of food-grade multiple emulsions with high encapsulation yield using oscillating membrane emulsification. Colloids Surf A Physicochem Eng Asp 458, 78–84. Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106, 25–57. https://doi.org/10.1007/S10107-004-0559-Y/METRICS Walzel, H., Keddis, N., 2016. Interconnecting Product and Process Information to Enable Personalized Production. Procedia CIRP 52, 186–191. https://doi.org/https://doi.org/10.1016/j.procir.2016.07.057 Wang, Z., Zhang, M., Sun, H., Zhu, G., 2016. Effects of standardization and innovation on mass customization: An empirical investigation. Technovation 48–49, 79–86. https://doi.org/10.1016/j.technovation.2016.01.003 Wang, Z.W., Feng, J.L., Wang, H.J., Cui, Z.G., Li, G.Z., 2005. Effectiveness of surface tension reduction by nonionic surfactants with quantitative structure-property relationship approach. J Dispers Sci Technol 26, 441–447. https://doi.org/10.1081/DIS-200054572 Wei, Y., Xie, Y., Cai, Z., Guo, Y., Wu, M., Wang, P., Li, R., Zhang, H., 2020a. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 580, 480–492. https://doi.org/https://doi.org/10.1016/j.jcis.2020.07.048 Wei, Y., Xie, Y., Cai, Z., Guo, Y., Wu, M., Wang, P., Li, R., Zhang, H., 2020b. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 580, 480–492. https://doi.org/https://doi.org/10.1016/j.jcis.2020.07.048 Whitnack, C., Heller, A., Frow, M.T., Kerr, S., Bagajewicz, M.J., 2009. Financial risk management in the design of products under uncertainty. Comput Chem Eng 33, 1056–1066. https://doi.org/10.1016/j.compchemeng.2008.09.018 Wibowo, C., Ng, K.M., 2001. Product-oriented process synthesis and development: Creams and pastes. AIChE Journal 47, 2746–2767. https://doi.org/10.1002/aic.690471214 Wittern, K.-P., Brummer, R., Godersky, S., 2001. Rheology Studies to Investigate Sensorial Aspects of Emulsions, in: Iwasawa, Y., Oyama, N., Kunieda, H.B.T.-S. in S.S. and C. (Eds.), Proceedings of the International Conference on Colloid and Surface Science. Elsevier, pp. 1031–1036. https://doi.org/https://doi.org/10.1016/S0167-2991(01)82259-X Wright, F.J., 1961. Influence of Temperature on Viscosity of Nonassociated Liquids. J Chem Eng Data 6, 454–456. https://doi.org/10.1021/je00103a035 Wu, B., McClements, D.J., 2015. Design of reduced-fat food emulsions: Manipulating microstructure and rheology through controlled aggregation of colloidal particles and biopolymers. Food Research International 76, 777–786. https://doi.org/https://doi.org/10.1016/j.foodres.2015.06.034 Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., Yonghong, M., 1996. Rheological models for xanthan gum. J Food Eng 27, 203–209. https://doi.org/10.1016/0260-8774(94)00092-1 Yang, J., Lee, S., Choi, I., Shin, J., Han, W.-H., Hong, M.-H., Kang, H.-C., Kim, Y.-W., 2019. Effect of fatty acid-based anionic surfactants on the emulsion properties of self-emulsifying poly(ethylene-co-acrylic acid) waxes. Journal of Industrial and Engineering Chemistry 71, 393–401. https://doi.org/10.1016/J.JIEC.2018.11.051 Yaron, I., Gal-Or, B., 1972. On viscous flow and effective viscosity of concentrated suspensions and emulsions. Rheol Acta 11, 241–252. https://doi.org/10.1007/BF01974767 Ye, Z., Zhang, F., Han, L., Luo, P., Yang, J., Chen, H., 2008. The effect of temperature on the interfacial tension between crude oil and gemini surfactant solution. Colloids Surf A Physicochem Eng Asp 322, 138–141. https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.02.043 Yinan, Q., Tang, M., Zhang, M., 2014. Mass Customization in Flat Organization: The Mediating Role of Supply Chain Planning and Corporation Coordination. Journal of Applied Research and Technology 12, 171–181. https://doi.org/https://doi.org/10.1016/S1665-6423(14)72333-8 Zhang, L., Babi, D.K., Gani, R., 2016. New Vistas in Chemical Product and Process Design. Annu Rev Chem Biomol Eng 7, 557–582. https://doi.org/10.1146/annurev-chembioeng-080615-034439 Zhang, L., Fung, K.Y., Wibowo, C., Gani, R., 2018a. Advances in chemical product design. Reviews in Chemical Engineering 34, 319–340. https://doi.org/doi:10.1515/revce-2016-0067 Zhang, L., Mao, H., Liu, L., Du, J., Gani, R., 2018b. A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Comput Chem Eng 115, 295–308. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.04.018 Zhang, L., Mao, H., Liu, Q., Gani, R., 2020. Chemical product design – recent advances and perspectives. Curr Opin Chem Eng 27, 22–34. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.005 Zheng, H., Ricardez-Sandoval, L., Budman, H., 2020. Robust estimation and economic predictive control for dynamic metabolic flux systems under probabilistic uncertainty. Comput Chem Eng 140, 106918. https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.106918 Zhou, G., Kresta, S.M., 1998. Correlation of mean drop size and minimum drop size with the turbulence energy dissipation and the flow in an agitated tank. Chem Eng Sci 53, 2063–2079. https://doi.org/https://doi.org/10.1016/S0009-2509(97)00438-7 Zhu, X., Li, L., Li, S., Ning, C., Zhou, C., 2018. l–Arginine/l–lysine improves emulsion stability of chicken sausage by increasing electrostatic repulsion of emulsion droplet and decreasing the interfacial tension of soybean oil-water. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2018.11.021 Zou, W., Larson, R.G., 2014. A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions. J Rheol (N Y N Y) 58, 681–721. https://doi.org/10.1122/1.4868875 Zou, W., Tang, X., Weaver, M., Koenig, P., Larson, R.G., 2015. Determination of characteristic lengths and times for wormlike micelle solutions from rheology using a mesoscopic simulation method. J Rheol (N Y N Y) 59, 903–934. https://doi.org/10.1122/1.4919403 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
126 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Química y de Alimentos |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/a69283af-b05d-4d81-b29e-b4ec653b270d/download https://repositorio.uniandes.edu.co/bitstreams/455c0348-063e-48a0-84c5-db5c7532f71e/download https://repositorio.uniandes.edu.co/bitstreams/b99ca463-f766-43b5-b76d-1fe995e0ce2b/download https://repositorio.uniandes.edu.co/bitstreams/8b66ee04-0f92-43bc-9935-e90570639d68/download https://repositorio.uniandes.edu.co/bitstreams/9b4e9f5b-8217-44e2-9d42-fed9d0f6c38a/download https://repositorio.uniandes.edu.co/bitstreams/141fd373-9b41-4572-80a0-3a60e6711346/download https://repositorio.uniandes.edu.co/bitstreams/84347453-4887-4590-ba2e-ccbae08fd54c/download https://repositorio.uniandes.edu.co/bitstreams/7c980f63-105b-4737-bc5e-98b921214f61/download |
bitstream.checksum.fl_str_mv |
326470889395c1e82972ec02fae27ae7 c88e14c66d1e6b0acb732c02235d7559 ae9e573a68e7f92501b6913cc846c39f 4460e5956bc1d1639be9ae6146a50347 30bf88dd1193976b70815a219c71c1d7 f536272730d76f6bf0fe7dd73d0ca242 2d3b57be4cef2b44319f6b2eb7f690dd 6571b041570339353914a55d08522865 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927741086171136 |
spelling |
Gómez Ramírez, Jorge MarioRicardez-Sandoval, LuisÁlvarez Solano, Oscar Albertovirtual::23612-1Calvo Silva, Fernando JavierPradilla Raguá, Diego CamiloMarchal, PhilippeMercado Ojeda, RonaldFacultad de Ingeniería::Grupo de Diseño de Productos y Procesos2023-10-24T16:13:12Z2023-10-24T16:13:12Z2023-10-20https://hdl.handle.net/1992/7095310.57784/1992/70953instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Chemical product design has become an active area of research within the chemical industry in response to an increasingly demand for consumer-oriented products. The era of globalization has intensified competition generating strong market forces that play an essential role in the chemical industry. Consequently, the chemical product industry has moved from the production of bulk commodities products towards higher value-added products, placing particular interest in the manufacture of specialty chemicals and consumer-oriented products such as emulsified products. Emulsions are thermodynamically unstable colloidal systems, in which there are droplets of a liquid dispersed in a second immiscible fluid. The use of emulsions in industry has a vast number of applications at different sectors, such as cosmetic, food, petrochemical, pharmacy, biotechnology and nanotechnology, leading to a great interest to understand the relationship between the formulation, the process variables and the properties of these systems. A multi-scale approach, whose primary purpose is to understand the links between the different temporal and spatial scales within a system and its overall impact on a finished product, is an appropriate way to study these relationships at different levels. As highlighted in previous studies, these links are key for the design and development of new products. The design process for chemical products could be addressed using different solution strategies, such as experiment-based (trial-and-error), model-based, and integrated approach. Recent studies have drawn particular attention to the application of an integrated approach to manage the design process of chemical products, for instance, emulsions The integrated approach is the most appropriate compared to classical design methodologies such as trial-and-error and model-based approaches since higher efficiency and reliability can be achieved at manufacturing an emulsified product. In this respect, it is worth mentioning the current need for dealing with the design of emulsified cosmetic products from an integral perspective, relating elements of the multi-scale approach of emulsion properties with the formulation and the process involved in the manufacturing of these systems. However, most of these products are still designed using heuristic or even artisanal considerations. Consequently, an active area of research in this field is focused on the product properties, formulation, and preparation of emulsions through an integrated approach. In particular, studies have used model-based techniques to predict the properties of emulsions. Most of these studies have focused on the calculation of emulsion properties (e.g., viscosity) using an average value of the drop diameter rather than considering the actual droplets size distribution (DSD). DSD for emulsions can be predicted using Population Balance Models (PBMs). PBM is a proven method and represents a comprehensive modeling framework for the description of the dynamics of properties characterized by distributions, as it is the case for emulsions droplets diameter. Although considerable attention has been devoted to the study and implementation of PBMs in emulsions, there is a lack of studies linking this modeling framework with the integrated design approach of emulsified cosmetic products. This coupling would represent a new feature for the implementation of integrated design strategies for emulsified products since the DSD has a significant effect on emulsified product properties and stability. Based on the above, this work performs an integrated design approach for emulsified cosmetic products. This approach utilizes model-based design techniques within a multiscale framework. In this study, the integrated design approach covers key elements for emulsified products: product formulation and composition, process operational conditions, product properties at different scales, the implementation of a Population Balance Model to couple the DSD for the estimation of product physical properties, as well as the consideration of consumer preference and economic criteria. These components are employed to formulate and solve an optimization problem aimed at achieving the optimal product formulation. Through this approach, we gain valuable insights into the interconnections between product properties at different scales, product formulation, operational conditions, and the product's performance in the market.Gobernación del CesarDoctor en IngenieríaDoctoradoDiseño de productos126 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Química y de AlimentosAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Integrated design of emulsified cosmetic products: coupling a multi-scale approach with population balance modelingTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDEmulsionProduct designPopulation balance modelMultiscale approachIntegrated designCosmetic emulsionIngenieríaAdewunmi, A.A., Kamal, M.S., Amao, A.O., Solling, T.I., 2021. Extracted quartz as efficient natural demulsifier for crude oil-water emulsions: Effect of monovalent/divalent salts, pH and modeling study. J Pet Sci Eng 206, 109069. https://doi.org/10.1016/j.petrol.2021.109069Afoakwa, E.O., Paterson, A., Fowler, M., Vieira, J., 2008. Particle size distribution and compositional effects on textural properties and appearance of dark chocolates. J Food Eng 87, 181–190. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2007.11.025Aguilera-Miguel, A., López-Gonzalez, E., Sadtler, V., Durand, A., Marchal, P., Castel, C., Choplin, L., 2018. Hydrophobically modified dextrans as stabilizers for O/W highly concentrated emulsions. Comparison with commercial non-ionic polymeric stabilizers. Colloids Surf A Physicochem Eng Asp 550, 155–166. https://doi.org/https://doi.org/10.1016/j.colsurfa.2018.04.022Alvarez, O.A., Choplin, L., Sadtler, V., Marchal, P., Steíbeí, M.J., Mougel, J., Baravian, C., 2010. Influence of semibatch emulsification process conditions on the physical characteristics of highly concentrated water-in-oil emulsions. Ind Eng Chem Res. https://doi.org/10.1021/ie9020073Anantasarn, N., Suriyapraphadilok, U., Babi, D.K., 2017. A computer-aided approach for achieving sustainable process design by process intensification. Comput Chem Eng 105, 56–73. https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.02.025Aronson, M.P., Petko, M.F., 1993. Highly Concentrated Water-in-Oil Emulsions: Influence of Electrolyte on Their Properties and Stability. J Colloid Interface Sci 159, 134–149. https://doi.org/https://doi.org/10.1006/jcis.1993.1305Arrhenius, S., 1917. The Viscosity of Solutions. Biochem J 11, 112–133. https://doi.org/10.1042/bj0110112Arrieta-Escobar, J.A., Bernardo, F.P., Orjuela, A., Camargo, M., Morel, L., 2019. Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Comput Chem Eng 122, 265–274. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.08.032Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., Hey Coradin, J., 2011. Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal 57, 160–177. https://doi.org/10.1002/aic.12242Bagajewicz, M.J., 2007. On the role of microeconomics, planning, and finances in product design. AIChE Journal 53, 3155–3170. https://doi.org/10.1002/aic.11332Barbosa-Póvoa, A.P., Pinto, J.M., 2018. Challenges and Perspectives of Process Systems Engineering in Supply Chain Management, in: Eden, M.R., Ierapetritou, M.G., Towler, G.P.B.T.-C.A.C.E. (Eds.), 13 International Symposium on Process Systems Engineering (PSE 2018). Elsevier, pp. 87–96. https://doi.org/https://doi.org/10.1016/B978-0-444-64241-7.50009-4Barel, A.O., Paye, M., Maibach, H.I., 2010. Handbook of Cosmetic Science and Technology. Informa Healthcare USA, New York.Barnes, H.A., Hutton, J.F., Walters, Kenneth., 2005. An introduction to rheology, Rheology series. Elsevier, Amsterdam ;Becher, Paul., 1983. Encyclopedia of emulsion technology. M. Dekker, New York.Becker, P.J., Puel, F., Dubbelboer, A., Janssen, J., Sheibat-Othman, N., 2014. Coupled population balance–CFD simulation of droplet breakup in a high pressure homogenizer. Comput Chem Eng 68, 140–150. https://doi.org/https://doi.org/10.1016/j.compchemeng.2014.05.014Bernardo, F.P., 2016. Integrated Process and Product Design Optimization, BS:CCE. Elsevier. https://doi.org/10.1016/B978-0-444-63683-6.00012-5Bernardo, F.P., Pistikopoulos, E.N., Saraiva, P.M., 2001. Quality costs and robustness criteria in chemical process design optimization. Comput Chem Eng 25, 27–40. https://doi.org/https://doi.org/10.1016/S0098-1354(00)00630-XBernardo, F.P., Saraiva, P.M., 2005. Integrated process and product design optimization: a cosmetic emulsion application, in: Puigjaner, L., Espuña, A.B.T.-C.A.C.E. (Eds.), European Symposium on Computer-Aided Process Engineering-15, 38 European Symposium of the Working Party on Computer Aided Process Engineering. Elsevier, pp. 1507–1512. https://doi.org/https://doi.org/10.1016/S1570-7946(05)80093-8Bilal, M., Iqbal, H.M.N., 2020. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics 7, 24. https://doi.org/10.3390/cosmetics7020024Bird, R.B., Stewart, W.E., Lightfoot, E.N., 2006. Transport Phenomena, Wiley International edition. Wiley.Blin, J.-L., Stébé, M.-J., Lebeau, B., 2016. Hybrid/porous materials obtained from nano-emulsions. Curr Opin Colloid Interface Sci 25, 75–82. https://doi.org/https://doi.org/10.1016/j.cocis.2016.07.002Bogle, I.D.L., 2017. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers. Engineering 3, 161–165. https://doi.org/https://doi.org/10.1016/J.ENG.2017.02.003Borthakur, P., Boruah, P.K., Sharma, B., Das, M.R., 2016. Nanoemulsion: preparation and its application in food industry. Emulsions 153–191. https://doi.org/10.1016/B978-0-12-804306-6.00005-2Braatz, R.D., Alkire, R.C., Seebauer, E., Rusli, E., Gunawan, R., Drews, T.O., Li, X., He, Y., 2006. Perspectives on the design and control of multiscale systems. J Process Control 16, 193–204. https://doi.org/https://doi.org/10.1016/j.jprocont.2005.06.001Brady, J., Dürig, T., Lee, P.I., Li, J.-X., 2017. Chapter 7 - Polymer Properties and Characterization, in: Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R. V (Eds.), Developing Solid Oral Dosage Forms (Second Edition). Academic Press, Boston, pp. 181–223. https://doi.org/https://doi.org/10.1016/B978-0-12-802447-8.00007-8Briceño, M., Salager, J.L., Bertrand, J., 2001. Influence of Dispersed Phase Content and Viscosity on the Mixing of Concentrated Oil-in-Water Emulsions in the Transition Flow Regime. Chemical Engineering Research and Design 79, 943–948. https://doi.org/https://doi.org/10.1205/02638760152721794Brinkman, H.C., 1952. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys 20, 571. https://doi.org/10.1063/1.1700493Brummer, R., Godersky, S., 1999. Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin. Colloids Surf A Physicochem Eng Asp 152, 89–94. https://doi.org/https://doi.org/10.1016/S0927-7757(98)00626-8Brunaud, B., Grossmann, I.E., 2017. Perspectives in multilevel decision-making in the process industry. Frontiers of Engineering Management.Buffo, R.A., Reineccius, G.A., Oehlert, G.W., 2001. Factors affecting the emulsifying and rheological properties of gum acacia in beverage emulsions. Food Hydrocoll 15, 53–66. https://doi.org/https://doi.org/10.1016/S0268-005X(00)00050-3Buitrago Mora, H.M., Piñeros, M.A., Espinosa Moreno, D., Restrepo Restrepo, S., Cardona Jaramillo, J.E.C., Álvarez Solano, Ó.A., Fernandez-Niño, M., González Barrios, A.F., 2019. Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. J Dairy Sci 102, 9749–9762. https://doi.org/https://doi.org/10.3168/jds.2019-16729Calabrese, R. V, Chang, T.P.K., Dang, P.T., 1986. Drop Breakup in Turbulent Stirred-Tank Contactors Part I: Effect of Dispersed-Phase Viscosity 32, 657–666.Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022a. Trends and perspectives on emulsified product design. Curr Opin Chem Eng 35, 100745. https://doi.org/10.1016/j.coche.2021.100745Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022b. Effect of emulsification parameters on the rheology, texture, and physical stability of cosmetic emulsions: A multiscale approach. Chemical Engineering Research and Design 186, 407–415. https://doi.org/https://doi.org/10.1016/j.cherd.2022.08.011Calvo, F., Gómez, J.M., Alvarez, O., Ricardez-Sandoval, L., 2022c. Effect of emulsification parameters on the rheology, texture, and physical stability of cosmetic emulsions: A multiscale approach. Chemical Engineering Research and Design 186, 407–415. https://doi.org/https://doi.org/10.1016/j.cherd.2022.08.011Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2020a. Integrated design of emulsified cosmetic products: A review. Chemical Engineering Research and Design 161, 279–303. https://doi.org/https://doi.org/10.1016/j.cherd.2020.07.014Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2020b. Integrated design of emulsified cosmetic products: A review. Chemical Engineering Research and Design 161, 279–303. https://doi.org/https://doi.org/10.1016/j.cherd.2020.07.014Cao, C., Feng, Y., Kong, B., Xia, X., Liu, M., Chen, J., Zhang, F., Liu, Q., 2021. Textural and gel properties of frankfurters as influenced by various κ-carrageenan incorporation methods. Meat Sci 176, 108483. https://doi.org/https://doi.org/10.1016/j.meatsci.2021.108483Capdevila, M., Maestro, A., Porras, M., Gutiérrez, J.M., 2010. Preparation of Span 80/oil/water highly concentrated emulsions: Influence of composition and formation variables and scale-up. J Colloid Interface Sci 345, 27–33. https://doi.org/https://doi.org/10.1016/j.jcis.2010.01.045Cardona Jaramillo, J.E.C., Achenie, L.E.K., Álvarez, O.A., Carrillo Bautista, M.P., González Barrios, A.F., 2020. The multiscale approach t o the design of bio-based emulsions. Curr Opin Chem Eng 27, 65–71. https://doi.org/https://doi.org/10.1016/j.coche.2019.11.008Chaffart, D., Rasoulian, S., Ricardez-Sandoval, L.A., 2016. Distributional uncertainty analysis and robust optimization in spatially heterogeneous multiscale process systems. AIChE Journal 62, 2374–2390. https://doi.org/10.1002/aic.15215Chaffart, D., Ricardez-Sandoval, L.A., 2018a. Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach. Comput Chem Eng 119, 465–479. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.08.029Chaffart, D., Ricardez-Sandoval, L.A., 2018b. Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach. Comput Chem Eng 119, 465–479. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.08.029Chaim, O., Muschard, B., Cazarini, E., Rozenfeld, H., 2018. Insertion of sustainability performance indicators in an industry 4.0 virtual learning environment. Procedia Manuf 21, 446–453. https://doi.org/https://doi.org/10.1016/j.promfg.2018.02.143Chao, C., Génot, C., Rodriguez, C., Magniez, H., Lacourt, S., Fievez, A., Len, C., Pezron, I., Luart, D., van Hecke, E., 2018. Emollients for cosmetic formulations: Towards relationships between physico-chemical properties and sensory perceptions. Colloids Surf A Physicochem Eng Asp 536, 156–164. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.07.025Chen, G., Tao, D., 2005. An experimental study of stability of oil–water emulsion. Fuel Processing Technology 86, 499–508. https://doi.org/https://doi.org/10.1016/j.fuproc.2004.03.010Chen, W., Hadde, E.K., Chen, J., 2021. Development of a ball back extrusion technique for texture analysis of fluid food. J Texture Stud 52, 461–469. https://doi.org/https://doi.org/10.1111/jtxs.12613Chen, Z., Prüss, J., Warnecke, H.J., 1998. A population balance model for disperse systems: Drop size distribution in emulsion. Chem Eng Sci 53, 1059–1066. https://doi.org/10.1016/S0009-2509(97)00328-XCheng, Y.S., Lam, K.W., Ng, K.M., Ko, R.K.M., Wibowo, C., 2009. An integrative approach to product development-A skin-care cream. Comput Chem Eng 33, 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010Chhabra, R., Basavaraj, M., 2019. Chapter 12 - Product Design and Process Intensification, in: Chhabra, R., Basavaraj, M. (Eds.), Coulson and Richardson’s Chemical Engineering. Butterworth-Heinemann, pp. 657–692. https://doi.org/https://doi.org/10.1016/B978-0-08-101098-3.00013-5Chiari, B.G., de Almeida, M.G.J., Corrêa, M.A., Isaac, V.L.B., 2019. Cosmetics’ Quality Control. https://doi.org/10.5772/51846Chong, J.W., Ng, L.Y., Aboagwa, O.A., Thangalazhy-Gopakumar, S., Muthoosamy, K., Chemmangattuvalappil, N.G., 2021. Computer-Aided Framework for the Design of Optimal Bio-Oil/Solvent Blend with Economic Considerations. Processes 9, 2159. https://doi.org/10.3390/pr9122159Cochran, S., Anthonavage, M., 2015. Fatty Acids, Fatty Alcohols, Synthetic Esters and Glycerin Applications in the Cosmetic Industry BT - Lipids and Skin Health, in: Pappas, A. (Ed.), . Springer International Publishing, Cham, pp. 311–319. https://doi.org/10.1007/978-3-319-09943-9_21Conte, E., Gani, R., Ng, K.M., 2011. Design of formulated products: A systematic methodology. AIChE Journal. https://doi.org/10.1002/aic.12458Corazza, M., Lauriola, M.M., Zappaterra, M., Bianchi, A., Virgili, A., 2010. Surfactants, skin cleansing protagonists. Journal of the European Academy of Dermatology and Venereology 24, 1–6. https://doi.org/10.1111/j.1468-3083.2009.03349.xCosta, R., Moggridge, G.D., Saraiva, P.M., 2006. Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal 52, 1976–1986. https://doi.org/10.1002/aic.10880Costandy, J.G., Edgar, T.F., Baldea, M., 2019. Switching from Batch to Continuous Reactors Is a Trajectory Optimization Problem. Ind Eng Chem Res 58, 13718–13736. https://doi.org/10.1021/acs.iecr.9b01126Coulaloglou, C.A., Tavlarides, L.L., 1977. Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32, 1289–1297. https://doi.org/https://doi.org/10.1016/0009-2509(77)85023-9Cristini, V., Guido, S., Alfani, A., Bławzdziewicz, J., Loewenberg, M., 2003. Drop breakup and fragment size distribution in shear flow. J Rheol (N Y N Y) 47, 1283–1298. https://doi.org/10.1122/1.1603240Crowley, T.J., Meadows, E.S., Kostoulas, E., Doyle III, F.J., 2000. Control of particle size distribution described by a population balance model of semibatch emulsion polymerization. J Process Control 10, 419–432. https://doi.org/https://doi.org/10.1016/S0959-1524(00)00017-2Cussler, E.L., Moggridge, G.D., 2011. Chemical product design. Cambridge University Press.Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends® in Signal Processing 7, 197–387. https://doi.org/10.1561/2000000039Deng, S., Aydin, R., Kwong, C.K., Huang, Y., 2014. Integrated product line design and supplier selection: A multi-objective optimization paradigm. Comput Ind Eng 70, 150–158. https://doi.org/https://doi.org/10.1016/j.cie.2014.01.011Derkach, S.R., 2009. Rheology of emulsions. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2009.07.001Desbrières, J., López-Gonzalez, E., Aguilera-miguel, A., Sadtler, V., Marchal, P., Castel, C., Choplin, L., Durand, A., 2017. Dilational rheology of oil/water interfaces covered by amphiphilic polysaccharides derived from dextran. Carbohydr Polym 177, 460–468. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.09.011Dou, R., Lin, D., Nan, G., Lei, S., 2018. A method for product personalized design based on prospect theory improved with interval reference. Comput Ind Eng 125, 708–719. https://doi.org/https://doi.org/10.1016/j.cie.2018.04.056Dubuisson, P., Picard, C., Grisel, M., Savary, G., 2018. How does composition influence the texture of cosmetic emulsions? Colloids Surf A Physicochem Eng Asp 536, 38–46. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.08.001Edwards, M.F., 2006a. Product engineering: Some challenges for chemical engineers. Chemical Engineering Research and Design. https://doi.org/10.1205/cherd05030Edwards, M.F., 2006b. Product engineering: Some challenges for chemical engineers. Chemical Engineering Research and Design 84, 255–260. https://doi.org/10.1205/cherd05030Einstein, A., 1906. Eine neue Bestimmung der Moleküldimensionen. Ann Phys 324, 289–306. https://doi.org/10.1002/andp.19063240204El-Aasser, M.S., Lack, C.D., Choi, Y.T., Min, T.I., Vanderhoff, J.W., Fowkes, F.M., 1984. Interfacial aspects of miniemulsions and miniemulsion polymers. Colloids and Surfaces 12, 79–97. https://doi.org/https://doi.org/10.1016/0166-6622(84)80091-8El-Hamouz, A., 2009. Drop Size Distribution in a Standard Twin‐Impeller Batch Mixer at High Dispersed‐Phase Volume Fraction. Chem Eng Technol 32, 1203–1210. https://doi.org/10.1002/ceat.200900038Eskin, D., Ma, S.M., Taylor, S., Abdallah, W., 2021. Modeling droplet dispersion in a turbulent tubing flow at a high droplet holdup. Chemical Engineering Research and Design 168, 71–83. https://doi.org/https://doi.org/10.1016/j.cherd.2021.01.026Estanqueiro, M., Amaral, M.H., Sousa Lobo, J.M., 2016. Comparison between sensory and instrumental characterization of topical formulations: impact of thickening agents. Int J Cosmet Sci 38. https://doi.org/10.1111/ics.12302Farn, R.J., 2006. Chemistry and Technology of Surfactants, First. ed, Chemistry and Technology of Surfactants. Blackwell Publishing Ltd, Oxford. https://doi.org/10.1002/9780470988596Farris, P.K., 2014. Cosmeceuticals and Cosmetic Practice. Wiley-Blackwell.Farzad, R., Puttinger, S., Pirker, S., Schneiderbauer, S., 2018. Investigation of droplet size distribution for liquid-liquid emulsions in Taylor-Couette flows. J Dispers Sci Technol 39, 250–258. https://doi.org/10.1080/01932691.2017.1312431Fuller, G.G., Vermant, J., 2012. Complex Fluid-Fluid Interfaces: Rheology and Structure. Annu Rev Chem Biomol Eng 3, 519–543. https://doi.org/10.1146/annurev-chembioeng-061010-114202Fung, K.Y., Ng, K.M., Zhang, L., Gani, R., 2016. A grand model for chemical product design. Comput Chem Eng 91, 15–27. https://doi.org/https://doi.org/10.1016/j.compchemeng.2016.03.009Galindo-Alvarez, J., Sadtler, V., Marchal, P., Perrin, P., Tribet, C., Marie, E., Durand, A., 2012. Nanoemulsions with enhanced temperature stability using thermo-sensitive association of nonionic surfactant and amphiphilic polyelectrolytes. Colloids Surf A Physicochem Eng Asp 396, 115–121. https://doi.org/https://doi.org/10.1016/j.colsurfa.2011.12.051Gallegos, C., Franco, J.M., 1999. Rheology of food, cosmetics and pharmaceuticals. Curr Opin Colloid Interface Sci 4, 288–293. https://doi.org/https://doi.org/10.1016/S1359-0294(99)00003-5Gallo-Molina, J.P., Ratkovich, N., Alvarez, O., 2018. The Application of Computational Fluid Dynamics to the Multiscale Study of Oil-in-Water Emulsions. Ind Eng Chem Res 57, 578–589. https://doi.org/10.1021/acs.iecr.7b03846Galus, S., Kadzińska, J., 2015. Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45, 273–283. https://doi.org/10.1016/J.TIFS.2015.07.011Gani, R., 2019. Group contribution-based property estimation methods: advances and perspectives. Curr Opin Chem Eng 23, 184–196. https://doi.org/https://doi.org/10.1016/j.coche.2019.04.007Gani, R., 2005. Integrated chemical product-process design: CAPE perspectives. Computer Aided Chemical Engineering 20, 21–30. https://doi.org/10.1016/S1570-7946(05)80126-9Gani, R., 2004. Chemical product design : challenges and opportunities 28, 2441–2457. https://doi.org/10.1016/j.compchemeng.2004.08.010Gani, R., Dam-Johansen, K., Ng, K., 2007. Chapter 1 Chemical product design — A brief overview. Computer Aided Chemical Engineering 23. https://doi.org/10.1016/S1570-7946(07)80004-6Garcia-Herreros, P., Zhang, L., Misra, P., Arslan, E., Mehta, S., Grossmann, I.E., 2016. Mixed-integer bilevel optimization for capacity planning with rational markets. Comput Chem Eng 86, 33–47. https://doi.org/https://doi.org/10.1016/j.compchemeng.2015.12.007Garg, N., Woodley, J.M., Gani, R., Kontogeorgis, G.M., 2019. Sustainable solutions by integrating process synthesis-intensification. Comput Chem Eng 126, 499–519. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.04.030Gaukel, V., Bernewitz, R., Schuchmann, H., 2015. Emulsions’ Drop Size Distribution, Measurement of BT - Encyclopedia of Membranes, in: Drioli, E., Giorno, L. (Eds.), . Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–2. https://doi.org/10.1007/978-3-642-40872-4_1885-1Georgieva, D., Schmitt, V., Leal-Calderon, F., Langevin, D., 2009. On the Possible Role of Surface Elasticity in Emulsion Stability. Langmuir 25, 5565–5573. https://doi.org/10.1021/la804240eGhobakhloo, M., 2020. Industry 4.0, digitization, and opportunities for sustainability. J Clean Prod 252, 119869. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119869Gilbert, L., Loisel, V., Savary, G., Grisel, M., Picard, C., 2013a. Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydr Polym 93, 644–650. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.12.028Gilbert, L., Picard, C., Savary, G., Grisel, M., 2013b. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids Surf A Physicochem Eng Asp 421, 150–163. https://doi.org/10.1016/j.colsurfa.2013.01.003Gilbert, L., Picard, C., Savary, G., Grisel, M., 2012. Impact of Polymers on Texture Properties of Cosmetic Emulsions: A Methodological Approach. J Sens Stud 27, 392–402. https://doi.org/https://doi.org/10.1111/joss.12001Gilbert, L., Savary, G., Grisel, M., Picard, C., 2013c. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometrics and Intelligent Laboratory Systems 124, 21–31. https://doi.org/https://doi.org/10.1016/j.chemolab.2013.03.002Gómez, I., Calvo, F., Gómez, J.M., Ricardez-Sandoval, L., Alvarez, O., 2022. A multiscale approach for the integrated design of emulsified cosmetic products. Chem Eng Sci 251, 117493. https://doi.org/https://doi.org/10.1016/j.ces.2022.117493Gomez, J.D., Pradilla, D., Alvarez, O., 2021. A Multiscale Approach to the Design and Manipulation of Oil-in-Water Emulsion-Based Products. International Journal of Chemical Engineering 2021, 8897983. https://doi.org/10.1155/2021/8897983Gore, E., Picard, C., Savary, G., 2018. Spreading behavior of cosmetic emulsions: Impact of the oil phase. Biotribology 16, 17–24. https://doi.org/https://doi.org/10.1016/j.biotri.2018.09.003Govender, R., Abrahmsén-Alami, S., Larsson, A., Folestad, S., 2020. Therapy for the individual: Towards patient integration into the manufacturing and provision of pharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics 149, 58–76. https://doi.org/https://doi.org/10.1016/j.ejpb.2020.01.001Gräbner, D., Hoffmann, H., 2017. Rheology of Cosmetic Formulations, in: Cosmetic Science and Technology. Elsevier, pp. 471–488. https://doi.org/10.1016/B978-0-12-802005-0.00027-6Guerrero, A., Partal, P., Gallegos, C., 1998. Linear viscoelastic properties of sucrose ester-stabilized oil-in-water emulsions, Journal of Rheology. https://doi.org/10.1122/1.550965Guindon, G.E., Paraje, G.R., Chaloupka, F.J., 2015. The Impact of Prices and Taxes on the Use of Tobacco Products in Latin America and the Caribbean. Am J Public Health 105, e9–e19. https://doi.org/10.2105/AJPH.2014.302396Guth, E., Simha, R., 1936. Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen. Kolloid-Zeitschrift 74, 266–275. https://doi.org/10.1007/BF01428643Gutiérrez, J.M., González, C., Maestro, A., Solè, I., Pey, C.M., Nolla, J., 2008. Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13, 245–251. https://doi.org/10.1016/j.cocis.2008.01.005Håkansson, A., Innings, F., Trägårdh, C., Bergenståhl, B., 2013. A high-pressure homogenization emulsification model—Improved emulsifier transport and hydrodynamic coupling, Chemical Engineering Science. https://doi.org/10.1016/j.ces.2013.01.011Hart, W.E., Laird, C.D., Watson, J.-P., Woodruff, D.L., Hackebeil, G.A., Nicholson, B.L., Siirola, J.D., 2017. Pyomo — Optimization Modeling in Python. Second Edition., Springer Optimization and Its Applications.Hayati, I.N., Che Man, Y. Bin, Tan, C.P., Aini, I.N., 2007. Stability and rheology of concentrated O/W emulsions based on soybean oil/palm kernel olein blends. Food Research International 40, 1051–1061. https://doi.org/https://doi.org/10.1016/j.foodres.2007.05.008Hill, M., 2009. Chemical Product Engineering—The third paradigm. Comput Chem Eng 33, 947–953. https://doi.org/https://doi.org/10.1016/j.compchemeng.2008.11.013Hinze, J.O., 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal 1, 289–295. https://doi.org/10.1002/aic.690010303Hong, I.K., Kim, S.I., Lee, S.B., 2018. Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry 67, 123–131. https://doi.org/https://doi.org/10.1016/j.jiec.2018.06.022Hua, X., Ding, P., Wang, M., Chi, K., Yang, R., Cao, Y., 2019. Emulsions prepared by ultrahigh methoxylated pectin through the phase inversion method. Int J Biol Macromol 128, 167–175. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.01.111Huang, X., Kakuda, Y., Cui, W., 2001. Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocoll 15, 533–542. https://doi.org/https://doi.org/10.1016/S0268-005X(01)00091-1Huibers, P.D.T., Lobanov, V.S., Katritzky, A.R., Shah, D.O., Karelson, M., 1996. Prediction of Critical Micelle Concentration Using a Quantitative Structure−Property Relationship Approach. 1. Nonionic Surfactants. Langmuir 12, 1462–1470. https://doi.org/10.1021/la950581jHung, H.-F., Kao, H.-P., Juang, Y.-S., 2008. An integrated information system for product design planning. Expert Syst Appl 35, 338–349. https://doi.org/https://doi.org/10.1016/j.eswa.2007.07.030Ingram, T.G., 1932. The viscosity of a fluid containing small drops of another fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 138, 41–48. https://doi.org/10.1098/rspa.1932.0169Iwata, H., Shimada, K., 2013. Formulas, Ingredients and Production of Cosmetics, Formulas, Ingredients and Production of Cosmetics- technology of skin- and hair-care products in Japan. Springer Japan, Tokyo. https://doi.org/10.1007/978-4-431-54061-8Jensen, G.V., Lund, R., Gummel, J., Monkenbusch, M., Narayanan, T., Pedersen, J.S., 2013. Direct Observation of the Formation of Surfactant Micelles under Nonisothermal Conditions by Synchrotron SAXS. J Am Chem Soc 135, 7214–7222. https://doi.org/10.1021/ja312469nJia, F., Wang, X., Mustafee, N., Hao, L., 2016. Investigating the feasibility of supply chain-centric business models in 3D chocolate printing: A simulation study. Technol Forecast Soc Change 102, 202–213. https://doi.org/https://doi.org/10.1016/j.techfore.2015.07.026Jiao, J., Ma, Q., Tseng, M.M., 2003. Towards high value-added products and services: mass customization and beyond. Technovation 23, 809–821. https://doi.org/https://doi.org/10.1016/S0166-4972(02)00023-8Johannesson, J., Khan, J., Hubert, M., Teleki, A., Bergström, C.A.S., 2021. 3D-printing of solid lipid tablets from emulsion gels. Int J Pharm 597, 120304. https://doi.org/https://doi.org/10.1016/j.ijpharm.2021.120304Kalakul, S., Cignitti, S., Zhang, L., Gani, R., 2016. Integrated Computer-aided Framework for Sustainable Chemical Product Design and Evaluation, Computer Aided Chemical Engineering. Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-63428-3.50395-7Kékesi, T., Amberg, G., Prahl Wittberg, L., 2016. Drop deformation and breakup in flows with shear. Chem Eng Sci 140, 319–329. https://doi.org/https://doi.org/10.1016/j.ces.2015.10.019Kempin, M.V., Kraume, M., Drews, A., 2020. W/O Pickering emulsion preparation using a batch rotor-stator mixer – Influence on rheology, drop size distribution and filtration behavior. J Colloid Interface Sci 573, 135–149. https://doi.org/https://doi.org/10.1016/j.jcis.2020.03.103Kennedy, K., Cal, R., Casey, R., Lopez, C., Adelfio, A., Molloy, B., Wall, A.M., Holton, T.A., Khaldi, N., 2020. The anti-ageing effects of a natural peptide discovered by Artificial Intelligence. Int J Cosmet Sci n/a. https://doi.org/10.1111/ics.12635Kent, P., Saunders, B.R., 2001. The Role of Added Electrolyte in the Stabilization of Inverse Emulsions. J Colloid Interface Sci 242, 437–442. https://doi.org/https://doi.org/10.1006/jcis.2001.7792Keskin, N.B., Zeevi, A., 2014. Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies. Oper Res 62, 1142–1167.Khadem, B., Sheibat-Othman, N., 2019. Modeling of double emulsions using population balance equations. Chemical Engineering Journal 366, 587–597. https://doi.org/https://doi.org/10.1016/j.cej.2019.02.092Khajehesamedini, A., Sadatshojaie, A., Parvasi, P., Reza Rahimpour, M., Mehdi Naserimojarad, M., 2018. Experimental and theoretical study of crude oil pretreatment using low-frequency ultrasonic waves. Ultrason Sonochem 48, 383–395. https://doi.org/https://doi.org/10.1016/j.ultsonch.2018.05.032Kimaev, G., Ricardez-Sandoval, L.A., 2020. Artificial Neural Network Discrimination for Parameter Estimation and Optimal Product Design of Thin Films Manufactured by Chemical Vapor Deposition. The Journal of Physical Chemistry C 124, 18615–18627. https://doi.org/10.1021/acs.jpcc.0c05250Kimaev, G., Ricardez-Sandoval, L.A., 2019. Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks. Chem Eng Sci 207, 1230–1245. https://doi.org/https://doi.org/10.1016/j.ces.2019.07.044Klatt, K.U., Marquardt, W., 2009. Perspectives for process systems engineering-Personal views from academia and industry. Comput Chem Eng 33, 536–550. https://doi.org/10.1016/j.compchemeng.2008.09.002Kolmogorov, A.N., 1949. Drop breakage in turbulent flow. Dokl Akad Nauk SSSR 66, 825–828.Kontogeorgis, G.M., Mattei, M., Ng, K.M., Gani, R., 2019. An Integrated Approach for the Design of Emulsified Products. AIChE Journal 65, 75–86. https://doi.org/10.1002/aic.16363Korać, R., Krajisnik, D., Milić, J., 2015. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application. Int J Cosmet Sci 38. https://doi.org/10.1111/ics.12282Krieger, I.M., Dougherty, T.J., 1959. A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres. Transactions of the Society of Rheology 3, 137–152. https://doi.org/10.1122/1.548848Krstonošić, V., Dokić, L., Nikolić, I., Milanović, M., 2015. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll 45, 9–17. https://doi.org/https://doi.org/10.1016/j.foodhyd.2014.10.024Krstonošić, V., Milanović, M., Dokić, L., 2019. Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction. Food Hydrocoll 87, 108–118. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.07.040Kumar, S., Ramkrishna, D., 1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem Eng Sci 51, 1311–1332. https://doi.org/https://doi.org/10.1016/0009-2509(96)88489-2Kundu, P., Kumar, V., Mishra, I.M., 2015. Modeling the steady-shear rheological behavior of dilute to highly concentrated oil-in-water (o/w) emulsions: Effect of temperature, oil volume fraction and anionic surfactant concentration. J Pet Sci Eng 129, 189–204. https://doi.org/https://doi.org/10.1016/j.petrol.2015.03.008Lampe, M., Stavrou, M., Schilling, J., Sauer, E., Gross, J., Bardow, A., 2015. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT. Comput Chem Eng 81, 278–287. https://doi.org/https://doi.org/10.1016/j.compchemeng.2015.04.008Langevin, D., 2019. Coalescence in foams and emulsions: Similarities and differences. Curr Opin Colloid Interface Sci 44, 23–31. https://doi.org/https://doi.org/10.1016/j.cocis.2019.09.001Leal-Calderon, F., Schmitt, V., Bibette, J., 2007. Emulsion Science Basic Principles, Second. ed. Springer.Lebaz, N., Sheibat-Othman, N., 2019. A population balance model for the prediction of breakage of emulsion droplets in SMX+ static mixers. Chemical Engineering Journal 361, 625–634. https://doi.org/https://doi.org/10.1016/j.cej.2018.12.090Leong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M., 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16, 721–727. https://doi.org/https://doi.org/10.1016/j.ultsonch.2009.02.008Li, W., Leong, T.S.H., Ashokkumar, M., Martin, G.J.O., 2018. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics 20, 86–96. https://doi.org/10.1039/C7CP07133GLiao, Y., Lucas, D., 2010. A literature review on mechanisms and models for the coalescence process of fluid particles. Chem Eng Sci 65, 2851–2864. https://doi.org/https://doi.org/10.1016/j.ces.2010.02.020Liao, Y., Lucas, D., 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci 64, 3389–3406. https://doi.org/https://doi.org/10.1016/j.ces.2009.04.026Limthin, D., Phromyothin, D., 2019. Improving Stability of Nanoemulsion Containing Centella asiatica, Lycopersicon Esculentum Mil. and Moringa oleifera Lam. Extract. Mater Today Proc 17, 1852–1863. https://doi.org/https://doi.org/10.1016/j.matpr.2019.06.223Lin, T.J., 2010. Manufacturing cosmetic emulsions: pragmatic troubleshooting and enrgy conservation.Lin, Y., Yu, S., Zheng, P., Qiu, L., Wang, Y., Xu, X., 2017. VR-based Product Personalization Process for Smart Products. Procedia Manuf 11, 1568–1576. https://doi.org/https://doi.org/10.1016/j.promfg.2017.07.297Liu, S., Lin, Y.-T., Bhat, B., Kuan, K.-Y., Kwon, J.S.-I., Akbulut, M., 2021. pH-responsive viscoelastic supramolecular viscosifiers based on dynamic complexation of zwitterionic octadecylamidopropyl betaine and triamine for hydraulic fracturing applications. RSC Adv 11, 22517–22529. https://doi.org/10.1039/D1RA00257KLu, H., Shi, Q., Huang, Z., 2014. pH-Responsive Anionic Wormlike Micelle Based on Sodium Oleate Induced by NaCl. J Phys Chem B 118, 12511–12517. https://doi.org/10.1021/jp506809mLyklema, J. (Ed.), 2000. Interfacial Tension: Measurement, in: Liquid-Fluid Interfaces. Academic Press, pp. 1.1-1.87. https://doi.org/https://doi.org/10.1016/S1874-5679(00)80004-5Maa, Y.-F., Hsu, C., 1996. Microencapsulation reactor scale-up by dimensional analysis. J Microencapsul 13, 53–66. https://doi.org/10.3109/02652049609006803Mahajan, V., Green, P.E., Goldberg, S.M., 1982. A Conjoint Model for Measuring Self- and Cross-Price/Demand Relationships. Journal of Marketing Research 19, 334–342. https://doi.org/10.2307/3151567Maindarkar, S.N., Hoogland, H., Henson, M.A., 2015a. Achieving Target Emulsion Drop Size Distributions Using Population Balance Equation Models of High-Pressure Homogenization. Ind Eng Chem Res 54, 10301–10310. https://doi.org/10.1021/acs.iecr.5b01195Maindarkar, S.N., Hoogland, H., Henson, M.A., 2015b. Predicting the combined effects of oil and surfactant concentrations on the drop size distributions of homogenized emulsions. Colloids Surf A Physicochem Eng Asp 467, 18–30. https://doi.org/10.1016/j.colsurfa.2014.11.032Martin-Piñero, M.J., Carmona, J.A., Muñoz, J., Alfaro-Rodriguez, M.-C., 2019. Effect of heating temperature of a novel wheat-derived surfactant on a mixture of thyme essential oil/surfactant and on the final emulsions. Colloids Surf A Physicochem Eng Asp 579, 123649. https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.123649Masalova, I., Malkin, a. Ya., 2008. Master curves for elastic and plastic properties of highly concentrated emulsions. Colloid Journal 70, 327–336. https://doi.org/10.1134/S1061933X08030101Masalova, I., Malkin, A.Ya., 2007. Rheology of Highly Concentrated Emulsions – Concentration and Droplet Size Dependencies. Applied Rheology. https://doi.org/10.1515/arh-2007-0011Mattei, M., Kontogeorgis, G.M., Gani, R., 2014. A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilib 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030Mattei, M., Kontogeorgis, G.M., Gani, R., 2013. Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method. Ind Eng Chem Res 52, 12236–12246. https://doi.org/10.1021/ie4016232Mattei, M., Kontogeorgis, G.M., Gani, R., 2012. A Systematic Methodology for Design of Emulsion Based Chemical Products, in: Karimi, I.A., Srinivasan, R.B.T.-C.A.C.E. (Eds.), 11 International Symposium on Process Systems Engineering. Elsevier, pp. 220–224. https://doi.org/https://doi.org/10.1016/B978-0-444-59507-2.50036-6McClements, D.J., 2012. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 17, 235–245. https://doi.org/10.1016/j.cocis.2012.06.002McClements, D.J., 2005. Food Emulsions: Principles, Practicies, and Techniques, Second. ed, Food Emulsions. CRC PRESS.McMullen, R.L., Gorcea, M., Chen, S., 2016. Emulsions and their Characterization by Texture Profile Analysis, in: Handbook of Formulating Dermal Applications. John Wiley & Sons, Ltd, pp. 129–153. https://doi.org/https://doi.org/10.1002/9781119364221.ch6Mercado, R., Fuentes, L., 2017. Measure of asphalt emulsions stability by oscillatory rheology. Constr Build Mater 155, 838–845. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.08.095Mercado, R., Fuentes Pumarejo, L., 2016. Asphalt emulsions formulation: State-of-the-art and dependency of formulation on emulsions properties. Constr Build Mater 123, 162–173. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.06.129Mercado, R.A., Salager, J.L., Sadtler, V., Marchal, P., Choplin, L., 2014. Breaking of a cationic amine oil-in-water emulsion by pH increasing: Rheological monitoring to modelize asphalt emulsion rupture. Colloids Surf A Physicochem Eng Asp 458, 63–68. https://doi.org/https://doi.org/10.1016/j.colsurfa.2014.03.109Miller, D.J., Henning, T., Grünbein, W., 2001. Phase inversion of W/O emulsions by adding hydrophilic surfactant — a technique for making cosmetics products. Colloids Surf A Physicochem Eng Asp 183–185, 681–688. https://doi.org/https://doi.org/10.1016/S0927-7757(01)00494-0Mitsui, T., 1997. New Cosmetic Science. Elsevier Science.Mooney, M., 1951. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6, 162–170. https://doi.org/https://doi.org/10.1016/0095-8522(51)90036-0Morrison, I.D., Ross, S., 2002. Colloidal dispersions : suspensions, emulsions, and foams. Wiley-Interscience, New York.Mougel, J., Alvarez, O., Baravian, C., Caton, F., Marchal, P., Stébé, M.-J., Choplin, L., 2006. Aging of an unstable w/o gel emulsion with a nonionic surfactant. Rheol Acta 45, 555–560. https://doi.org/10.1007/s00397-006-0089-zMuda, H., Aziz, A., Taher, Z., Aziz, R., 2017. Cosmeceuticals and Natural Cosmetics. pp. 126–175.Mulqueen, M., Blankschtein, D., 2002. Theoretical and Experimental Investigation of the Equilibrium Oil−Water Interfacial Tensions of Solutions Containing Surfactant Mixtures. Langmuir 18, 365–376. https://doi.org/10.1021/la010993uMyers, D., 2006. Surfactant Science and Technology, Third Edit. ed. WILEY-INTERSCIENCE. https://doi.org/10.1016/J.JCIS.2005.10.044Myers, Drew., 1999. Surfaces, interfaces and colloids : principles and applications, 2nd ed. ed, TA - TT -. Wiley-Vch, New York SE - XIX, 501 p. ; 24 cm.Ng, K.M., Gani, R., 2019. Chemical product design: Advances in and proposed directions for research and teaching. Comput Chem Eng 126, 147–156. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.04.008Ng, K.M., Gani, R., 2018. Chemical Product Design: Advances in Research and Teaching. Computer Aided Chemical Engineering 44, 21–32. https://doi.org/10.1016/B978-0-444-64241-7.50003-3Ng, K.M., Gani, R., Kim, D.-J., 2006. Chemical Product Design Toward a Perspective Through Case Studies. Elsevier Science.Ng, L.Y., Chemmangattuvalappil, N.G., Ng, D.K.S., 2015. Robust chemical product design via fuzzy optimisation approach. Comput Chem Eng 83, 186–202. https://doi.org/https://doi.org/10.1016/j.compchemeng.2015.01.007Niu, H., Wang, W., Dou, Z., Chen, Xianwei, Chen, Xianxiang, Chen, H., Fu, X., 2023. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 311, 102813. https://doi.org/https://doi.org/10.1016/j.cis.2022.102813Nopens, I., Torfs, E., Ducoste, J., Vanrolleghem, P.A., Gernaey, K. V., 2015. Population balance models: A useful complementary modelling framework for future WWTP modelling. Water Science and Technology 71, 159–167. https://doi.org/10.2166/wst.2014.500Oldroyd, J.G., 1955. The Effect of Interfacial Stabilizing Films on the Elastic and Viscous Properties of Emulsions. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 232, 567–577. https://doi.org/10.1098/rspa.1955.0240Otsubo, Y., Prud’homme, R.K., 1994. Effect of drop size distribution on the flow behavior of oil-in-water emulsions. Rheol Acta 33, 303–306. https://doi.org/10.1007/BF00366956Pacek, A.W., Man, C.C., Nienow, A.W., 1998. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem Eng Sci 53, 2005–2011.Pagano, A.P.E., Khalid, N., Kobayashi, I., Nakajima, M., Neves, M.A., Bastos, E.L., 2018. Microencapsulation of betanin in monodisperse W/O/W emulsions. Food Research International 109, 489–496. https://doi.org/10.1016/J.FOODRES.2018.04.053Pahari, S., Bhadriraju, B., Akbulut, M., Kwon, J.S.-I., 2021a. A slip-spring framework to study relaxation dynamics of entangled wormlike micelles with kinetic Monte Carlo algorithm. J Colloid Interface Sci 600, 550–560. https://doi.org/10.1016/j.jcis.2021.05.032Pahari, S., Moon, J., Akbulut, M., Hwang, S., Kwon, J.S.-I., 2021b. Model predictive control for wormlike micelles (WLMs): Application to a system of CTAB and NaCl. Chemical Engineering Research and Design 174, 30–41. https://doi.org/https://doi.org/10.1016/j.cherd.2021.07.023Pal, R., 2011. Influence of interfacial rheology on the viscosity of concentrated emulsions. J Colloid Interface Sci 356, 118–122. https://doi.org/https://doi.org/10.1016/j.jcis.2010.12.068Pal, R., 2001. Novel viscosity equations for emulsions of two immiscible liquids. J Rheol (N Y N Y) 45, 509–520. https://doi.org/10.1122/1.1339249Parente, M.E., Gámbaro, A., Ares, G., 2008. Sensory characterization of emollients. J Sens Stud 23, 149–161. https://doi.org/10.1111/j.1745-459X.2007.00136.xParuta-Tuarez, E., Marchal, P., 2013. Association of Percolation Theory with Princen’s Approach To Model the Storage Modulus of Highly Concentrated Emulsions. Ind Eng Chem Res 52, 11787–11791. https://doi.org/10.1021/ie401414uParuta-Tuarez, E., Sadtler, V., Marchal, P., Choplin, L., Salager, J.-L., 2011. Making Use of the Formulation−Composition Map To Prepare Highly Concentrated Emulsions with Particular Rheological Properties. Ind Eng Chem Res 50, 2380–2387. https://doi.org/10.1021/ie101467hPepicelli, M., Verwijlen, T., Tervoort, T.A., Vermant, J., 2017. Characterization and modelling of Langmuir interfaces with finite elasticity. Soft Matter 13, 5977–5990. https://doi.org/10.1039/C7SM01100HPetzold, L., 1983. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. SIAM Journal on Scientific and Statistical Computing 4, 136–148. https://doi.org/10.1137/0904010Picchioni, F., Broekhuis, A.A., 2012. Material properties and processing in chemical product design. Curr Opin Chem Eng 1, 459–464. https://doi.org/10.1016/j.coche.2012.08.002Piccione, P.M., 2019. Realistic interplays between data science and chemical engineering in the first quarter of the 21st century: Facts and a vision. Chemical Engineering Research and Design 147, 668–675. https://doi.org/10.1016/j.cherd.2019.05.046Pichot, R., Spyropoulos, F., Norton, I.T., 2010. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J Colloid Interface Sci 352, 128–135. https://doi.org/https://doi.org/10.1016/j.jcis.2010.08.021Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., Mirade, P.-S., 2019. Toward the design of functional foods and biobased products by 3D printing: A review. Trends Food Sci Technol 86, 188–198. https://doi.org/https://doi.org/10.1016/j.tifs.2019.02.023Pourakaberian, A., Ayatollahi, S., Shirazi, M.M., Ghotbi, C., Sisakhti, H., 2021. A systematic study of asphaltic sludge and emulsion formation damage during acidizing process: Experimental and modeling approach. J Pet Sci Eng 207, 109073. https://doi.org/https://doi.org/10.1016/j.petrol.2021.109073Pradilla, D., Barrera, A., Sætran, M.G., Sørland, G., Alvarez, O., 2018. Mechanisms of Physical Stabilization of Concentrated Water-In-Oil Emulsions Probed by Pulse Field Gradient Nuclear Magnetic Resonance and Rheology through a Multiscale Approach. Langmuir 34, 9489–9499. https://doi.org/10.1021/acs.langmuir.8b01393Pradilla, D., Vargas, W., Alvarez, O., 2015. The application of a multi-scale approach to the manufacture of concentrated and highly concentrated emulsions. Chemical Engineering Research and Design 95, 162–172. https://doi.org/10.1016/j.cherd.2014.10.016Princen, H.M., Kiss, A.D., 1989. Rheology of foams and highly concentrated emulsions: IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions. J Colloid Interface Sci 128, 176–187. https://doi.org/https://doi.org/10.1016/0021-9797(89)90396-2Princen, H.M., Kiss, A.D., 1986. Rheology of foams and highly concentrated emulsions: III. Static shear modulus. J Colloid Interface Sci 112, 427–437. https://doi.org/https://doi.org/10.1016/0021-9797(86)90111-6Qian, L., Zhang, H., 2011. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. Journal of Chemical Technology & Biotechnology 86, 172–184. https://doi.org/https://doi.org/10.1002/jctb.2495Qin, C., Chen, C., Xiao, Q., Yang, N., Yuan, C., Kunkelmann, C., Cetinkaya, M., Mülheims, K., 2016. CFD-PBM simulation of droplets size distribution in rotor-stator mixing devices. Chem Eng Sci 155, 16–26. https://doi.org/https://doi.org/10.1016/j.ces.2016.07.034Quemada, D., 1977. Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16, 82–94. https://doi.org/10.1007/BF01516932Quintão, F.J.O., Tavares, R.S.N., Vieira-Filho, S.A., Souza, G.H.B., Santos, O.D.H., 2013. Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia 23, 101–107. https://doi.org/10.1590/S0102-695X2013005000001Rafiei, M., Ricardez-Sandoval, L.A., 2020. New frontiers, challenges, and opportunities in integration of design and control for enterprise-wide sustainability. Comput Chem Eng 132, 106610. https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.106610Raikar, N.B., 2010. Prediction And Manipulation Of Drop Size Distribution Of Emulsions Using Population Balance Equation Models For High-Pressure Homogenization 1–174.Raikar, N.B., Bhatia, S.R., Malone, M.F., Henson, M.A., 2009. Experimental studies and population balance equation models for breakage prediction of emulsion drop size distributions. Chem Eng Sci 64, 2433–2447. https://doi.org/https://doi.org/10.1016/j.ces.2009.01.062Ramaswamy, S., DeClerck, N., 2018a. Customer Perception Analysis Using Deep Learning and NLP. Procedia Comput Sci 140, 170–178. https://doi.org/https://doi.org/10.1016/j.procs.2018.10.326Ramaswamy, S., DeClerck, N., 2018b. Customer Perception Analysis Using Deep Learning and NLP. Procedia Comput Sci 140, 170–178. https://doi.org/https://doi.org/10.1016/j.procs.2018.10.326Rámirez, M., Bullón, J., Andérez, J., Mira, I., Salager, J.-L., 2002. Drop Size Distribution Bimodality and Its Effect on O/W Emulsion Viscosity. J Dispers Sci Technol 23, 309–321. https://doi.org/10.1080/01932690208984207Rao, N., Lele, A.K., Patwardhan, A.W., 2022. Optimization of Liquid Organic Hydrogen Carrier (LOHC) dehydrogenation system. Int J Hydrogen Energy 47, 28530–28547. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.06.197Rasoulian, S., Ricardez-Sandoval, L.A., 2015. Robust multivariable estimation and control in an epitaxial thin film growth process under uncertainty. J Process Control 34, 70–81. https://doi.org/https://doi.org/10.1016/j.jprocont.2015.07.002Rasoulian, S., Ricardez-Sandoval, L.A., 2014. Uncertainty analysis and robust optimization of multiscale process systems with application to epitaxial thin film growth. Chem Eng Sci 116, 590–600. https://doi.org/https://doi.org/10.1016/j.ces.2014.05.027Rhein, L.D., Schlossman, M., O’Lenick, A., Somasundaran, P., 2007. Surfactants in Personal Care Products and Decorative Cosmetics, Third Edit. ed. CRC PRESS, Boca Raton. https://doi.org/10.1016/J.JCIS.2006.12.065Ricardez-Sandoval, L.A., 2011. Current challenges in the design and control of multiscale systems. Can J Chem Eng 89, 1324–1341. https://doi.org/10.1002/cjce.20607Richardson, E.G., 1950. The formation and flow of emulsion. J Colloid Sci 5, 404–413. https://doi.org/https://doi.org/10.1016/0095-8522(50)90064-XRichardson, N.J., Booth, D.A., 1993. Multiple physical patterns in judgements of the creamy texture of milks and creams. Acta Psychol (Amst) 84, 93–101. https://doi.org/https://doi.org/10.1016/0001-6918(93)90075-3Rodríguez Dorado, R., Landin, M., Altay Benetti, A., Russo, P., Aquino, R., Del Gaudio, P., 2018. A novel method for the production of core-shell microparticles by inverse gelation optimized with Artificial Intelligent Tools. Int J Pharm 538. https://doi.org/10.1016/j.ijpharm.2018.01.023Rosen, M.J., 2004. Reduction of Surface and Interfacial Tension by Surfactants, in: Surfactants and Interfacial Phenomena. John Wiley & Sons, Ltd, pp. 208–242. https://doi.org/10.1002/0471670561.ch5Rouco, H., Diaz-Rodriguez, P., Rama-Molinos, S., Remuñán-López, C., Landin, M., 2018. Delimiting the knowledge space and the design space of nanostructured lipid carriers through Artificial Intelligence tools. Int J Pharm 553, 522–530. https://doi.org/https://doi.org/10.1016/j.ijpharm.2018.10.058Ruiz, M.C., Padilla, R., 2004. Analysis of breakage functions for liquid–liquid dispersions. Hydrometallurgy 72, 245–258. https://doi.org/https://doi.org/10.1016/S0304-386X(03)00184-1Sagis, L.M.C., 2011. Dynamic properties of interfaces in soft matter: Experiments and theory. Rev Mod Phys 83, 1367–1403. https://doi.org/10.1103/RevModPhys.83.1367Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Huber, P., 2017. Sensory Measurement—Evaluation and Testing of Cosmetic Products. Cosmetic Science and Technology 617–633. https://doi.org/10.1016/B978-0-12-802005-0.00037-9Salager, J.-L., Antón, R.E., Anderez, J.M., Aubry, J.-M., 2001. Formulation des micro-émulsions par la méthode HLD. Techniques de l’Ingénieur 157, 2001.Salager, J.-L., Rondón, M., Tolosa, L., Pizzino, A., Bullon, J., 2007. Emulsion formulation engineering for the practitioner. Encyclopedia of Surface and Colloid Science 1–16.Savary, G., Grisel, M., Picard, C., 2013. Impact of emollients on the spreading properties of cosmetic products: A combined sensory and instrumental characterization. Colloids Surf B Biointerfaces 102, 371–378. https://doi.org/https://doi.org/10.1016/j.colsurfb.2012.07.028Schmitt, U., Moser, B., Lorenz, C.S., Réfrégier, A., 2023. sympy2c: From symbolic expressions to fast C/C++ functions and ODE solvers in Python. Astronomy and Computing 42, 100666. https://doi.org/https://doi.org/10.1016/j.ascom.2022.100666Schowalter, T.T., 1979. Mechanics of Secondary Hydrocarbon Migration and Entrapment. Am Assoc Pet Geol Bull 63. https://doi.org/10.1306/2F9182CA-16CE-11D7-8645000102C1865DSchramm, L.L., 2005. Emulsions, Foams and Suspensions: Fundamentals and Applications. WILEY-VCH, Weinheim.Schroën, K., Deng, B., Berton-Carabin, C., Marze, S., Corstens, M., Hinderink, E., 2023. Microfluidics-based observations to monitor dynamic processes occurring in food emulsions and foams. Curr Opin Food Sci 50, 100989. https://doi.org/https://doi.org/10.1016/j.cofs.2023.100989Schwartz, N.O., 1975. Adaptation of the sensory texture profile method to skin care products. J Texture Stud 6, 33–42. https://doi.org/10.1111/j.1745-4603.1975.tb01116.xSchwarz, J.C., Klang, V., Karall, S., Mahrhauser, D., Resch, G.P., Valenta, C., 2012. Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int J Pharm 435, 69–75. https://doi.org/10.1016/J.IJPHARM.2011.11.038Seider, W.D., 2009. Product and process design principles : synthesis, analysis, and evaluation., 3rd ed. ed, John Wiley & Sons, Ltd. John Wiley, Hoboken, NJ SE - xxxvi, 728 p. : il. ; 29 cm.Seider, W.D., Widagdo, S., Seader, J.D., Lewin, D.R., 2009. Perspectives on chemical product and process design. Comput Chem Eng 33, 930–935. https://doi.org/10.1016/j.compchemeng.2008.10.019Seweryn, A., 2018. Interactions between surfactants and the skin – Theory and practice. Adv Colloid Interface Sci 256, 242–255. https://doi.org/https://doi.org/10.1016/j.cis.2018.04.002Shafiei, M., Balhoff, M., Hayman, N.W., 2018. Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel. Polymer (Guildf) 139, 44–51. https://doi.org/https://doi.org/10.1016/j.polymer.2018.01.080Shalaby, S., Yanagida, J.F., Hassler, J.B., 1988. United States Market Share of Latin American Wheat Imports: Disaggregated Analysis and Application of the Armington Model. Journal of Economic Studies 15, 24–33. https://doi.org/10.1108/eb002678Shang, X., Ng, B.F., Wan, M.P., Ding, S., 2020. Investigation of CFD-PBM simulations based on fixed pivot method: Influence of the moment closure. Chemical Engineering Journal 382, 122882. https://doi.org/https://doi.org/10.1016/j.cej.2019.122882Sharma, S., Shukla, P., Misra, A., Mishra, P.R., 2014. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective, in: Ohshima, H., Makino, K.B.T.-C. and I.S. in P.R. and D. (Eds.), . Elsevier, Amsterdam, pp. 149–172. https://doi.org/https://doi.org/10.1016/B978-0-444-62614-1.00008-9Shinoda, K., Saito, H., 1969. The Stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. J Colloid Interface Sci 30, 258–263. https://doi.org/https://doi.org/10.1016/S0021-9797(69)80012-3Silva, B.F.B., Rodríguez-abreu, C., Vilanova, N., 2016. Recent advances inmultiple emulsions and their application as templates. Curr Opin Colloid Interface Sci 25, 98–108. https://doi.org/10.1016/j.cocis.2016.07.006Simovic, S., Milic-Askrabic, J., Vuleta, G., Ibric, S., Stupar, M., 1999. The Influence of Processing Variables on Performance of O/W Emulsion Gels Based on Polymeric Emulsifier (Pemulen ®TR-2NF). Int J Cosmet Sci 21, 119–125. https://doi.org/10.1046/j.1467-2494.1999.183572.xSivamani, R.K., Goodman, J., Gitis, N. V, Maibach, H.I., 2003. Coefficient of friction: Tribological studies in man - An overview. Skin Research and Technology 9, 227–234. https://doi.org/10.1034/j.1600-0846.2003.02366.xSmith, R., 2005. Chemical Process Design and Integration, Second. ed, John Wiley & Sons, Ltd. Chichester, West Sussex, England. https://doi.org/10.1529/biophysj.107.124164Smith, B. V, Ierapepritou, M.G., 2010. Integrative chemical product design strategies: Reflecting industry trends and challenges. Comput Chem Eng 34, 857–865. https://doi.org/https://doi.org/10.1016/j.compchemeng.2010.02.039Smith, B. V., Ierapepritou, M.G., 2010. Integrative chemical product design strategies: Reflecting industry trends and challenges. Comput Chem Eng 34, 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039Solans, C., Morales, D., Homs, M., 2016. Spontaneous emulsification. Curr Opin Colloid Interface Sci 22, 88–93. https://doi.org/https://doi.org/10.1016/j.cocis.2016.03.002Spiess, E., 1992. Raw materials, in: Williams, D.F., Schmitt, W.H. (Eds.), Chemistry and Technology of the Cosmetics and Toiletries Industry. Springer Netherlands, Dordrecht, pp. 1–35. https://doi.org/10.1007/978-94-009-1555-8_1Srour, M.H., Gomes, V.G., Romagnoli, J.A., 2007. Online inferential product attribute estimation for optimal operation of emulsion terpolymerisation: Application to styrene/MMA/MA. Chem Eng Sci 62, 4420–4438. https://doi.org/10.1016/J.CES.2007.04.046Susuki, K., Watanabe, T., 1971. Relationship between sensory assessment and rheological properties of cosmetic creams. J Texture Stud 2, 431–440. https://doi.org/10.1111/j.1745-4603.1971.tb00591.xTadros, T., 2004. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interface Sci 108–109, 227–258. https://doi.org/https://doi.org/10.1016/j.cis.2003.10.025Tadros, T.F., 2015. Interfacial Phenomena and Colloid Stability: Industrial Applications, First. ed, Interfacial Phenomena and Colloid Stability. De Gruyter, Berlin/Boston, Germany. https://doi.org/10.1515/9783110366471-004Tadros, T.F., 2013. Emulsion Formation and Stability. WILEY-VCH, Weinheim.Tadros, T.F., 2009. Emulsion Science and Technology: A General Introduction, in: Emulsion Science and Technology. John Wiley & Sons, Ltd, pp. 1–56. https://doi.org/10.1002/9783527626564.ch1Tadros, T.F., 2005. Applied Surfactants: Principles and Applications. WILEY-VCH, Weinheim.Taifouris, M., Martín, M., Martínez, A., Esquejo, N., 2020a. Challenges in the design of formulated products: multiscale process and product design. Curr Opin Chem Eng 27, 1–9. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.001Taifouris, M., Martín, M., Martínez, A., Esquejo, N., 2020b. Challenges in the design of formulated products: multiscale process and product design. Curr Opin Chem Eng 27, 1–9. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.001Tal-Figiel, B., 2007. The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field. Chemical Engineering Research and Design 85, 730–734. https://doi.org/10.1205/CHERD06199Taylor, P., Marti-mestres, G., Nielloud, Françoise, Nielloud, Francoise, 2010. Emulsions in Health Care Applications — An Overview. J Dispers Sci Technol 23, 419–439. https://doi.org/doi.org/10.1080/01932690208984214Tcholakova, S., Lesov, I., Golemanov, K., Denkov, N.D., Judat, S., Engel, R., Danner, T., 2011. Efficient emulsification of viscous oils at high drop volume fraction. Langmuir 27, 14783–14796. https://doi.org/10.1021/la203474bTeoh, S.K., Rathi, C., Sharratt, P., 2016. Practical Assessment Methodology for Converting Fine Chemicals Processes from Batch to Continuous. Org Process Res Dev 20, 414–431. https://doi.org/10.1021/acs.oprd.5b00001Terescenco, D., Picard, C., Clemenceau, F., Grisel, M., Savary, G., 2018. Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids Surf A Physicochem Eng Asp 536, 10–19. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.08.017Tian, Y., Chen, L., Zhang, W., 2016. Influence of Ionic Surfactants on the Properties of Nanoemulsions Emulsified by Nonionic Surfactants Span 80/Tween 80. J Dispers Sci Technol 37, 1511–1517. https://doi.org/10.1080/01932691.2015.1048806Tinjacá, C., Gallo-Molina, J.P., Álvarez, Ó., Gómez, J., 2018. Integrated Optimal Design Proposal Based on a Multiscale Approach: Validation and Experimental Adjustment of Properties, in: Eden, M.R., Ierapetritou, M.G., Towler, G.P.B.T.-C.A.C.E. (Eds.), 13 International Symposium on Process Systems Engineering (PSE 2018). Elsevier, pp. 289–294. https://doi.org/https://doi.org/10.1016/B978-0-444-64241-7.50043-4Torres, J.J., Tinjaca, C.D., Alvarez, O.A., Gómez, J.M., 2020. Optimization proposal for emulsions formulation considering a multiscale approach. Chem Eng Sci 212, 115326. https://doi.org/https://doi.org/10.1016/j.ces.2019.115326Torres, L.G., Zamora, E.R., 2002. Preparation and power consumption of surfactant–fuel oil–water emulsions using axial, radial, and mixed flow impellers. Fuel 81, 2289–2302. https://doi.org/https://doi.org/10.1016/S0016-2361(02)00137-0Tula, A.K., Babi, D.K., Bottlaender, J., Eden, M.R., Gani, R., 2017. A computer-aided software-tool for sustainable process synthesis-intensification. Comput Chem Eng 105, 74–95. https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.01.001Uhlemann, J., Costa, R., Charpentier, J.-C., 2020. Product design and engineering — past, present, future trends in teaching, research and practices: academic and industry points of view. Curr Opin Chem Eng 27, 10–21. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.003Uhlemann, J., Costa, R., Charpentier, J.-C., 2019. Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chem Eng Technol 42, 2258–2274. https://doi.org/10.1002/ceat.201900236Umar, A.A., Saaid, I.B.M., Sulaimon, A.A., Pilus, R.B.M., 2018. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J Pet Sci Eng 165, 673–690. https://doi.org/10.1016/J.PETROL.2018.03.014Unnikrishnan, S., Donovan, J., Macpherson, R., Tormey, D., 2021a. In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chemical Engineering Research and Design 166, 281–294. https://doi.org/10.1016/j.cherd.2020.12.010Unnikrishnan, S., Donovan, J., Macpherson, R., Tormey, D., 2021b. In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chemical Engineering Research and Design 166, 281–294. https://doi.org/https://doi.org/10.1016/j.cherd.2020.12.010Van Nguyen, T., Zhou, L., Chong, A.Y.L., Li, B., Pu, X., 2020. Predicting customer demand for remanufactured products: A data-mining approach. Eur J Oper Res 281, 543–558. https://doi.org/https://doi.org/10.1016/j.ejor.2019.08.015Vankova, N., Tcholakova, S., Denkov, N.D., Ivanov, I.B., Vulchev, V.D., Danner, T., 2007. Emulsification in turbulent flow. 1. Mean and maximum drop diameters in inertial and viscous regimes. J Colloid Interface Sci 312, 363–380. https://doi.org/10.1016/j.jcis.2007.03.059Vanni, M., 2000. Approximate population balance equations for aggregation-breakage processes. J Colloid Interface Sci 221, 143–160. https://doi.org/10.1006/jcis.1999.6571Vianna-Filho, R.P., Petkowicz, C.L.O., Silveira, J.L.M., 2013. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr Polym 93, 266–272. https://doi.org/10.1016/j.carbpol.2012.05.014Villena de Francisco, E., García-Estepa, R.M., 2018. Nanotechnology in the agrofood industry. J Food Eng 238, 1–11. https://doi.org/10.1016/j.jfoodeng.2018.05.024Vladisavljević, G.T., Wang, B., Dragosavac, M.M., Holdich, R.G., 2014. Production of food-grade multiple emulsions with high encapsulation yield using oscillating membrane emulsification. Colloids Surf A Physicochem Eng Asp 458, 78–84.Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106, 25–57. https://doi.org/10.1007/S10107-004-0559-Y/METRICSWalzel, H., Keddis, N., 2016. Interconnecting Product and Process Information to Enable Personalized Production. Procedia CIRP 52, 186–191. https://doi.org/https://doi.org/10.1016/j.procir.2016.07.057Wang, Z., Zhang, M., Sun, H., Zhu, G., 2016. Effects of standardization and innovation on mass customization: An empirical investigation. Technovation 48–49, 79–86. https://doi.org/10.1016/j.technovation.2016.01.003Wang, Z.W., Feng, J.L., Wang, H.J., Cui, Z.G., Li, G.Z., 2005. Effectiveness of surface tension reduction by nonionic surfactants with quantitative structure-property relationship approach. J Dispers Sci Technol 26, 441–447. https://doi.org/10.1081/DIS-200054572Wei, Y., Xie, Y., Cai, Z., Guo, Y., Wu, M., Wang, P., Li, R., Zhang, H., 2020a. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 580, 480–492. https://doi.org/https://doi.org/10.1016/j.jcis.2020.07.048Wei, Y., Xie, Y., Cai, Z., Guo, Y., Wu, M., Wang, P., Li, R., Zhang, H., 2020b. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 580, 480–492. https://doi.org/https://doi.org/10.1016/j.jcis.2020.07.048Whitnack, C., Heller, A., Frow, M.T., Kerr, S., Bagajewicz, M.J., 2009. Financial risk management in the design of products under uncertainty. Comput Chem Eng 33, 1056–1066. https://doi.org/10.1016/j.compchemeng.2008.09.018Wibowo, C., Ng, K.M., 2001. Product-oriented process synthesis and development: Creams and pastes. AIChE Journal 47, 2746–2767. https://doi.org/10.1002/aic.690471214Wittern, K.-P., Brummer, R., Godersky, S., 2001. Rheology Studies to Investigate Sensorial Aspects of Emulsions, in: Iwasawa, Y., Oyama, N., Kunieda, H.B.T.-S. in S.S. and C. (Eds.), Proceedings of the International Conference on Colloid and Surface Science. Elsevier, pp. 1031–1036. https://doi.org/https://doi.org/10.1016/S0167-2991(01)82259-XWright, F.J., 1961. Influence of Temperature on Viscosity of Nonassociated Liquids. J Chem Eng Data 6, 454–456. https://doi.org/10.1021/je00103a035Wu, B., McClements, D.J., 2015. Design of reduced-fat food emulsions: Manipulating microstructure and rheology through controlled aggregation of colloidal particles and biopolymers. Food Research International 76, 777–786. https://doi.org/https://doi.org/10.1016/j.foodres.2015.06.034Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., Yonghong, M., 1996. Rheological models for xanthan gum. J Food Eng 27, 203–209. https://doi.org/10.1016/0260-8774(94)00092-1Yang, J., Lee, S., Choi, I., Shin, J., Han, W.-H., Hong, M.-H., Kang, H.-C., Kim, Y.-W., 2019. Effect of fatty acid-based anionic surfactants on the emulsion properties of self-emulsifying poly(ethylene-co-acrylic acid) waxes. Journal of Industrial and Engineering Chemistry 71, 393–401. https://doi.org/10.1016/J.JIEC.2018.11.051Yaron, I., Gal-Or, B., 1972. On viscous flow and effective viscosity of concentrated suspensions and emulsions. Rheol Acta 11, 241–252. https://doi.org/10.1007/BF01974767Ye, Z., Zhang, F., Han, L., Luo, P., Yang, J., Chen, H., 2008. The effect of temperature on the interfacial tension between crude oil and gemini surfactant solution. Colloids Surf A Physicochem Eng Asp 322, 138–141. https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.02.043Yinan, Q., Tang, M., Zhang, M., 2014. Mass Customization in Flat Organization: The Mediating Role of Supply Chain Planning and Corporation Coordination. Journal of Applied Research and Technology 12, 171–181. https://doi.org/https://doi.org/10.1016/S1665-6423(14)72333-8Zhang, L., Babi, D.K., Gani, R., 2016. New Vistas in Chemical Product and Process Design. Annu Rev Chem Biomol Eng 7, 557–582. https://doi.org/10.1146/annurev-chembioeng-080615-034439Zhang, L., Fung, K.Y., Wibowo, C., Gani, R., 2018a. Advances in chemical product design. Reviews in Chemical Engineering 34, 319–340. https://doi.org/doi:10.1515/revce-2016-0067Zhang, L., Mao, H., Liu, L., Du, J., Gani, R., 2018b. A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Comput Chem Eng 115, 295–308. https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.04.018Zhang, L., Mao, H., Liu, Q., Gani, R., 2020. Chemical product design – recent advances and perspectives. Curr Opin Chem Eng 27, 22–34. https://doi.org/https://doi.org/10.1016/j.coche.2019.10.005Zheng, H., Ricardez-Sandoval, L., Budman, H., 2020. Robust estimation and economic predictive control for dynamic metabolic flux systems under probabilistic uncertainty. Comput Chem Eng 140, 106918. https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.106918Zhou, G., Kresta, S.M., 1998. Correlation of mean drop size and minimum drop size with the turbulence energy dissipation and the flow in an agitated tank. Chem Eng Sci 53, 2063–2079. https://doi.org/https://doi.org/10.1016/S0009-2509(97)00438-7Zhu, X., Li, L., Li, S., Ning, C., Zhou, C., 2018. l–Arginine/l–lysine improves emulsion stability of chicken sausage by increasing electrostatic repulsion of emulsion droplet and decreasing the interfacial tension of soybean oil-water. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2018.11.021Zou, W., Larson, R.G., 2014. A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions. J Rheol (N Y N Y) 58, 681–721. https://doi.org/10.1122/1.4868875Zou, W., Tang, X., Weaver, M., Koenig, P., Larson, R.G., 2015. Determination of characteristic lengths and times for wormlike micelle solutions from rheology using a mesoscopic simulation method. J Rheol (N Y N Y) 59, 903–934. https://doi.org/10.1122/1.4919403201711229Publicationhttps://scholar.google.es/citations?user=GazFLaMAAAAJvirtual::23612-10000-0002-5486-5240virtual::23612-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000224537virtual::23612-14f4b3705-d27b-4e20-a153-4d2e2e4eca43virtual::23612-14f4b3705-d27b-4e20-a153-4d2e2e4eca43virtual::23612-1ORIGINALIntegrated design of emulsified cosmetic products.pdfIntegrated design of emulsified cosmetic products.pdfapplication/pdf8058097https://repositorio.uniandes.edu.co/bitstreams/a69283af-b05d-4d81-b29e-b4ec653b270d/download326470889395c1e82972ec02fae27ae7MD52autorizacion tesis_FC.pdfautorizacion tesis_FC.pdfHIDEapplication/pdf391090https://repositorio.uniandes.edu.co/bitstreams/455c0348-063e-48a0-84c5-db5c7532f71e/downloadc88e14c66d1e6b0acb732c02235d7559MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/b99ca463-f766-43b5-b76d-1fe995e0ce2b/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/8b66ee04-0f92-43bc-9935-e90570639d68/download4460e5956bc1d1639be9ae6146a50347MD54TEXTIntegrated design of emulsified cosmetic products.pdf.txtIntegrated design of emulsified cosmetic products.pdf.txtExtracted texttext/plain100300https://repositorio.uniandes.edu.co/bitstreams/9b4e9f5b-8217-44e2-9d42-fed9d0f6c38a/download30bf88dd1193976b70815a219c71c1d7MD55autorizacion tesis_FC.pdf.txtautorizacion tesis_FC.pdf.txtExtracted texttext/plain2127https://repositorio.uniandes.edu.co/bitstreams/141fd373-9b41-4572-80a0-3a60e6711346/downloadf536272730d76f6bf0fe7dd73d0ca242MD57THUMBNAILIntegrated design of emulsified cosmetic products.pdf.jpgIntegrated design of emulsified cosmetic products.pdf.jpgGenerated Thumbnailimage/jpeg7500https://repositorio.uniandes.edu.co/bitstreams/84347453-4887-4590-ba2e-ccbae08fd54c/download2d3b57be4cef2b44319f6b2eb7f690ddMD56autorizacion tesis_FC.pdf.jpgautorizacion tesis_FC.pdf.jpgGenerated Thumbnailimage/jpeg11492https://repositorio.uniandes.edu.co/bitstreams/7c980f63-105b-4737-bc5e-98b921214f61/download6571b041570339353914a55d08522865MD581992/70953oai:repositorio.uniandes.edu.co:1992/709532025-02-25 11:03:41.268http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |