Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
Background: Motor impairments in Parkinson's disease (PD) are associated with alterations in the prepulse inhibition (PPI) of the acoustic startle response (ASR) and reversal learning (RL) from the early stages of the disease. In this context, animal models enable the exploration of the dynamic...
- Autores:
-
Lievano Parra, Diego Javier
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73645
- Acceso en línea:
- https://hdl.handle.net/1992/73645
- Palabra clave:
- Parkinson's disease
Reversal learning
Prepulse inhibition
6-OHDA
Rat
Psicología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_170c8d38779300b8e5e5be28277d1dce |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73645 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
title |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
spellingShingle |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats Parkinson's disease Reversal learning Prepulse inhibition 6-OHDA Rat Psicología |
title_short |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
title_full |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
title_fullStr |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
title_full_unstemmed |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
title_sort |
Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats |
dc.creator.fl_str_mv |
Lievano Parra, Diego Javier |
dc.contributor.advisor.none.fl_str_mv |
Cárdenas Parra, Luis Fernando |
dc.contributor.author.none.fl_str_mv |
Lievano Parra, Diego Javier |
dc.contributor.jury.none.fl_str_mv |
Báez Buitrago, Sandra Jimena Sabogal, Angelica |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias Sociales::Neurociencia y Comportamiento |
dc.subject.keyword.eng.fl_str_mv |
Parkinson's disease |
topic |
Parkinson's disease Reversal learning Prepulse inhibition 6-OHDA Rat Psicología |
dc.subject.keyword.none.fl_str_mv |
Reversal learning Prepulse inhibition 6-OHDA Rat |
dc.subject.themes.spa.fl_str_mv |
Psicología |
description |
Background: Motor impairments in Parkinson's disease (PD) are associated with alterations in the prepulse inhibition (PPI) of the acoustic startle response (ASR) and reversal learning (RL) from the early stages of the disease. In this context, animal models enable the exploration of the dynamics of non-motor manifestations associated to dopaminergic depletion in a time-dependent manner. Method: 103 adult male and female Wistar rats received unilateral injections of 6-OHDA or saline into the Substantia Nigra Compacta (SNc). Motor skills and the PPI were assessed before and after surgery. Subsequently, three groups were formed to evaluate action-based RL (AB) and stimulus-based RL (SB). Results: The apomorphine test at 2 weeks confirmed the establishment of dopaminergic depletion. Motor coordination was affected in the lesioned groups, with higher number of grip errors and reduced running speed in lesioned males 6 weeks after surgery. The percentage PPI decreased in lesioned females at 4 weeks but increased in lesioned males 6 weeks after lesioning. Finally, the 6-OHDA lesion did not affect initial discrimination or reversal in the AB task, although a treatment facilitation effect was observed in the reversal of SB task. Additionally, sex-dependent differences were observed in performance. Males showed more perseverative behavior and a higher percentage of the win-stay strategy, while females exhibited slower response latencies for both correct and incorrect responses, displaying a higher percentage of the lose-shift strategy. Conclusion: The results show that subthreshold dopamine depletions in the SNc in the unilateral rodent model of 6-OHDA caused sex-differential effects on PPI and RL with more noticeable motor impairments in males after six weeks after surgery. Further characterization of how PPI and RL changes over time in the absence of motor impairments in early stages of dopamine depletion may contribute to anticipate PD diagnosis in human patients and to develop early tailored and more effective sex-dependent treatments. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-11 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T22:21:09Z |
dc.date.available.none.fl_str_mv |
2024-01-30T22:21:09Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73645 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/73645 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73645 |
identifier_str_mv |
10.57784/1992/73645 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Abbruzzese, G., & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Movement Disorders, 18(3), 231–240. https://doi.org/10.1002/mds.10327 Aguirre, C. G., Woo, J. H., Romero-Sosa, J. L., Rivera, Z. M., Tejada, A. N., Munier, J. J., Perez, J., Goldfarb, M., Das, K., Gomez, M., Ye, T., Pannu, J., Evans, K., O’Neill, P. R., Spigelman, I., Soltani, A., & Izquierdo, A. (2023). Dissociable contributions of basolateral amygdala and ventrolateral orbitofrontal cortex to flexible learning under uncertainty. The Journal of Neuroscience, JN-RM-0622-23. https://doi.org/10.1523/JNEUROSCI.0622-23.2023 Aryal, B., & Lee, Y. (2019). Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Reports, 52(4), 250–258. https://doi.org/10.5483/BMBRep.2019.52.4.204 Basavaraj, S., & Yan, J. (2012). Prepulse Inhibition of Acoustic Startle Reflex as a Function of the Frequency Difference between Prepulse and Background Sounds in Mice. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045123 Beeler, J. A., Cools, R., Luciana, M., Ostlund, S. B., & Petzinger, G. (2014). A kinder, gentler dopamine... highlighting dopamine’s role in behavioral flexibility. In Frontiers in Neuroscience (Issue 8 JAN). Frontiers Media SA. https://doi.org/10.3389/fnins.2014.00004 Bissonette, G. B., & Powell, E. M. (2012). Reversal learning and attentional set-shifting in mice. Neuropharmacology, 62(3), 1168–1174. https://doi.org/10.1016/j.neuropharm.2011.03.011 Bleickardt, C. J., Lashomb, A. L., Merkel, C. E., & Hodgson, R. A. (2012). Adenosine A 2A receptor antagonists do not disrupt rodent prepulse inhibition: An improved side effect profile in the treatment of parkinson’s disease. Parkinson’s Disease, 2012. https://doi.org/10.1155/2012/591094 Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8(DEC), 1–12. https://doi.org/10.3389/fnana.2014.00155 Boix, J., von Hieber, D., & Connor, B. (2018). Gait analysis for early detection of motor symptoms in the 6-ohda rat model of parkinson’s disease. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00039 Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156(2–3), 234–258. https://doi.org/10.1007/s002130100810 Braun, Amanda., Amos-Kroohs, R. M., Gutierrez, A., Lundgren, K. H., Seroogy, K. B., Vorhees, C. V., & Williams, M. T. (2016). 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric Navigation in Male Sprague–Dawley Rats. Neurotoxicity Research, 30(2), 199–212. https://doi.org/10.1007/s12640-016-9616-6 Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behavioural Brain Research, 220(2), 288–293. https://doi.org/10.1016/j.bbr.2011.02.008 Brown, V. J., & Tait, D. S. (2016). Attentional set-shifting across species. In Current Topics in Behavioral Neurosciences (Vol. 28, pp. 363–395). Springer Verlag. https://doi.org/10.1007/7854_2015_5002 Cammisuli, D. M., & Crowe, S. (2018). Spatial disorientation and executive dysfunction in elderly nondemented patients with Parkinson’s disease. Neuropsychiatric Disease and Treatment, 14, 2531–2539. https://doi.org/10.2147/NDT.S173820 Cannon, & Greenamyre. (2010). Neurotoxic in vivo models of Parkinson’s disease. Recent advances. In Progress in Brain Research (Vol. 184, Issue C). Elsevier B.V. https://doi.org/10.1016/S0079-6123(10)84002-6 Cauchoix, M., Hermer, E., Chaine, A. S., & Morand-Ferron, J. (2017). Cognition in the field: comparison of reversal learning performance in captive and wild passerines. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13179-5 Chao, O. Y., Pum, M. E., Li, J. S., & Huston, J. P. (2012). The grid-walking test: Assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle. Neuroscience, 202, 318–325. https://doi.org/10.1016/j.neuroscience.2011.11.016 Chesselet, M. F., Richter, F., Zhu, C., Magen, I., Watson, M. B., & Subramaniam, S. R. (2012). A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) Mice. Neurotherapeutics, 9(2), 297–314. https://doi.org/10.1007/s13311-012-0104-2 Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience, 22(11), 4563–4567. https://doi.org/10.1523/JNEUROSCI.22-11-04563.2002 Crittenden, J. R., & Graybiel, A. M. (2011). Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Frontiers in Neuroanatomy, 5. https://doi.org/10.3389/fnana.2011.00059 Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. https://doi.org/10.1016/j.tins.2015.07.003 Dauer, W., & Przedborski, S. (2004). Parkinson’s Disease mechanisms and models. Neuron, 39, 889–909. De Deurwaerdère, P., Di Giovanni, G., & Millan, M. J. (2017). Expanding the repertoire of L-DOPA’s actions: A comprehensive review of its functional neurochemistry. Progress in Neurobiology, 151, 57–100. https://doi.org/10.1016/j.pneurobio.2016.07.002 Decressac, M. (2012). Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Experimental Neurology, 10. http://files/718/Decressac - 2012 - Comparison of the behavioural and histological cha.pdf Del Tredici, K., & Braak, H. (2016). Sporadic Parkinson’s disease: Development and distribution of α-synuclein pathology. Neuropathology and Applied Neurobiology, 42(1), 33–50. https://doi.org/10.1111/nan.12298 DeLong, M. R., & Wichmann, T. (2015). Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. JAMA Neurology, 72(11), 1354. https://doi.org/10.1001/jamaneurol.2015.2397 Deumens, R., Blokland, A., & Prickaerts, J. (2002a). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891 Deumens, R., Blokland, A., & Prickaerts, J. (2002b). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891 Ding, W., Ding, L., Han, Y., & Mu, L. (2015). Neurodegeneration and cognition in Parkinson’s disease: a review. European Review for Medical and Pharmacological Sciences, 19, 2275–2281. Eagle, A. L., Olumolade, O. O., & Otani, H. (2015). Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: A model for early Parkinson’s disease. Neuroscience Research, 92, 71–79. https://doi.org/10.1016/j.neures.2014.11.002 Engelender, S., & Isacson, O. (2017). The Threshold Theory for Parkinson’s Disease. Trends in Neurosciences, 40(1), 4–14. https://doi.org/10.1016/j.tins.2016.10.008 Erkkinen, M. G., Kim, M., & Geschwind, M. D. (2018). Major Neurodegenerative Diseases. 1–44. Evenden, J., Marston, H., Jones, G., Giardini, V., Lenard, L., Everitt, B., & Robbins, T. (1989). Effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on visual discrimination acquisition, performance and reversal in the rat. In Behavioural Brain Research (Vol. 32). Fasano, A., Mazzoni, A., & Falotico, E. (2022). Reaching and Grasping Movements in Parkinson’s Disease: A Review. In Journal of Parkinson’s Disease (Vol. 12, Issue 4, pp. 1083–1113). IOS Press BV. https://doi.org/10.3233/JPD-213082 Fleming, S. M. (2009). Behavioral Outcome Measures for the Assessment of Sensorimotor Function in Animal Models of Movement Disorders. In International Review of Neurobiology (Vol. 89, Issue C, pp. 57–65). https://doi.org/10.1016/S0074-7742(09)89003-X Gargiulo AT, Hu J, Ravaglia IC, Hawks A, L. X., Sweasy K, & Grafe L. (2022). Sex differences in cognitive flexibility are driven by the estrous cycle and stress-dependent. Frontiers in Behavioral Neuroscience, 16(958301), 1–20. Gee, L., Smith, H., De La Cruz, P., Campbell, J., Fama, C., Haller, J., Ramirez-Zamora, A., Durphy, J., Hanspal, E., Molho, E., Barba, A., Shin, D., & Pilitsis, J. G. (2015). The Influence of Bilateral Subthalamic Nucleus Deep Brain Stimulation on Impulsivity and Prepulse Inhibition in Parkinson’s Disease Patients. Stereotactic and Functional Neurosurgery, 93(4), 265–270. https://doi.org/10.1159/000381558 Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural Components Underlying Behavioral Flexibility in Human Reversal Learning. Cerebral Cortex, 20(8), 1843–1852. https://doi.org/10.1093/cercor/bhp247 Gilmour, G., Arguello, A., Bari, A., Brown, V. J., Carter, C., Floresco, S. B., Jentsch, D. J., Tait, D. S., Young, J. W., & Robbins, T. W. (2013). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience & Biobehavioral Reviews, 37(9), 2125–2140. https://doi.org/10.1016/j.neubiorev.2012.04.006 Goarin, E. H. F., Lingawi, N. W., & Laurent, V. (2018). Role Played by the Passage of Time in Reversal Learning. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00075 Gómez-Nieto, R., Hormigo, S., & López, D. E. (2020). Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. In Brain Sciences (Vol. 10, Issue 9, pp. 1–15). MDPI AG. https://doi.org/10.3390/brainsci10090639 Graham, F. K., & Murray, G. M. (1977). Siologicai Psychology (Vol. 5, Issue 1). Grauer, S. M., Hodgson, R., & Hyde, L. A. (2014). MitoPark mice, an animal model of Parkinson’s disease, show enhanced prepulse inhibition of acoustic startle and no loss of gating in response to the adenosine A2A antagonist SCH 412348. Psychopharmacology, 231(7), 1325–1337. https://doi.org/10.1007/s00213-013-3320-5 Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018a). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032 Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018b). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032 Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008a). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178 Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008b). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178 Haluk, D. M., & Floresco, S. B. (2009). Ventral Striatal Dopamine Modulation of Different Forms of Behavioral Flexibility. Neuropsychopharmacology, 34(8), 2041–2052. https://doi.org/10.1038/npp.2009.21 Harris, C., Aguirre, C., Kolli, S., Das, K., Izquierdo, A., & Soltani, A. (2021). Unique Features of Stimulus-Based Probabilistic Reversal Learning. Behavioral Neuroscience, 135(4), 550–570. https://doi.org/10.1037/bne0000474.supp Hart, E. E., Stolyarova, A., Conoscenti, M. A., Minor, T. R., & Izquierdo, A. (2017). Rigid patterns of effortful choice behavior after acute stress in rats. Stress (Amsterdam, Netherlands), 20(1), 19–28. https://doi.org/10.1080/10253890.2016.1258397 Hawkes, C. H., Del Tredici, K., & Braak, H. (2010). A timeline for Parkinson’s disease. Parkinsonism and Related Disorders, 16(2), 79–84. https://doi.org/10.1016/j.parkreldis.2009.08.007 Hershey, L. A., & Peavy, G. M. (2015). Cognitive decline in Parkinson disease: How steep and crowded is the slope? Neurology, 85(15), 1268–1269. https://doi.org/10.1212/WNL.0000000000002003 Hormigo, S., López, D. E., Cardoso, A., Zapata, G., Sepúlveda, J., & Castellano, O. (2018). Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Structure and Function, 223(6), 2733–2751. https://doi.org/10.1007/s00429-018-1654-9 Hsieh, T. H., Chen, J. J. J., Chen, L. H., Chiang, P. T., & Lee, H. Y. (2011). Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behavioural Brain Research, 222(1), 1–9. https://doi.org/10.1016/j.bbr.2011.03.031 Humphries, M. D., Khamassi, M., & Gurney, K. (2012). Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience, FEB. https://doi.org/10.3389/fnins.2012.00009 Issy, A. C., Padovan-Neto, F. E., Lazzarini, M., Bortolanza, M., & Del-Bel, E. (2015). Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson’s disease. Life Sciences, 125, 71–78. https://doi.org/10.1016/j.lfs.2015.01.022 Izquierdo, A., Aguirre, C., Hart, E. E., & Stolyarova, A. (2019). Rodent Models of Adaptive Value Learning and Decision-Making. Methods in Molecular Biology (Clifton, N.J.), 2011, 105–119. https://doi.org/10.1007/978-1-4939-9554-7_7 Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., & Holmes, A. (2017). The neural basis of reversal learning: An updated perspective. In Neuroscience (Vol. 345, pp. 12–26). Elsevier Ltd. https://doi.org/10.1016/j.neuroscience.2016.03.021 Izquierdo, & Jentsch. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620. https://doi.org/10.1007/s00213-011-2579-7 Jenni, N. L., Rutledge, G., & Floresco, S. B. (2022). Distinct Medial Orbitofrontal-Striatal Circuits Support Dissociable Component Processes of Risk/Reward Decision-Making. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 42(13), 2743–2755. https://doi.org/10.1523/JNEUROSCI.2097-21.2022 Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3 Kamińska, K., Lenda, T., Konieczny, J., Czarnecka, A., & Lorenc-Koci, E. (2017). Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacological Reports, 69(5), 985–994. https://doi.org/10.1016/j.pharep.2017.05.016 Klein, A., Wessolleck, J., Papazoglou, A., Metz, G., & Nikkhah, G. (2009). Walking pattern analysis after unilateral lesion and transplantation of fetal dopaminergic progentor cells in rats. Brehavioral Brain Research, 199, 317–325. Kohl, S., Heekeren, K., Klosterkötter, J., & Kuhn, J. (2013). Prepulse inhibition in psychiatric disorders - Apart from schizophrenia. Journal of Psychiatric Research, 47(4), 445–452. https://doi.org/10.1016/j.jpsychires.2012.11.018 Kumar, G., Talpos, J., & Steckler, T. (2015). Strain-dependent effects on acquisition and reversal of visual and spatial tasks in a rat touchscreen battery of cognition. Physiology & Behavior, 144, 26–36. https://doi.org/10.1016/j.physbeh.2015.03.001 Laclair, M., Febo, M., Nephew, B., Gervais, N. J., Poirier, G., Workman, K., Chumachenko, S., Payne, L., Moore, M. C., King, J. A., & Lacreuse, A. (2019). Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. ENeuro, 6(4). https://doi.org/10.1523/ENEURO.0154-19.2019 Lange, F., Brückner, C., Knebel, A., Seer, C., & Kopp, B. (2018). Executive dysfunction in Parkinson’s disease: A meta-analysis on the Wisconsin Card Sorting Test literature. Neuroscience and Biobehavioral Reviews, 93(February), 38–56. https://doi.org/10.1016/j.neubiorev.2018.06.014 Lange, F., Seer, C., & Kopp, B. (2017). Cognitive flexibility in neurological disorders: Cognitive components and event-related potentials. Neuroscience and Biobehavioral Reviews, 83(July), 496–507. https://doi.org/10.1016/j.neubiorev.2017.09.011 Laughlin, R. E., Grant, T. L., Williams, R. W., & Jentsch, J. D. (2011). Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice. Biological Psychiatry, 69(11), 1109–1116. https://doi.org/10.1016/j.biopsych.2011.01.014 Lee, B., Groman, S., London, E. D., & Jentsch, J. D. (2007). Dopamine D2/D3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys. Neuropsychopharmacology, 32(10), 2125–2134. https://doi.org/10.1038/sj.npp.1301337 Leng, A., Yee, B. K., Feldon, J., & Ferger, B. (2004). Acoustic startle response, prepulse inhibition, and spontaneous locomotor activity in MPTP-treated mice. Behavioural Brain Research, 154(2), 449–456. https://doi.org/10.1016/j.bbr.2004.03.012 Lindemann, C., Krauss, J. K., & Schwabe, K. (2012). Deep brain stimulation of the subthalamic nucleus in the 6-hydroxydopamine rat model of Parkinson’s disease: Effects on sensorimotor gating. Behavioural Brain Research, 230(1), 243–250. https://doi.org/10.1016/j.bbr.2012.02.009 Linden, J., James, A. S., McDaniel, C., & Jentsch, J. D. (2018). Dopamine D2 Receptors in Dopaminergic Neurons Modulate Performance in a Reversal Learning Task in Mice. Eneuro, 5(1), ENEURO.0229-17.2018. https://doi.org/10.1523/ENEURO.0229-17.2018 Lindgren, H. S., Wickens, R., Tait, D. S., Brown, V. J., & Dunnett, S. B. (2013). Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 71, 148–153. https://doi.org/10.1016/j.neuropharm.2013.03.034 Lionnet, A., Leclair-Visonneau, L., Neunlist, M., Murayama, S., Takao, M., Adler, C. H., Derkinderen, P., & Beach, T. G. (2018). Does Parkinson’s disease start in the gut? Acta Neuropathologica, 135(1). https://doi.org/10.1007/s00401-017-1777-8 Mann, A., & Chesselet, M.-F. (2015). Techniques for Motor Assessment in Rodents. In Movement Disorders (pp. 139–157). Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780124051959000081 Mcfarland, K., Price, D. L., & Bonhaus, D. W. (2008). Pimavanserin , a 5-HT 2A inverse agonist , reverses psychosis-like behaviors in a rodent model of Parkinson ’ s disease. 681–692. https://doi.org/10.1097/FBP.0b013e32834aff98 McFarland, K., Price, D. L., Davis, C. N., Ma, J. N., Bonhaus, D. W., Burstein, E. S., & Olsson, R. (2013). AC-186, a selective nonsteroidal estrogen receptor β agonist, shows gender specific neuroprotection in a Parkinson’s disease rat model. ACS Chemical Neuroscience, 4(9), 1249–1255. https://doi.org/10.1021/cn400132u Mehler-Wex, C., Riederer, P., & Gerlach, M. (2006). Dopaminergic Dysbalance in Distinct Basal Ganglia Neurocircuits: Implications for the Pathophysiology of Parkinson´s Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. Neurotoxicity Research, 10, 167–179. www.NeurotoxicityResearch.com Meloni, E. G., & Davis, M. (2004). The substancia nigra pars reticulata mediates the enhancement of startle by the dopamine D1 receptor agonist SKF 82958 in rats. Psychopharmacology, 174(2), 228–236. https://doi.org/10.1007/s00213-003-1728-z Meloni, Edward., & Davies, Michael. (2000). Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substantia nigra pars compacta: corresponding changes in c-Fos expression in the caudate–putamen. Brain Reserach, 879(1–2), 93–104. Metz, G. A., Tse, A., Ballermann, M., Smith, L. K., & Fouad, K. (2005). The unilateral 6-OHDA rat model of Parkinson’s disease revisited: An electromyographic and behavioural analysis. European Journal of Neuroscience, 22(3), 735–744. https://doi.org/10.1111/j.1460-9568.2005.04238.x Monastero, R., Cicero, C. E., Baschi, R., Davì, M., Luca, A., Restivo, V., Zangara, C., Fierro, B., Zappia, M., & Nicoletti, A. (2018). Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS). Journal of Neurology, 265(5), 1050–1058. https://doi.org/10.1007/s00415-018-8800-4 Moustafa, A. A. (2011). Levodopa enhances reward learning but impairs reversal learning in parkinson’s disease patients. Frontiers in Human Neuroscience, 4(JANUARY), 1–2. https://doi.org/10.3389/fnhum.2010.00240 Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. In Trends in Cognitive Sciences (Vol. 15, Issue 10, pp. 453–459). https://doi.org/10.1016/j.tics.2011.07.011 Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. In Progress in Neurobiology (Vol. 67). Nilsson, S. R. O., Alsiö, J., Somerville, E. M., & Clifton, P. G. (2015). The rat’s not for turning: Dissociating the psychological components of cognitive inflexibility. In Neuroscience and Biobehavioral Reviews (Vol. 56, pp. 1–14). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2015.06.015 O’Neill, M., & Brown, V. J. (2007). The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiology of Learning and Memory, 88(1), 75–81. https://doi.org/10.1016/j.nlm.2007.03.003 Perriol, M. P., Dujardin, K., Derambure, P., Marcq, A., Bourriez, J. L., Laureau, E., Pasquier, F., Defebvre, L., & Destée, A. (2005). Disturbance of sensory filtering in dementia with Lewy bodies: Comparison with Parkinson’s disease dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 106–108. https://doi.org/10.1136/jnnp.2003.035022 Pilz, P., & Schnitzler, H.-Ulrich. (1996). Habituation and Sensitization of the Acoustic Startle Response in Rats: Amplitude, Threshold, and Latency Measures. ..” Neurobiology of Learning and Memory , 66(1), 67–79. Przedborski, S. (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism and Related Disorders, 11(SUPPL. 1). https://doi.org/10.1016/j.parkreldis.2004.10.012 Rastegar, D., Ho, N., Halliday, G. ., & Dzamko, N. (2019). Parkinson’s progression prediction using machine learning and serum cytokines. Npj Parkinson’s Disease, 5(1), 1–8. https://doi.org/10.1038/s41531-019-0086-4 Savica, R., Grossardt, B. R., Rocca, W. A., & Bower, J. H. (2018). Parkinson disease with and without Dementia: A prevalence study and future projections. Movement Disorders, 33(4), 537–543. https://doi.org/10.1002/mds.27277 Seip, K., Young, J., Youg, M., & Shapiro, M. (2017). Partial Lesion of the Nigrostriatal Dopamine Pathway in Rats Impairs Egocentric Learning but Not Spatial Learning or Behavioral Flexibility. Behavioral Neuroscience, 131, 135–142. https://doi.org/10.1037/bne0000189.supp Seip-Cammack, K. M., Young, J. J., Young, M. E., & Shapiro, M. L. (2017). Partial lesion of the nigrostriatal dopamine pathway in rats impairs egocentric learning but not spatial learning or behavioral flexibility. Behavioral Neuroscience, 131(2), 135–142. https://doi.org/10.1037/bne0000189 Simola, N., Morelli, M., & Carta, A. (2007). The 6-Hydroxydopamine Model of Parkinson’s Disease. 11(3–4), 151–167. Sinclair, E. B., Hildebrandt, B. A., Culbert, K. M., Klump, K. L., & Sisk, C. L. (2017). Preliminary evidence of sex differences in behavioral and neural responses to palatable food reward in rats. Physiology and Behavior, 176, 165–173. https://doi.org/10.1016/j.physbeh.2017.03.042 Smith, A. J., & Hawkins, P. (2016). Good science, good sense and good sensibilities: The three Ss of Carol Newton. Animals, 6(11). https://doi.org/10.3390/ani6110070 Stirpe, P., Hoffman, M., Badiali, D., & Colosimo, C. (2016). Constipation: an emerging risk factor for Parkinson’s disease? European Journal of Neurology, 23(11), 1606–1613. https://doi.org/10.1111/ene.13082 Stoker, T., & Greenlad, J. (2018). Parkinson ’ s Disease Pathogenesis and clinical aspects. Codon Publications. Stolyarova, A., O’Dell, S. J., Marshall, J. F., & Izquierdo, A. (2014). Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine. Behavioural Brain Research, 271, 195–202. https://doi.org/10.1016/j.bbr.2014.06.031 Sullivan, L., Shaffer, H., Hill, C., & Del Arco, A. (2019). Time-dependent changes in cognitive flexibility performance during intermittent social stress: Relevance for motivation and reward-seeking behavior. Behavioural Brain Research, 370. https://doi.org/10.1016/j.bbr.2019.111972 Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication. Neuropsychologia, 38(5), 596–612. https://doi.org/10.1016/S0028-3932(99)00103-7 Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985a). Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behavioral and Neural Biology, 44(3), 354–363. https://doi.org/10.1016/S0163-1047(85)90640-5 Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985b). Alternation Behavior, Spatial Discrimination, and Reversal Disturbances following 6-Hydroxydopamine Lesions in the Nucleus Accumbens of the Rat. In BEHAVIORAL AND NEURAL BIOLOGY (Vol. 44). Tait, D., & Brown, V. (2012). Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdf. Springer Reference. http://files/295/Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdf Tait, D. S., Phillips, J. M., Blackwell, A. D., & Brown, V. J. (2017). Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat. Neuroscience, 345, 287–296. https://doi.org/10.1016/j.neuroscience.2016.08.008 Takahashi, H., Hashimoto, R., Iwase, M., Ishii, R., Kamio, Y., & Takeda, M. (2011). Prepulse inhibition of startle response: Recent advances in human studies of psychiatric disease. Clinical Psychopharmacology and Neuroscience, 9(3), 102–110. https://doi.org/10.9758/cpn.2011.9.3.102 Tang, W., McDowell, K., Limsam, M., Neerchal, N. K., Yarowsky, P., & Tasch, U. (2010). Locomotion analysis of Sprague-Dawley rats before and after injecting 6-OHDA. Behavioural Brain Research, 210(1), 131–133. https://doi.org/10.1016/j.bbr.2010.02.012 Trenado, C., Boschheidgen, M., Rübenach, J., N’Diaye, K., Schnitzler, A., Mallet, L., & Wojtecki, L. (2018). Assessment of Metacognition and Reversal Learning in Parkinson’s Disease: Preliminary Results. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00343 Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124(8), 901–905. https://doi.org/10.1007/s00702-017-1686-y Vaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I., & Seidler, R. (2013). Dopamine overdose hypothesis: Evidence and clinical implications. Movement Disorders, 28(14), 1920–1929. https://doi.org/10.1002/mds.25687 Valsamis, B., & Schmid, S. (2011). Habituation and prepulse inhibition of acoustic startle in rodents. Journal of Visualized Experiments, 55, 2–11. https://doi.org/10.3791/3446 Videnovic, A. (2018). Disturbances of Sleep and Alertness in Parkinson’s Disease. Current Neurology and Neuroscience Reports, 18(6). https://doi.org/10.1007/s11910-018-0838-2 Zeng, X. S., Geng, W. S., & Jia, J. J. (2018). Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. In ASN Neuro (Vol. 10). SAGE Publications Inc. https://doi.org/10.1177/1759091418777438 Zhou, M., Zhang, W., Chang, J., Wang, J., Zheng, W., Yang, Y., Wen, P., Li, M., & Xiao, H. (2015). Gait analysis in three different 6-hydroxydopamine rat models of Parkinson’s disease. Neuroscience Letters, 584, 184–189. https://doi.org/10.1016/j.neulet.2014.10.032 Zoetmulder, M., Biernat, H. B., Nikolic, M., Korbo, L., Friberg, L., & Jennum, P. J. (2014). Prepulse Inhibition is Associated with Attention, Processing Speed, and 123I-FP-CIT SPECT in Parkinson’s Disease. Journal of Parkinson’s Disease, 4(1), 77–87. https://doi.org/10.3233/JPD-130307 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
167 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Psicología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Sociales |
dc.publisher.department.none.fl_str_mv |
Departamento de Psicología |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/9e8594b5-cc77-40ae-9187-3a1f7f8a2506/download https://repositorio.uniandes.edu.co/bitstreams/f01c1599-a4cd-4af8-ba48-5610d022871b/download https://repositorio.uniandes.edu.co/bitstreams/5813b9ff-700e-4ce9-8add-10fce5cbbdf8/download https://repositorio.uniandes.edu.co/bitstreams/03f72292-166e-4673-a77d-e9df3d4a2447/download https://repositorio.uniandes.edu.co/bitstreams/1e62db88-1573-402e-a60b-effe9842e4ee/download https://repositorio.uniandes.edu.co/bitstreams/a61b8a23-8c6e-4335-875a-5a03fcd1e0c4/download https://repositorio.uniandes.edu.co/bitstreams/de9ac18a-be84-413b-aad5-7e04164d0638/download https://repositorio.uniandes.edu.co/bitstreams/a818f904-a50b-43ee-ac81-30eaf1591c4d/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f c7006315a9a6668a462e856c4d3d1fed 72ead2c3e25fd48d19269c1383ec24ad d26a4134aebaa203dad567b6339b6ae1 b67297f0b1c2acdff4152c6647825dd5 2f2702e74563d094010f11e4d8f8a2cb d40d1a7f1ad29c9de199c509094b2211 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133847583686656 |
spelling |
Cárdenas Parra, Luis FernandoLievano Parra, Diego JavierBáez Buitrago, Sandra JimenaSabogal, AngelicaFacultad de Ciencias Sociales::Neurociencia y Comportamiento2024-01-30T22:21:09Z2024-01-30T22:21:09Z2023-11https://hdl.handle.net/1992/7364510.57784/1992/73645instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Background: Motor impairments in Parkinson's disease (PD) are associated with alterations in the prepulse inhibition (PPI) of the acoustic startle response (ASR) and reversal learning (RL) from the early stages of the disease. In this context, animal models enable the exploration of the dynamics of non-motor manifestations associated to dopaminergic depletion in a time-dependent manner. Method: 103 adult male and female Wistar rats received unilateral injections of 6-OHDA or saline into the Substantia Nigra Compacta (SNc). Motor skills and the PPI were assessed before and after surgery. Subsequently, three groups were formed to evaluate action-based RL (AB) and stimulus-based RL (SB). Results: The apomorphine test at 2 weeks confirmed the establishment of dopaminergic depletion. Motor coordination was affected in the lesioned groups, with higher number of grip errors and reduced running speed in lesioned males 6 weeks after surgery. The percentage PPI decreased in lesioned females at 4 weeks but increased in lesioned males 6 weeks after lesioning. Finally, the 6-OHDA lesion did not affect initial discrimination or reversal in the AB task, although a treatment facilitation effect was observed in the reversal of SB task. Additionally, sex-dependent differences were observed in performance. Males showed more perseverative behavior and a higher percentage of the win-stay strategy, while females exhibited slower response latencies for both correct and incorrect responses, displaying a higher percentage of the lose-shift strategy. Conclusion: The results show that subthreshold dopamine depletions in the SNc in the unilateral rodent model of 6-OHDA caused sex-differential effects on PPI and RL with more noticeable motor impairments in males after six weeks after surgery. Further characterization of how PPI and RL changes over time in the absence of motor impairments in early stages of dopamine depletion may contribute to anticipate PD diagnosis in human patients and to develop early tailored and more effective sex-dependent treatments.Vicerrectoría de Investigaciones, Universidad de los Andes. Laboratorio de Neurociencia y Comportamiento. Universidad de los Andes.Doctor en PsicologíaDoctoradoParkinson167 páginasapplication/pdfengUniversidad de los AndesDoctorado en PsicologíaFacultad de Ciencias SocialesDepartamento de PsicologíaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar ratsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDParkinson's diseaseReversal learningPrepulse inhibition6-OHDARatPsicologíaAbbruzzese, G., & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Movement Disorders, 18(3), 231–240. https://doi.org/10.1002/mds.10327Aguirre, C. G., Woo, J. H., Romero-Sosa, J. L., Rivera, Z. M., Tejada, A. N., Munier, J. J., Perez, J., Goldfarb, M., Das, K., Gomez, M., Ye, T., Pannu, J., Evans, K., O’Neill, P. R., Spigelman, I., Soltani, A., & Izquierdo, A. (2023). Dissociable contributions of basolateral amygdala and ventrolateral orbitofrontal cortex to flexible learning under uncertainty. The Journal of Neuroscience, JN-RM-0622-23. https://doi.org/10.1523/JNEUROSCI.0622-23.2023Aryal, B., & Lee, Y. (2019). Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Reports, 52(4), 250–258. https://doi.org/10.5483/BMBRep.2019.52.4.204Basavaraj, S., & Yan, J. (2012). Prepulse Inhibition of Acoustic Startle Reflex as a Function of the Frequency Difference between Prepulse and Background Sounds in Mice. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045123Beeler, J. A., Cools, R., Luciana, M., Ostlund, S. B., & Petzinger, G. (2014). A kinder, gentler dopamine... highlighting dopamine’s role in behavioral flexibility. In Frontiers in Neuroscience (Issue 8 JAN). Frontiers Media SA. https://doi.org/10.3389/fnins.2014.00004Bissonette, G. B., & Powell, E. M. (2012). Reversal learning and attentional set-shifting in mice. Neuropharmacology, 62(3), 1168–1174. https://doi.org/10.1016/j.neuropharm.2011.03.011Bleickardt, C. J., Lashomb, A. L., Merkel, C. E., & Hodgson, R. A. (2012). Adenosine A 2A receptor antagonists do not disrupt rodent prepulse inhibition: An improved side effect profile in the treatment of parkinson’s disease. Parkinson’s Disease, 2012. https://doi.org/10.1155/2012/591094Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8(DEC), 1–12. https://doi.org/10.3389/fnana.2014.00155Boix, J., von Hieber, D., & Connor, B. (2018). Gait analysis for early detection of motor symptoms in the 6-ohda rat model of parkinson’s disease. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00039Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156(2–3), 234–258. https://doi.org/10.1007/s002130100810Braun, Amanda., Amos-Kroohs, R. M., Gutierrez, A., Lundgren, K. H., Seroogy, K. B., Vorhees, C. V., & Williams, M. T. (2016). 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric Navigation in Male Sprague–Dawley Rats. Neurotoxicity Research, 30(2), 199–212. https://doi.org/10.1007/s12640-016-9616-6Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behavioural Brain Research, 220(2), 288–293. https://doi.org/10.1016/j.bbr.2011.02.008Brown, V. J., & Tait, D. S. (2016). Attentional set-shifting across species. In Current Topics in Behavioral Neurosciences (Vol. 28, pp. 363–395). Springer Verlag. https://doi.org/10.1007/7854_2015_5002Cammisuli, D. M., & Crowe, S. (2018). Spatial disorientation and executive dysfunction in elderly nondemented patients with Parkinson’s disease. Neuropsychiatric Disease and Treatment, 14, 2531–2539. https://doi.org/10.2147/NDT.S173820Cannon, & Greenamyre. (2010). Neurotoxic in vivo models of Parkinson’s disease. Recent advances. In Progress in Brain Research (Vol. 184, Issue C). Elsevier B.V. https://doi.org/10.1016/S0079-6123(10)84002-6Cauchoix, M., Hermer, E., Chaine, A. S., & Morand-Ferron, J. (2017). Cognition in the field: comparison of reversal learning performance in captive and wild passerines. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13179-5Chao, O. Y., Pum, M. E., Li, J. S., & Huston, J. P. (2012). The grid-walking test: Assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle. Neuroscience, 202, 318–325. https://doi.org/10.1016/j.neuroscience.2011.11.016Chesselet, M. F., Richter, F., Zhu, C., Magen, I., Watson, M. B., & Subramaniam, S. R. (2012). A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) Mice. Neurotherapeutics, 9(2), 297–314. https://doi.org/10.1007/s13311-012-0104-2Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience, 22(11), 4563–4567. https://doi.org/10.1523/JNEUROSCI.22-11-04563.2002Crittenden, J. R., & Graybiel, A. M. (2011). Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Frontiers in Neuroanatomy, 5. https://doi.org/10.3389/fnana.2011.00059Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. https://doi.org/10.1016/j.tins.2015.07.003Dauer, W., & Przedborski, S. (2004). Parkinson’s Disease mechanisms and models. Neuron, 39, 889–909.De Deurwaerdère, P., Di Giovanni, G., & Millan, M. J. (2017). Expanding the repertoire of L-DOPA’s actions: A comprehensive review of its functional neurochemistry. Progress in Neurobiology, 151, 57–100. https://doi.org/10.1016/j.pneurobio.2016.07.002Decressac, M. (2012). Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Experimental Neurology, 10. http://files/718/Decressac - 2012 - Comparison of the behavioural and histological cha.pdfDel Tredici, K., & Braak, H. (2016). Sporadic Parkinson’s disease: Development and distribution of α-synuclein pathology. Neuropathology and Applied Neurobiology, 42(1), 33–50. https://doi.org/10.1111/nan.12298DeLong, M. R., & Wichmann, T. (2015). Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. JAMA Neurology, 72(11), 1354. https://doi.org/10.1001/jamaneurol.2015.2397Deumens, R., Blokland, A., & Prickaerts, J. (2002a). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891Deumens, R., Blokland, A., & Prickaerts, J. (2002b). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891Ding, W., Ding, L., Han, Y., & Mu, L. (2015). Neurodegeneration and cognition in Parkinson’s disease: a review. European Review for Medical and Pharmacological Sciences, 19, 2275–2281.Eagle, A. L., Olumolade, O. O., & Otani, H. (2015). Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: A model for early Parkinson’s disease. Neuroscience Research, 92, 71–79. https://doi.org/10.1016/j.neures.2014.11.002Engelender, S., & Isacson, O. (2017). The Threshold Theory for Parkinson’s Disease. Trends in Neurosciences, 40(1), 4–14. https://doi.org/10.1016/j.tins.2016.10.008Erkkinen, M. G., Kim, M., & Geschwind, M. D. (2018). Major Neurodegenerative Diseases. 1–44.Evenden, J., Marston, H., Jones, G., Giardini, V., Lenard, L., Everitt, B., & Robbins, T. (1989). Effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on visual discrimination acquisition, performance and reversal in the rat. In Behavioural Brain Research (Vol. 32).Fasano, A., Mazzoni, A., & Falotico, E. (2022). Reaching and Grasping Movements in Parkinson’s Disease: A Review. In Journal of Parkinson’s Disease (Vol. 12, Issue 4, pp. 1083–1113). IOS Press BV. https://doi.org/10.3233/JPD-213082Fleming, S. M. (2009). Behavioral Outcome Measures for the Assessment of Sensorimotor Function in Animal Models of Movement Disorders. In International Review of Neurobiology (Vol. 89, Issue C, pp. 57–65). https://doi.org/10.1016/S0074-7742(09)89003-XGargiulo AT, Hu J, Ravaglia IC, Hawks A, L. X., Sweasy K, & Grafe L. (2022). Sex differences in cognitive flexibility are driven by the estrous cycle and stress-dependent. Frontiers in Behavioral Neuroscience, 16(958301), 1–20.Gee, L., Smith, H., De La Cruz, P., Campbell, J., Fama, C., Haller, J., Ramirez-Zamora, A., Durphy, J., Hanspal, E., Molho, E., Barba, A., Shin, D., & Pilitsis, J. G. (2015). The Influence of Bilateral Subthalamic Nucleus Deep Brain Stimulation on Impulsivity and Prepulse Inhibition in Parkinson’s Disease Patients. Stereotactic and Functional Neurosurgery, 93(4), 265–270. https://doi.org/10.1159/000381558Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural Components Underlying Behavioral Flexibility in Human Reversal Learning. Cerebral Cortex, 20(8), 1843–1852. https://doi.org/10.1093/cercor/bhp247Gilmour, G., Arguello, A., Bari, A., Brown, V. J., Carter, C., Floresco, S. B., Jentsch, D. J., Tait, D. S., Young, J. W., & Robbins, T. W. (2013). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience & Biobehavioral Reviews, 37(9), 2125–2140. https://doi.org/10.1016/j.neubiorev.2012.04.006Goarin, E. H. F., Lingawi, N. W., & Laurent, V. (2018). Role Played by the Passage of Time in Reversal Learning. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00075Gómez-Nieto, R., Hormigo, S., & López, D. E. (2020). Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. In Brain Sciences (Vol. 10, Issue 9, pp. 1–15). MDPI AG. https://doi.org/10.3390/brainsci10090639Graham, F. K., & Murray, G. M. (1977). Siologicai Psychology (Vol. 5, Issue 1).Grauer, S. M., Hodgson, R., & Hyde, L. A. (2014). MitoPark mice, an animal model of Parkinson’s disease, show enhanced prepulse inhibition of acoustic startle and no loss of gating in response to the adenosine A2A antagonist SCH 412348. Psychopharmacology, 231(7), 1325–1337. https://doi.org/10.1007/s00213-013-3320-5Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018a). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018b). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008a). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008b). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178Haluk, D. M., & Floresco, S. B. (2009). Ventral Striatal Dopamine Modulation of Different Forms of Behavioral Flexibility. Neuropsychopharmacology, 34(8), 2041–2052. https://doi.org/10.1038/npp.2009.21Harris, C., Aguirre, C., Kolli, S., Das, K., Izquierdo, A., & Soltani, A. (2021). Unique Features of Stimulus-Based Probabilistic Reversal Learning. Behavioral Neuroscience, 135(4), 550–570. https://doi.org/10.1037/bne0000474.suppHart, E. E., Stolyarova, A., Conoscenti, M. A., Minor, T. R., & Izquierdo, A. (2017). Rigid patterns of effortful choice behavior after acute stress in rats. Stress (Amsterdam, Netherlands), 20(1), 19–28. https://doi.org/10.1080/10253890.2016.1258397Hawkes, C. H., Del Tredici, K., & Braak, H. (2010). A timeline for Parkinson’s disease. Parkinsonism and Related Disorders, 16(2), 79–84. https://doi.org/10.1016/j.parkreldis.2009.08.007Hershey, L. A., & Peavy, G. M. (2015). Cognitive decline in Parkinson disease: How steep and crowded is the slope? Neurology, 85(15), 1268–1269. https://doi.org/10.1212/WNL.0000000000002003Hormigo, S., López, D. E., Cardoso, A., Zapata, G., Sepúlveda, J., & Castellano, O. (2018). Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Structure and Function, 223(6), 2733–2751. https://doi.org/10.1007/s00429-018-1654-9Hsieh, T. H., Chen, J. J. J., Chen, L. H., Chiang, P. T., & Lee, H. Y. (2011). Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behavioural Brain Research, 222(1), 1–9. https://doi.org/10.1016/j.bbr.2011.03.031Humphries, M. D., Khamassi, M., & Gurney, K. (2012). Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience, FEB. https://doi.org/10.3389/fnins.2012.00009Issy, A. C., Padovan-Neto, F. E., Lazzarini, M., Bortolanza, M., & Del-Bel, E. (2015). Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson’s disease. Life Sciences, 125, 71–78. https://doi.org/10.1016/j.lfs.2015.01.022Izquierdo, A., Aguirre, C., Hart, E. E., & Stolyarova, A. (2019). Rodent Models of Adaptive Value Learning and Decision-Making. Methods in Molecular Biology (Clifton, N.J.), 2011, 105–119. https://doi.org/10.1007/978-1-4939-9554-7_7Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., & Holmes, A. (2017). The neural basis of reversal learning: An updated perspective. In Neuroscience (Vol. 345, pp. 12–26). Elsevier Ltd. https://doi.org/10.1016/j.neuroscience.2016.03.021Izquierdo, & Jentsch. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620. https://doi.org/10.1007/s00213-011-2579-7Jenni, N. L., Rutledge, G., & Floresco, S. B. (2022). Distinct Medial Orbitofrontal-Striatal Circuits Support Dissociable Component Processes of Risk/Reward Decision-Making. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 42(13), 2743–2755. https://doi.org/10.1523/JNEUROSCI.2097-21.2022Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3Kamińska, K., Lenda, T., Konieczny, J., Czarnecka, A., & Lorenc-Koci, E. (2017). Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacological Reports, 69(5), 985–994. https://doi.org/10.1016/j.pharep.2017.05.016Klein, A., Wessolleck, J., Papazoglou, A., Metz, G., & Nikkhah, G. (2009). Walking pattern analysis after unilateral lesion and transplantation of fetal dopaminergic progentor cells in rats. Brehavioral Brain Research, 199, 317–325.Kohl, S., Heekeren, K., Klosterkötter, J., & Kuhn, J. (2013). Prepulse inhibition in psychiatric disorders - Apart from schizophrenia. Journal of Psychiatric Research, 47(4), 445–452. https://doi.org/10.1016/j.jpsychires.2012.11.018Kumar, G., Talpos, J., & Steckler, T. (2015). Strain-dependent effects on acquisition and reversal of visual and spatial tasks in a rat touchscreen battery of cognition. Physiology & Behavior, 144, 26–36. https://doi.org/10.1016/j.physbeh.2015.03.001Laclair, M., Febo, M., Nephew, B., Gervais, N. J., Poirier, G., Workman, K., Chumachenko, S., Payne, L., Moore, M. C., King, J. A., & Lacreuse, A. (2019). Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. ENeuro, 6(4). https://doi.org/10.1523/ENEURO.0154-19.2019Lange, F., Brückner, C., Knebel, A., Seer, C., & Kopp, B. (2018). Executive dysfunction in Parkinson’s disease: A meta-analysis on the Wisconsin Card Sorting Test literature. Neuroscience and Biobehavioral Reviews, 93(February), 38–56. https://doi.org/10.1016/j.neubiorev.2018.06.014Lange, F., Seer, C., & Kopp, B. (2017). Cognitive flexibility in neurological disorders: Cognitive components and event-related potentials. Neuroscience and Biobehavioral Reviews, 83(July), 496–507. https://doi.org/10.1016/j.neubiorev.2017.09.011Laughlin, R. E., Grant, T. L., Williams, R. W., & Jentsch, J. D. (2011). Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice. Biological Psychiatry, 69(11), 1109–1116. https://doi.org/10.1016/j.biopsych.2011.01.014Lee, B., Groman, S., London, E. D., & Jentsch, J. D. (2007). Dopamine D2/D3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys. Neuropsychopharmacology, 32(10), 2125–2134. https://doi.org/10.1038/sj.npp.1301337Leng, A., Yee, B. K., Feldon, J., & Ferger, B. (2004). Acoustic startle response, prepulse inhibition, and spontaneous locomotor activity in MPTP-treated mice. Behavioural Brain Research, 154(2), 449–456. https://doi.org/10.1016/j.bbr.2004.03.012Lindemann, C., Krauss, J. K., & Schwabe, K. (2012). Deep brain stimulation of the subthalamic nucleus in the 6-hydroxydopamine rat model of Parkinson’s disease: Effects on sensorimotor gating. Behavioural Brain Research, 230(1), 243–250. https://doi.org/10.1016/j.bbr.2012.02.009Linden, J., James, A. S., McDaniel, C., & Jentsch, J. D. (2018). Dopamine D2 Receptors in Dopaminergic Neurons Modulate Performance in a Reversal Learning Task in Mice. Eneuro, 5(1), ENEURO.0229-17.2018. https://doi.org/10.1523/ENEURO.0229-17.2018Lindgren, H. S., Wickens, R., Tait, D. S., Brown, V. J., & Dunnett, S. B. (2013). Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 71, 148–153. https://doi.org/10.1016/j.neuropharm.2013.03.034Lionnet, A., Leclair-Visonneau, L., Neunlist, M., Murayama, S., Takao, M., Adler, C. H., Derkinderen, P., & Beach, T. G. (2018). Does Parkinson’s disease start in the gut? Acta Neuropathologica, 135(1). https://doi.org/10.1007/s00401-017-1777-8Mann, A., & Chesselet, M.-F. (2015). Techniques for Motor Assessment in Rodents. In Movement Disorders (pp. 139–157). Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780124051959000081Mcfarland, K., Price, D. L., & Bonhaus, D. W. (2008). Pimavanserin , a 5-HT 2A inverse agonist , reverses psychosis-like behaviors in a rodent model of Parkinson ’ s disease. 681–692. https://doi.org/10.1097/FBP.0b013e32834aff98McFarland, K., Price, D. L., Davis, C. N., Ma, J. N., Bonhaus, D. W., Burstein, E. S., & Olsson, R. (2013). AC-186, a selective nonsteroidal estrogen receptor β agonist, shows gender specific neuroprotection in a Parkinson’s disease rat model. ACS Chemical Neuroscience, 4(9), 1249–1255. https://doi.org/10.1021/cn400132uMehler-Wex, C., Riederer, P., & Gerlach, M. (2006). Dopaminergic Dysbalance in Distinct Basal Ganglia Neurocircuits: Implications for the Pathophysiology of Parkinson´s Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. Neurotoxicity Research, 10, 167–179. www.NeurotoxicityResearch.comMeloni, E. G., & Davis, M. (2004). The substancia nigra pars reticulata mediates the enhancement of startle by the dopamine D1 receptor agonist SKF 82958 in rats. Psychopharmacology, 174(2), 228–236. https://doi.org/10.1007/s00213-003-1728-zMeloni, Edward., & Davies, Michael. (2000). Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substantia nigra pars compacta: corresponding changes in c-Fos expression in the caudate–putamen. Brain Reserach, 879(1–2), 93–104.Metz, G. A., Tse, A., Ballermann, M., Smith, L. K., & Fouad, K. (2005). The unilateral 6-OHDA rat model of Parkinson’s disease revisited: An electromyographic and behavioural analysis. European Journal of Neuroscience, 22(3), 735–744. https://doi.org/10.1111/j.1460-9568.2005.04238.xMonastero, R., Cicero, C. E., Baschi, R., Davì, M., Luca, A., Restivo, V., Zangara, C., Fierro, B., Zappia, M., & Nicoletti, A. (2018). Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS). Journal of Neurology, 265(5), 1050–1058. https://doi.org/10.1007/s00415-018-8800-4Moustafa, A. A. (2011). Levodopa enhances reward learning but impairs reversal learning in parkinson’s disease patients. Frontiers in Human Neuroscience, 4(JANUARY), 1–2. https://doi.org/10.3389/fnhum.2010.00240Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. In Trends in Cognitive Sciences (Vol. 15, Issue 10, pp. 453–459). https://doi.org/10.1016/j.tics.2011.07.011Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. In Progress in Neurobiology (Vol. 67).Nilsson, S. R. O., Alsiö, J., Somerville, E. M., & Clifton, P. G. (2015). The rat’s not for turning: Dissociating the psychological components of cognitive inflexibility. In Neuroscience and Biobehavioral Reviews (Vol. 56, pp. 1–14). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2015.06.015O’Neill, M., & Brown, V. J. (2007). The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiology of Learning and Memory, 88(1), 75–81. https://doi.org/10.1016/j.nlm.2007.03.003Perriol, M. P., Dujardin, K., Derambure, P., Marcq, A., Bourriez, J. L., Laureau, E., Pasquier, F., Defebvre, L., & Destée, A. (2005). Disturbance of sensory filtering in dementia with Lewy bodies: Comparison with Parkinson’s disease dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 106–108. https://doi.org/10.1136/jnnp.2003.035022Pilz, P., & Schnitzler, H.-Ulrich. (1996). Habituation and Sensitization of the Acoustic Startle Response in Rats: Amplitude, Threshold, and Latency Measures. ..” Neurobiology of Learning and Memory , 66(1), 67–79.Przedborski, S. (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism and Related Disorders, 11(SUPPL. 1). https://doi.org/10.1016/j.parkreldis.2004.10.012Rastegar, D., Ho, N., Halliday, G. ., & Dzamko, N. (2019). Parkinson’s progression prediction using machine learning and serum cytokines. Npj Parkinson’s Disease, 5(1), 1–8. https://doi.org/10.1038/s41531-019-0086-4Savica, R., Grossardt, B. R., Rocca, W. A., & Bower, J. H. (2018). Parkinson disease with and without Dementia: A prevalence study and future projections. Movement Disorders, 33(4), 537–543. https://doi.org/10.1002/mds.27277Seip, K., Young, J., Youg, M., & Shapiro, M. (2017). Partial Lesion of the Nigrostriatal Dopamine Pathway in Rats Impairs Egocentric Learning but Not Spatial Learning or Behavioral Flexibility. Behavioral Neuroscience, 131, 135–142. https://doi.org/10.1037/bne0000189.suppSeip-Cammack, K. M., Young, J. J., Young, M. E., & Shapiro, M. L. (2017). Partial lesion of the nigrostriatal dopamine pathway in rats impairs egocentric learning but not spatial learning or behavioral flexibility. Behavioral Neuroscience, 131(2), 135–142. https://doi.org/10.1037/bne0000189Simola, N., Morelli, M., & Carta, A. (2007). The 6-Hydroxydopamine Model of Parkinson’s Disease. 11(3–4), 151–167.Sinclair, E. B., Hildebrandt, B. A., Culbert, K. M., Klump, K. L., & Sisk, C. L. (2017). Preliminary evidence of sex differences in behavioral and neural responses to palatable food reward in rats. Physiology and Behavior, 176, 165–173. https://doi.org/10.1016/j.physbeh.2017.03.042Smith, A. J., & Hawkins, P. (2016). Good science, good sense and good sensibilities: The three Ss of Carol Newton. Animals, 6(11). https://doi.org/10.3390/ani6110070Stirpe, P., Hoffman, M., Badiali, D., & Colosimo, C. (2016). Constipation: an emerging risk factor for Parkinson’s disease? European Journal of Neurology, 23(11), 1606–1613. https://doi.org/10.1111/ene.13082Stoker, T., & Greenlad, J. (2018). Parkinson ’ s Disease Pathogenesis and clinical aspects. Codon Publications.Stolyarova, A., O’Dell, S. J., Marshall, J. F., & Izquierdo, A. (2014). Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine. Behavioural Brain Research, 271, 195–202. https://doi.org/10.1016/j.bbr.2014.06.031Sullivan, L., Shaffer, H., Hill, C., & Del Arco, A. (2019). Time-dependent changes in cognitive flexibility performance during intermittent social stress: Relevance for motivation and reward-seeking behavior. Behavioural Brain Research, 370. https://doi.org/10.1016/j.bbr.2019.111972Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication. Neuropsychologia, 38(5), 596–612. https://doi.org/10.1016/S0028-3932(99)00103-7Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985a). Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behavioral and Neural Biology, 44(3), 354–363. https://doi.org/10.1016/S0163-1047(85)90640-5Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985b). Alternation Behavior, Spatial Discrimination, and Reversal Disturbances following 6-Hydroxydopamine Lesions in the Nucleus Accumbens of the Rat. In BEHAVIORAL AND NEURAL BIOLOGY (Vol. 44).Tait, D., & Brown, V. (2012). Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdf. Springer Reference. http://files/295/Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdfTait, D. S., Phillips, J. M., Blackwell, A. D., & Brown, V. J. (2017). Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat. Neuroscience, 345, 287–296. https://doi.org/10.1016/j.neuroscience.2016.08.008Takahashi, H., Hashimoto, R., Iwase, M., Ishii, R., Kamio, Y., & Takeda, M. (2011). Prepulse inhibition of startle response: Recent advances in human studies of psychiatric disease. Clinical Psychopharmacology and Neuroscience, 9(3), 102–110. https://doi.org/10.9758/cpn.2011.9.3.102Tang, W., McDowell, K., Limsam, M., Neerchal, N. K., Yarowsky, P., & Tasch, U. (2010). Locomotion analysis of Sprague-Dawley rats before and after injecting 6-OHDA. Behavioural Brain Research, 210(1), 131–133. https://doi.org/10.1016/j.bbr.2010.02.012Trenado, C., Boschheidgen, M., Rübenach, J., N’Diaye, K., Schnitzler, A., Mallet, L., & Wojtecki, L. (2018). Assessment of Metacognition and Reversal Learning in Parkinson’s Disease: Preliminary Results. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00343Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124(8), 901–905. https://doi.org/10.1007/s00702-017-1686-yVaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I., & Seidler, R. (2013). Dopamine overdose hypothesis: Evidence and clinical implications. Movement Disorders, 28(14), 1920–1929. https://doi.org/10.1002/mds.25687Valsamis, B., & Schmid, S. (2011). Habituation and prepulse inhibition of acoustic startle in rodents. Journal of Visualized Experiments, 55, 2–11. https://doi.org/10.3791/3446Videnovic, A. (2018). Disturbances of Sleep and Alertness in Parkinson’s Disease. Current Neurology and Neuroscience Reports, 18(6). https://doi.org/10.1007/s11910-018-0838-2Zeng, X. S., Geng, W. S., & Jia, J. J. (2018). Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. In ASN Neuro (Vol. 10). SAGE Publications Inc. https://doi.org/10.1177/1759091418777438Zhou, M., Zhang, W., Chang, J., Wang, J., Zheng, W., Yang, Y., Wen, P., Li, M., & Xiao, H. (2015). Gait analysis in three different 6-hydroxydopamine rat models of Parkinson’s disease. Neuroscience Letters, 584, 184–189. https://doi.org/10.1016/j.neulet.2014.10.032Zoetmulder, M., Biernat, H. B., Nikolic, M., Korbo, L., Friberg, L., & Jennum, P. J. (2014). Prepulse Inhibition is Associated with Attention, Processing Speed, and 123I-FP-CIT SPECT in Parkinson’s Disease. Journal of Parkinson’s Disease, 4(1), 77–87. https://doi.org/10.3233/JPD-130307201810717PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/9e8594b5-cc77-40ae-9187-3a1f7f8a2506/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f01c1599-a4cd-4af8-ba48-5610d022871b/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdfEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdfapplication/pdf19585003https://repositorio.uniandes.edu.co/bitstreams/5813b9ff-700e-4ce9-8add-10fce5cbbdf8/downloadc7006315a9a6668a462e856c4d3d1fedMD54autorizacion_tesis.pdfautorizacion_tesis.pdfHIDEapplication/pdf221529https://repositorio.uniandes.edu.co/bitstreams/03f72292-166e-4673-a77d-e9df3d4a2447/download72ead2c3e25fd48d19269c1383ec24adMD53TEXTEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.txtEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.txtExtracted texttext/plain100319https://repositorio.uniandes.edu.co/bitstreams/1e62db88-1573-402e-a60b-effe9842e4ee/downloadd26a4134aebaa203dad567b6339b6ae1MD55autorizacion_tesis.pdf.txtautorizacion_tesis.pdf.txtExtracted texttext/plain2125https://repositorio.uniandes.edu.co/bitstreams/a61b8a23-8c6e-4335-875a-5a03fcd1e0c4/downloadb67297f0b1c2acdff4152c6647825dd5MD57THUMBNAILEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.jpgEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.jpgGenerated Thumbnailimage/jpeg6338https://repositorio.uniandes.edu.co/bitstreams/de9ac18a-be84-413b-aad5-7e04164d0638/download2f2702e74563d094010f11e4d8f8a2cbMD56autorizacion_tesis.pdf.jpgautorizacion_tesis.pdf.jpgGenerated Thumbnailimage/jpeg11011https://repositorio.uniandes.edu.co/bitstreams/a818f904-a50b-43ee-ac81-30eaf1591c4d/downloadd40d1a7f1ad29c9de199c509094b2211MD581992/73645oai:repositorio.uniandes.edu.co:1992/736452024-08-26 15:21:27.07http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |