Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats

Background: Motor impairments in Parkinson's disease (PD) are associated with alterations in the prepulse inhibition (PPI) of the acoustic startle response (ASR) and reversal learning (RL) from the early stages of the disease. In this context, animal models enable the exploration of the dynamic...

Full description

Autores:
Lievano Parra, Diego Javier
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73645
Acceso en línea:
https://hdl.handle.net/1992/73645
Palabra clave:
Parkinson's disease
Reversal learning
Prepulse inhibition
6-OHDA
Rat
Psicología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_170c8d38779300b8e5e5be28277d1dce
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73645
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
title Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
spellingShingle Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
Parkinson's disease
Reversal learning
Prepulse inhibition
6-OHDA
Rat
Psicología
title_short Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
title_full Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
title_fullStr Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
title_full_unstemmed Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
title_sort Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats
dc.creator.fl_str_mv Lievano Parra, Diego Javier
dc.contributor.advisor.none.fl_str_mv Cárdenas Parra, Luis Fernando
dc.contributor.author.none.fl_str_mv Lievano Parra, Diego Javier
dc.contributor.jury.none.fl_str_mv Báez Buitrago, Sandra Jimena
Sabogal, Angelica
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias Sociales::Neurociencia y Comportamiento
dc.subject.keyword.eng.fl_str_mv Parkinson's disease
topic Parkinson's disease
Reversal learning
Prepulse inhibition
6-OHDA
Rat
Psicología
dc.subject.keyword.none.fl_str_mv Reversal learning
Prepulse inhibition
6-OHDA
Rat
dc.subject.themes.spa.fl_str_mv Psicología
description Background: Motor impairments in Parkinson's disease (PD) are associated with alterations in the prepulse inhibition (PPI) of the acoustic startle response (ASR) and reversal learning (RL) from the early stages of the disease. In this context, animal models enable the exploration of the dynamics of non-motor manifestations associated to dopaminergic depletion in a time-dependent manner. Method: 103 adult male and female Wistar rats received unilateral injections of 6-OHDA or saline into the Substantia Nigra Compacta (SNc). Motor skills and the PPI were assessed before and after surgery. Subsequently, three groups were formed to evaluate action-based RL (AB) and stimulus-based RL (SB). Results: The apomorphine test at 2 weeks confirmed the establishment of dopaminergic depletion. Motor coordination was affected in the lesioned groups, with higher number of grip errors and reduced running speed in lesioned males 6 weeks after surgery. The percentage PPI decreased in lesioned females at 4 weeks but increased in lesioned males 6 weeks after lesioning. Finally, the 6-OHDA lesion did not affect initial discrimination or reversal in the AB task, although a treatment facilitation effect was observed in the reversal of SB task. Additionally, sex-dependent differences were observed in performance. Males showed more perseverative behavior and a higher percentage of the win-stay strategy, while females exhibited slower response latencies for both correct and incorrect responses, displaying a higher percentage of the lose-shift strategy. Conclusion: The results show that subthreshold dopamine depletions in the SNc in the unilateral rodent model of 6-OHDA caused sex-differential effects on PPI and RL with more noticeable motor impairments in males after six weeks after surgery. Further characterization of how PPI and RL changes over time in the absence of motor impairments in early stages of dopamine depletion may contribute to anticipate PD diagnosis in human patients and to develop early tailored and more effective sex-dependent treatments.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11
dc.date.accessioned.none.fl_str_mv 2024-01-30T22:21:09Z
dc.date.available.none.fl_str_mv 2024-01-30T22:21:09Z
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73645
dc.identifier.doi.none.fl_str_mv 10.57784/1992/73645
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73645
identifier_str_mv 10.57784/1992/73645
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Abbruzzese, G., & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Movement Disorders, 18(3), 231–240. https://doi.org/10.1002/mds.10327
Aguirre, C. G., Woo, J. H., Romero-Sosa, J. L., Rivera, Z. M., Tejada, A. N., Munier, J. J., Perez, J., Goldfarb, M., Das, K., Gomez, M., Ye, T., Pannu, J., Evans, K., O’Neill, P. R., Spigelman, I., Soltani, A., & Izquierdo, A. (2023). Dissociable contributions of basolateral amygdala and ventrolateral orbitofrontal cortex to flexible learning under uncertainty. The Journal of Neuroscience, JN-RM-0622-23. https://doi.org/10.1523/JNEUROSCI.0622-23.2023
Aryal, B., & Lee, Y. (2019). Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Reports, 52(4), 250–258. https://doi.org/10.5483/BMBRep.2019.52.4.204
Basavaraj, S., & Yan, J. (2012). Prepulse Inhibition of Acoustic Startle Reflex as a Function of the Frequency Difference between Prepulse and Background Sounds in Mice. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045123
Beeler, J. A., Cools, R., Luciana, M., Ostlund, S. B., & Petzinger, G. (2014). A kinder, gentler dopamine... highlighting dopamine’s role in behavioral flexibility. In Frontiers in Neuroscience (Issue 8 JAN). Frontiers Media SA. https://doi.org/10.3389/fnins.2014.00004
Bissonette, G. B., & Powell, E. M. (2012). Reversal learning and attentional set-shifting in mice. Neuropharmacology, 62(3), 1168–1174. https://doi.org/10.1016/j.neuropharm.2011.03.011
Bleickardt, C. J., Lashomb, A. L., Merkel, C. E., & Hodgson, R. A. (2012). Adenosine A 2A receptor antagonists do not disrupt rodent prepulse inhibition: An improved side effect profile in the treatment of parkinson’s disease. Parkinson’s Disease, 2012. https://doi.org/10.1155/2012/591094
Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8(DEC), 1–12. https://doi.org/10.3389/fnana.2014.00155
Boix, J., von Hieber, D., & Connor, B. (2018). Gait analysis for early detection of motor symptoms in the 6-ohda rat model of parkinson’s disease. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00039
Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156(2–3), 234–258. https://doi.org/10.1007/s002130100810
Braun, Amanda., Amos-Kroohs, R. M., Gutierrez, A., Lundgren, K. H., Seroogy, K. B., Vorhees, C. V., & Williams, M. T. (2016). 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric Navigation in Male Sprague–Dawley Rats. Neurotoxicity Research, 30(2), 199–212. https://doi.org/10.1007/s12640-016-9616-6
Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behavioural Brain Research, 220(2), 288–293. https://doi.org/10.1016/j.bbr.2011.02.008
Brown, V. J., & Tait, D. S. (2016). Attentional set-shifting across species. In Current Topics in Behavioral Neurosciences (Vol. 28, pp. 363–395). Springer Verlag. https://doi.org/10.1007/7854_2015_5002
Cammisuli, D. M., & Crowe, S. (2018). Spatial disorientation and executive dysfunction in elderly nondemented patients with Parkinson’s disease. Neuropsychiatric Disease and Treatment, 14, 2531–2539. https://doi.org/10.2147/NDT.S173820
Cannon, & Greenamyre. (2010). Neurotoxic in vivo models of Parkinson’s disease. Recent advances. In Progress in Brain Research (Vol. 184, Issue C). Elsevier B.V. https://doi.org/10.1016/S0079-6123(10)84002-6
Cauchoix, M., Hermer, E., Chaine, A. S., & Morand-Ferron, J. (2017). Cognition in the field: comparison of reversal learning performance in captive and wild passerines. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13179-5
Chao, O. Y., Pum, M. E., Li, J. S., & Huston, J. P. (2012). The grid-walking test: Assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle. Neuroscience, 202, 318–325. https://doi.org/10.1016/j.neuroscience.2011.11.016
Chesselet, M. F., Richter, F., Zhu, C., Magen, I., Watson, M. B., & Subramaniam, S. R. (2012). A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) Mice. Neurotherapeutics, 9(2), 297–314. https://doi.org/10.1007/s13311-012-0104-2
Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience, 22(11), 4563–4567. https://doi.org/10.1523/JNEUROSCI.22-11-04563.2002
Crittenden, J. R., & Graybiel, A. M. (2011). Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Frontiers in Neuroanatomy, 5. https://doi.org/10.3389/fnana.2011.00059
Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. https://doi.org/10.1016/j.tins.2015.07.003
Dauer, W., & Przedborski, S. (2004). Parkinson’s Disease mechanisms and models. Neuron, 39, 889–909.
De Deurwaerdère, P., Di Giovanni, G., & Millan, M. J. (2017). Expanding the repertoire of L-DOPA’s actions: A comprehensive review of its functional neurochemistry. Progress in Neurobiology, 151, 57–100. https://doi.org/10.1016/j.pneurobio.2016.07.002
Decressac, M. (2012). Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Experimental Neurology, 10. http://files/718/Decressac - 2012 - Comparison of the behavioural and histological cha.pdf
Del Tredici, K., & Braak, H. (2016). Sporadic Parkinson’s disease: Development and distribution of α-synuclein pathology. Neuropathology and Applied Neurobiology, 42(1), 33–50. https://doi.org/10.1111/nan.12298
DeLong, M. R., & Wichmann, T. (2015). Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. JAMA Neurology, 72(11), 1354. https://doi.org/10.1001/jamaneurol.2015.2397
Deumens, R., Blokland, A., & Prickaerts, J. (2002a). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891
Deumens, R., Blokland, A., & Prickaerts, J. (2002b). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891
Ding, W., Ding, L., Han, Y., & Mu, L. (2015). Neurodegeneration and cognition in Parkinson’s disease: a review. European Review for Medical and Pharmacological Sciences, 19, 2275–2281.
Eagle, A. L., Olumolade, O. O., & Otani, H. (2015). Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: A model for early Parkinson’s disease. Neuroscience Research, 92, 71–79. https://doi.org/10.1016/j.neures.2014.11.002
Engelender, S., & Isacson, O. (2017). The Threshold Theory for Parkinson’s Disease. Trends in Neurosciences, 40(1), 4–14. https://doi.org/10.1016/j.tins.2016.10.008
Erkkinen, M. G., Kim, M., & Geschwind, M. D. (2018). Major Neurodegenerative Diseases. 1–44.
Evenden, J., Marston, H., Jones, G., Giardini, V., Lenard, L., Everitt, B., & Robbins, T. (1989). Effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on visual discrimination acquisition, performance and reversal in the rat. In Behavioural Brain Research (Vol. 32).
Fasano, A., Mazzoni, A., & Falotico, E. (2022). Reaching and Grasping Movements in Parkinson’s Disease: A Review. In Journal of Parkinson’s Disease (Vol. 12, Issue 4, pp. 1083–1113). IOS Press BV. https://doi.org/10.3233/JPD-213082
Fleming, S. M. (2009). Behavioral Outcome Measures for the Assessment of Sensorimotor Function in Animal Models of Movement Disorders. In International Review of Neurobiology (Vol. 89, Issue C, pp. 57–65). https://doi.org/10.1016/S0074-7742(09)89003-X
Gargiulo AT, Hu J, Ravaglia IC, Hawks A, L. X., Sweasy K, & Grafe L. (2022). Sex differences in cognitive flexibility are driven by the estrous cycle and stress-dependent. Frontiers in Behavioral Neuroscience, 16(958301), 1–20.
Gee, L., Smith, H., De La Cruz, P., Campbell, J., Fama, C., Haller, J., Ramirez-Zamora, A., Durphy, J., Hanspal, E., Molho, E., Barba, A., Shin, D., & Pilitsis, J. G. (2015). The Influence of Bilateral Subthalamic Nucleus Deep Brain Stimulation on Impulsivity and Prepulse Inhibition in Parkinson’s Disease Patients. Stereotactic and Functional Neurosurgery, 93(4), 265–270. https://doi.org/10.1159/000381558
Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural Components Underlying Behavioral Flexibility in Human Reversal Learning. Cerebral Cortex, 20(8), 1843–1852. https://doi.org/10.1093/cercor/bhp247
Gilmour, G., Arguello, A., Bari, A., Brown, V. J., Carter, C., Floresco, S. B., Jentsch, D. J., Tait, D. S., Young, J. W., & Robbins, T. W. (2013). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience & Biobehavioral Reviews, 37(9), 2125–2140. https://doi.org/10.1016/j.neubiorev.2012.04.006
Goarin, E. H. F., Lingawi, N. W., & Laurent, V. (2018). Role Played by the Passage of Time in Reversal Learning. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00075
Gómez-Nieto, R., Hormigo, S., & López, D. E. (2020). Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. In Brain Sciences (Vol. 10, Issue 9, pp. 1–15). MDPI AG. https://doi.org/10.3390/brainsci10090639
Graham, F. K., & Murray, G. M. (1977). Siologicai Psychology (Vol. 5, Issue 1).
Grauer, S. M., Hodgson, R., & Hyde, L. A. (2014). MitoPark mice, an animal model of Parkinson’s disease, show enhanced prepulse inhibition of acoustic startle and no loss of gating in response to the adenosine A2A antagonist SCH 412348. Psychopharmacology, 231(7), 1325–1337. https://doi.org/10.1007/s00213-013-3320-5
Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018a). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032
Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018b). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032
Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008a). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178
Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008b). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178
Haluk, D. M., & Floresco, S. B. (2009). Ventral Striatal Dopamine Modulation of Different Forms of Behavioral Flexibility. Neuropsychopharmacology, 34(8), 2041–2052. https://doi.org/10.1038/npp.2009.21
Harris, C., Aguirre, C., Kolli, S., Das, K., Izquierdo, A., & Soltani, A. (2021). Unique Features of Stimulus-Based Probabilistic Reversal Learning. Behavioral Neuroscience, 135(4), 550–570. https://doi.org/10.1037/bne0000474.supp
Hart, E. E., Stolyarova, A., Conoscenti, M. A., Minor, T. R., & Izquierdo, A. (2017). Rigid patterns of effortful choice behavior after acute stress in rats. Stress (Amsterdam, Netherlands), 20(1), 19–28. https://doi.org/10.1080/10253890.2016.1258397
Hawkes, C. H., Del Tredici, K., & Braak, H. (2010). A timeline for Parkinson’s disease. Parkinsonism and Related Disorders, 16(2), 79–84. https://doi.org/10.1016/j.parkreldis.2009.08.007
Hershey, L. A., & Peavy, G. M. (2015). Cognitive decline in Parkinson disease: How steep and crowded is the slope? Neurology, 85(15), 1268–1269. https://doi.org/10.1212/WNL.0000000000002003
Hormigo, S., López, D. E., Cardoso, A., Zapata, G., Sepúlveda, J., & Castellano, O. (2018). Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Structure and Function, 223(6), 2733–2751. https://doi.org/10.1007/s00429-018-1654-9
Hsieh, T. H., Chen, J. J. J., Chen, L. H., Chiang, P. T., & Lee, H. Y. (2011). Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behavioural Brain Research, 222(1), 1–9. https://doi.org/10.1016/j.bbr.2011.03.031
Humphries, M. D., Khamassi, M., & Gurney, K. (2012). Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience, FEB. https://doi.org/10.3389/fnins.2012.00009
Issy, A. C., Padovan-Neto, F. E., Lazzarini, M., Bortolanza, M., & Del-Bel, E. (2015). Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson’s disease. Life Sciences, 125, 71–78. https://doi.org/10.1016/j.lfs.2015.01.022
Izquierdo, A., Aguirre, C., Hart, E. E., & Stolyarova, A. (2019). Rodent Models of Adaptive Value Learning and Decision-Making. Methods in Molecular Biology (Clifton, N.J.), 2011, 105–119. https://doi.org/10.1007/978-1-4939-9554-7_7
Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., & Holmes, A. (2017). The neural basis of reversal learning: An updated perspective. In Neuroscience (Vol. 345, pp. 12–26). Elsevier Ltd. https://doi.org/10.1016/j.neuroscience.2016.03.021
Izquierdo, & Jentsch. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620. https://doi.org/10.1007/s00213-011-2579-7
Jenni, N. L., Rutledge, G., & Floresco, S. B. (2022). Distinct Medial Orbitofrontal-Striatal Circuits Support Dissociable Component  Processes of Risk/Reward Decision-Making. The Journal of Neuroscience : The Official Journal of the Society for  Neuroscience, 42(13), 2743–2755. https://doi.org/10.1523/JNEUROSCI.2097-21.2022
Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
Kamińska, K., Lenda, T., Konieczny, J., Czarnecka, A., & Lorenc-Koci, E. (2017). Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacological Reports, 69(5), 985–994. https://doi.org/10.1016/j.pharep.2017.05.016
Klein, A., Wessolleck, J., Papazoglou, A., Metz, G., & Nikkhah, G. (2009). Walking pattern analysis after unilateral lesion and transplantation of fetal dopaminergic progentor cells in rats. Brehavioral Brain Research, 199, 317–325.
Kohl, S., Heekeren, K., Klosterkötter, J., & Kuhn, J. (2013). Prepulse inhibition in psychiatric disorders - Apart from schizophrenia. Journal of Psychiatric Research, 47(4), 445–452. https://doi.org/10.1016/j.jpsychires.2012.11.018
Kumar, G., Talpos, J., & Steckler, T. (2015). Strain-dependent effects on acquisition and reversal of visual and spatial tasks in a rat touchscreen battery of cognition. Physiology & Behavior, 144, 26–36. https://doi.org/10.1016/j.physbeh.2015.03.001
Laclair, M., Febo, M., Nephew, B., Gervais, N. J., Poirier, G., Workman, K., Chumachenko, S., Payne, L., Moore, M. C., King, J. A., & Lacreuse, A. (2019). Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. ENeuro, 6(4). https://doi.org/10.1523/ENEURO.0154-19.2019
Lange, F., Brückner, C., Knebel, A., Seer, C., & Kopp, B. (2018). Executive dysfunction in Parkinson’s disease: A meta-analysis on the Wisconsin Card Sorting Test literature. Neuroscience and Biobehavioral Reviews, 93(February), 38–56. https://doi.org/10.1016/j.neubiorev.2018.06.014
Lange, F., Seer, C., & Kopp, B. (2017). Cognitive flexibility in neurological disorders: Cognitive components and event-related potentials. Neuroscience and Biobehavioral Reviews, 83(July), 496–507. https://doi.org/10.1016/j.neubiorev.2017.09.011
Laughlin, R. E., Grant, T. L., Williams, R. W., & Jentsch, J. D. (2011). Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice. Biological Psychiatry, 69(11), 1109–1116. https://doi.org/10.1016/j.biopsych.2011.01.014
Lee, B., Groman, S., London, E. D., & Jentsch, J. D. (2007). Dopamine D2/D3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys. Neuropsychopharmacology, 32(10), 2125–2134. https://doi.org/10.1038/sj.npp.1301337
Leng, A., Yee, B. K., Feldon, J., & Ferger, B. (2004). Acoustic startle response, prepulse inhibition, and spontaneous locomotor activity in MPTP-treated mice. Behavioural Brain Research, 154(2), 449–456. https://doi.org/10.1016/j.bbr.2004.03.012
Lindemann, C., Krauss, J. K., & Schwabe, K. (2012). Deep brain stimulation of the subthalamic nucleus in the 6-hydroxydopamine rat model of Parkinson’s disease: Effects on sensorimotor gating. Behavioural Brain Research, 230(1), 243–250. https://doi.org/10.1016/j.bbr.2012.02.009
Linden, J., James, A. S., McDaniel, C., & Jentsch, J. D. (2018). Dopamine D2 Receptors in Dopaminergic Neurons Modulate Performance in a Reversal Learning Task in Mice. Eneuro, 5(1), ENEURO.0229-17.2018. https://doi.org/10.1523/ENEURO.0229-17.2018
Lindgren, H. S., Wickens, R., Tait, D. S., Brown, V. J., & Dunnett, S. B. (2013). Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 71, 148–153. https://doi.org/10.1016/j.neuropharm.2013.03.034
Lionnet, A., Leclair-Visonneau, L., Neunlist, M., Murayama, S., Takao, M., Adler, C. H., Derkinderen, P., & Beach, T. G. (2018). Does Parkinson’s disease start in the gut? Acta Neuropathologica, 135(1). https://doi.org/10.1007/s00401-017-1777-8
Mann, A., & Chesselet, M.-F. (2015). Techniques for Motor Assessment in Rodents. In Movement Disorders (pp. 139–157). Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780124051959000081
Mcfarland, K., Price, D. L., & Bonhaus, D. W. (2008). Pimavanserin , a 5-HT 2A inverse agonist , reverses psychosis-like behaviors in a rodent model of Parkinson ’ s disease. 681–692. https://doi.org/10.1097/FBP.0b013e32834aff98
McFarland, K., Price, D. L., Davis, C. N., Ma, J. N., Bonhaus, D. W., Burstein, E. S., & Olsson, R. (2013). AC-186, a selective nonsteroidal estrogen receptor β agonist, shows gender specific neuroprotection in a Parkinson’s disease rat model. ACS Chemical Neuroscience, 4(9), 1249–1255. https://doi.org/10.1021/cn400132u
Mehler-Wex, C., Riederer, P., & Gerlach, M. (2006). Dopaminergic Dysbalance in Distinct Basal Ganglia Neurocircuits: Implications for the Pathophysiology of Parkinson´s Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. Neurotoxicity Research, 10, 167–179. www.NeurotoxicityResearch.com
Meloni, E. G., & Davis, M. (2004). The substancia nigra pars reticulata mediates the enhancement of startle by the dopamine D1 receptor agonist SKF 82958 in rats. Psychopharmacology, 174(2), 228–236. https://doi.org/10.1007/s00213-003-1728-z
Meloni, Edward., & Davies, Michael. (2000). Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substantia nigra pars compacta: corresponding changes in c-Fos expression in the caudate–putamen. Brain Reserach, 879(1–2), 93–104.
Metz, G. A., Tse, A., Ballermann, M., Smith, L. K., & Fouad, K. (2005). The unilateral 6-OHDA rat model of Parkinson’s disease revisited: An electromyographic and behavioural analysis. European Journal of Neuroscience, 22(3), 735–744. https://doi.org/10.1111/j.1460-9568.2005.04238.x
Monastero, R., Cicero, C. E., Baschi, R., Davì, M., Luca, A., Restivo, V., Zangara, C., Fierro, B., Zappia, M., & Nicoletti, A. (2018). Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS). Journal of Neurology, 265(5), 1050–1058. https://doi.org/10.1007/s00415-018-8800-4
Moustafa, A. A. (2011). Levodopa enhances reward learning but impairs reversal learning in parkinson’s disease patients. Frontiers in Human Neuroscience, 4(JANUARY), 1–2. https://doi.org/10.3389/fnhum.2010.00240
Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. In Trends in Cognitive Sciences (Vol. 15, Issue 10, pp. 453–459). https://doi.org/10.1016/j.tics.2011.07.011
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. In Progress in Neurobiology (Vol. 67).
Nilsson, S. R. O., Alsiö, J., Somerville, E. M., & Clifton, P. G. (2015). The rat’s not for turning: Dissociating the psychological components of cognitive inflexibility. In Neuroscience and Biobehavioral Reviews (Vol. 56, pp. 1–14). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2015.06.015
O’Neill, M., & Brown, V. J. (2007). The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiology of Learning and Memory, 88(1), 75–81. https://doi.org/10.1016/j.nlm.2007.03.003
Perriol, M. P., Dujardin, K., Derambure, P., Marcq, A., Bourriez, J. L., Laureau, E., Pasquier, F., Defebvre, L., & Destée, A. (2005). Disturbance of sensory filtering in dementia with Lewy bodies: Comparison with Parkinson’s disease dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 106–108. https://doi.org/10.1136/jnnp.2003.035022
Pilz, P., & Schnitzler, H.-Ulrich. (1996). Habituation and Sensitization of the Acoustic Startle Response in Rats: Amplitude, Threshold, and Latency Measures. ..” Neurobiology of Learning and Memory , 66(1), 67–79.
Przedborski, S. (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism and Related Disorders, 11(SUPPL. 1). https://doi.org/10.1016/j.parkreldis.2004.10.012
Rastegar, D., Ho, N., Halliday, G. ., & Dzamko, N. (2019). Parkinson’s progression prediction using machine learning and serum cytokines. Npj Parkinson’s Disease, 5(1), 1–8. https://doi.org/10.1038/s41531-019-0086-4
Savica, R., Grossardt, B. R., Rocca, W. A., & Bower, J. H. (2018). Parkinson disease with and without Dementia: A prevalence study and future projections. Movement Disorders, 33(4), 537–543. https://doi.org/10.1002/mds.27277
Seip, K., Young, J., Youg, M., & Shapiro, M. (2017). Partial Lesion of the Nigrostriatal Dopamine Pathway in Rats Impairs Egocentric Learning but Not Spatial Learning or Behavioral Flexibility. Behavioral Neuroscience, 131, 135–142. https://doi.org/10.1037/bne0000189.supp
Seip-Cammack, K. M., Young, J. J., Young, M. E., & Shapiro, M. L. (2017). Partial lesion of the nigrostriatal dopamine pathway in rats impairs egocentric  learning but not spatial learning or behavioral flexibility. Behavioral Neuroscience, 131(2), 135–142. https://doi.org/10.1037/bne0000189
Simola, N., Morelli, M., & Carta, A. (2007). The 6-Hydroxydopamine Model of Parkinson’s Disease. 11(3–4), 151–167.
Sinclair, E. B., Hildebrandt, B. A., Culbert, K. M., Klump, K. L., & Sisk, C. L. (2017). Preliminary evidence of sex differences in behavioral and neural responses to palatable food reward in rats. Physiology and Behavior, 176, 165–173. https://doi.org/10.1016/j.physbeh.2017.03.042
Smith, A. J., & Hawkins, P. (2016). Good science, good sense and good sensibilities: The three Ss of Carol Newton. Animals, 6(11). https://doi.org/10.3390/ani6110070
Stirpe, P., Hoffman, M., Badiali, D., & Colosimo, C. (2016). Constipation: an emerging risk factor for Parkinson’s disease? European Journal of Neurology, 23(11), 1606–1613. https://doi.org/10.1111/ene.13082
Stoker, T., & Greenlad, J. (2018). Parkinson ’ s Disease Pathogenesis and clinical aspects. Codon Publications.
Stolyarova, A., O’Dell, S. J., Marshall, J. F., & Izquierdo, A. (2014). Positive and negative feedback learning and associated dopamine and serotonin  transporter binding after methamphetamine. Behavioural Brain Research, 271, 195–202. https://doi.org/10.1016/j.bbr.2014.06.031
Sullivan, L., Shaffer, H., Hill, C., & Del Arco, A. (2019). Time-dependent changes in cognitive flexibility performance during intermittent social stress: Relevance for motivation and reward-seeking behavior. Behavioural Brain Research, 370. https://doi.org/10.1016/j.bbr.2019.111972
Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication. Neuropsychologia, 38(5), 596–612. https://doi.org/10.1016/S0028-3932(99)00103-7
Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985a). Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behavioral and Neural Biology, 44(3), 354–363. https://doi.org/10.1016/S0163-1047(85)90640-5
Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985b). Alternation Behavior, Spatial Discrimination, and Reversal Disturbances following 6-Hydroxydopamine Lesions in the Nucleus Accumbens of the Rat. In BEHAVIORAL AND NEURAL BIOLOGY (Vol. 44).
Tait, D., & Brown, V. (2012). Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdf. Springer Reference. http://files/295/Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdf
Tait, D. S., Phillips, J. M., Blackwell, A. D., & Brown, V. J. (2017). Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial  striatum on attentional set-shifting in the rat. Neuroscience, 345, 287–296. https://doi.org/10.1016/j.neuroscience.2016.08.008
Takahashi, H., Hashimoto, R., Iwase, M., Ishii, R., Kamio, Y., & Takeda, M. (2011). Prepulse inhibition of startle response: Recent advances in human studies of psychiatric disease. Clinical Psychopharmacology and Neuroscience, 9(3), 102–110. https://doi.org/10.9758/cpn.2011.9.3.102
Tang, W., McDowell, K., Limsam, M., Neerchal, N. K., Yarowsky, P., & Tasch, U. (2010). Locomotion analysis of Sprague-Dawley rats before and after injecting 6-OHDA. Behavioural Brain Research, 210(1), 131–133. https://doi.org/10.1016/j.bbr.2010.02.012
Trenado, C., Boschheidgen, M., Rübenach, J., N’Diaye, K., Schnitzler, A., Mallet, L., & Wojtecki, L. (2018). Assessment of Metacognition and Reversal Learning in Parkinson’s Disease: Preliminary Results. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00343
Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124(8), 901–905. https://doi.org/10.1007/s00702-017-1686-y
Vaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I., & Seidler, R. (2013). Dopamine overdose hypothesis: Evidence and clinical implications. Movement Disorders, 28(14), 1920–1929. https://doi.org/10.1002/mds.25687
Valsamis, B., & Schmid, S. (2011). Habituation and prepulse inhibition of acoustic startle in rodents. Journal of Visualized Experiments, 55, 2–11. https://doi.org/10.3791/3446
Videnovic, A. (2018). Disturbances of Sleep and Alertness in Parkinson’s Disease. Current Neurology and Neuroscience Reports, 18(6). https://doi.org/10.1007/s11910-018-0838-2
Zeng, X. S., Geng, W. S., & Jia, J. J. (2018). Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. In ASN Neuro (Vol. 10). SAGE Publications Inc. https://doi.org/10.1177/1759091418777438
Zhou, M., Zhang, W., Chang, J., Wang, J., Zheng, W., Yang, Y., Wen, P., Li, M., & Xiao, H. (2015). Gait analysis in three different 6-hydroxydopamine rat models of Parkinson’s disease. Neuroscience Letters, 584, 184–189. https://doi.org/10.1016/j.neulet.2014.10.032
Zoetmulder, M., Biernat, H. B., Nikolic, M., Korbo, L., Friberg, L., & Jennum, P. J. (2014). Prepulse Inhibition is Associated with Attention, Processing Speed, and 123I-FP-CIT SPECT in Parkinson’s Disease. Journal of Parkinson’s Disease, 4(1), 77–87. https://doi.org/10.3233/JPD-130307
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 167 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Psicología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Sociales
dc.publisher.department.none.fl_str_mv Departamento de Psicología
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/9e8594b5-cc77-40ae-9187-3a1f7f8a2506/download
https://repositorio.uniandes.edu.co/bitstreams/f01c1599-a4cd-4af8-ba48-5610d022871b/download
https://repositorio.uniandes.edu.co/bitstreams/5813b9ff-700e-4ce9-8add-10fce5cbbdf8/download
https://repositorio.uniandes.edu.co/bitstreams/03f72292-166e-4673-a77d-e9df3d4a2447/download
https://repositorio.uniandes.edu.co/bitstreams/1e62db88-1573-402e-a60b-effe9842e4ee/download
https://repositorio.uniandes.edu.co/bitstreams/a61b8a23-8c6e-4335-875a-5a03fcd1e0c4/download
https://repositorio.uniandes.edu.co/bitstreams/de9ac18a-be84-413b-aad5-7e04164d0638/download
https://repositorio.uniandes.edu.co/bitstreams/a818f904-a50b-43ee-ac81-30eaf1591c4d/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
c7006315a9a6668a462e856c4d3d1fed
72ead2c3e25fd48d19269c1383ec24ad
d26a4134aebaa203dad567b6339b6ae1
b67297f0b1c2acdff4152c6647825dd5
2f2702e74563d094010f11e4d8f8a2cb
d40d1a7f1ad29c9de199c509094b2211
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133847583686656
spelling Cárdenas Parra, Luis FernandoLievano Parra, Diego JavierBáez Buitrago, Sandra JimenaSabogal, AngelicaFacultad de Ciencias Sociales::Neurociencia y Comportamiento2024-01-30T22:21:09Z2024-01-30T22:21:09Z2023-11https://hdl.handle.net/1992/7364510.57784/1992/73645instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Background: Motor impairments in Parkinson's disease (PD) are associated with alterations in the prepulse inhibition (PPI) of the acoustic startle response (ASR) and reversal learning (RL) from the early stages of the disease. In this context, animal models enable the exploration of the dynamics of non-motor manifestations associated to dopaminergic depletion in a time-dependent manner. Method: 103 adult male and female Wistar rats received unilateral injections of 6-OHDA or saline into the Substantia Nigra Compacta (SNc). Motor skills and the PPI were assessed before and after surgery. Subsequently, three groups were formed to evaluate action-based RL (AB) and stimulus-based RL (SB). Results: The apomorphine test at 2 weeks confirmed the establishment of dopaminergic depletion. Motor coordination was affected in the lesioned groups, with higher number of grip errors and reduced running speed in lesioned males 6 weeks after surgery. The percentage PPI decreased in lesioned females at 4 weeks but increased in lesioned males 6 weeks after lesioning. Finally, the 6-OHDA lesion did not affect initial discrimination or reversal in the AB task, although a treatment facilitation effect was observed in the reversal of SB task. Additionally, sex-dependent differences were observed in performance. Males showed more perseverative behavior and a higher percentage of the win-stay strategy, while females exhibited slower response latencies for both correct and incorrect responses, displaying a higher percentage of the lose-shift strategy. Conclusion: The results show that subthreshold dopamine depletions in the SNc in the unilateral rodent model of 6-OHDA caused sex-differential effects on PPI and RL with more noticeable motor impairments in males after six weeks after surgery. Further characterization of how PPI and RL changes over time in the absence of motor impairments in early stages of dopamine depletion may contribute to anticipate PD diagnosis in human patients and to develop early tailored and more effective sex-dependent treatments.Vicerrectoría de Investigaciones, Universidad de los Andes. Laboratorio de Neurociencia y Comportamiento. Universidad de los Andes.Doctor en PsicologíaDoctoradoParkinson167 páginasapplication/pdfengUniversidad de los AndesDoctorado en PsicologíaFacultad de Ciencias SocialesDepartamento de PsicologíaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar ratsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDParkinson's diseaseReversal learningPrepulse inhibition6-OHDARatPsicologíaAbbruzzese, G., & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Movement Disorders, 18(3), 231–240. https://doi.org/10.1002/mds.10327Aguirre, C. G., Woo, J. H., Romero-Sosa, J. L., Rivera, Z. M., Tejada, A. N., Munier, J. J., Perez, J., Goldfarb, M., Das, K., Gomez, M., Ye, T., Pannu, J., Evans, K., O’Neill, P. R., Spigelman, I., Soltani, A., & Izquierdo, A. (2023). Dissociable contributions of basolateral amygdala and ventrolateral orbitofrontal cortex to flexible learning under uncertainty. The Journal of Neuroscience, JN-RM-0622-23. https://doi.org/10.1523/JNEUROSCI.0622-23.2023Aryal, B., & Lee, Y. (2019). Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Reports, 52(4), 250–258. https://doi.org/10.5483/BMBRep.2019.52.4.204Basavaraj, S., & Yan, J. (2012). Prepulse Inhibition of Acoustic Startle Reflex as a Function of the Frequency Difference between Prepulse and Background Sounds in Mice. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045123Beeler, J. A., Cools, R., Luciana, M., Ostlund, S. B., & Petzinger, G. (2014). A kinder, gentler dopamine... highlighting dopamine’s role in behavioral flexibility. In Frontiers in Neuroscience (Issue 8 JAN). Frontiers Media SA. https://doi.org/10.3389/fnins.2014.00004Bissonette, G. B., & Powell, E. M. (2012). Reversal learning and attentional set-shifting in mice. Neuropharmacology, 62(3), 1168–1174. https://doi.org/10.1016/j.neuropharm.2011.03.011Bleickardt, C. J., Lashomb, A. L., Merkel, C. E., & Hodgson, R. A. (2012). Adenosine A 2A receptor antagonists do not disrupt rodent prepulse inhibition: An improved side effect profile in the treatment of parkinson’s disease. Parkinson’s Disease, 2012. https://doi.org/10.1155/2012/591094Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8(DEC), 1–12. https://doi.org/10.3389/fnana.2014.00155Boix, J., von Hieber, D., & Connor, B. (2018). Gait analysis for early detection of motor symptoms in the 6-ohda rat model of parkinson’s disease. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00039Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156(2–3), 234–258. https://doi.org/10.1007/s002130100810Braun, Amanda., Amos-Kroohs, R. M., Gutierrez, A., Lundgren, K. H., Seroogy, K. B., Vorhees, C. V., & Williams, M. T. (2016). 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric Navigation in Male Sprague–Dawley Rats. Neurotoxicity Research, 30(2), 199–212. https://doi.org/10.1007/s12640-016-9616-6Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behavioural Brain Research, 220(2), 288–293. https://doi.org/10.1016/j.bbr.2011.02.008Brown, V. J., & Tait, D. S. (2016). Attentional set-shifting across species. In Current Topics in Behavioral Neurosciences (Vol. 28, pp. 363–395). Springer Verlag. https://doi.org/10.1007/7854_2015_5002Cammisuli, D. M., & Crowe, S. (2018). Spatial disorientation and executive dysfunction in elderly nondemented patients with Parkinson’s disease. Neuropsychiatric Disease and Treatment, 14, 2531–2539. https://doi.org/10.2147/NDT.S173820Cannon, & Greenamyre. (2010). Neurotoxic in vivo models of Parkinson’s disease. Recent advances. In Progress in Brain Research (Vol. 184, Issue C). Elsevier B.V. https://doi.org/10.1016/S0079-6123(10)84002-6Cauchoix, M., Hermer, E., Chaine, A. S., & Morand-Ferron, J. (2017). Cognition in the field: comparison of reversal learning performance in captive and wild passerines. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13179-5Chao, O. Y., Pum, M. E., Li, J. S., & Huston, J. P. (2012). The grid-walking test: Assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle. Neuroscience, 202, 318–325. https://doi.org/10.1016/j.neuroscience.2011.11.016Chesselet, M. F., Richter, F., Zhu, C., Magen, I., Watson, M. B., & Subramaniam, S. R. (2012). A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) Mice. Neurotherapeutics, 9(2), 297–314. https://doi.org/10.1007/s13311-012-0104-2Cools, R., Clark, L., Owen, A. M., & Robbins, T. W. (2002). Defining the Neural Mechanisms of Probabilistic Reversal Learning Using Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience, 22(11), 4563–4567. https://doi.org/10.1523/JNEUROSCI.22-11-04563.2002Crittenden, J. R., & Graybiel, A. M. (2011). Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Frontiers in Neuroanatomy, 5. https://doi.org/10.3389/fnana.2011.00059Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. https://doi.org/10.1016/j.tins.2015.07.003Dauer, W., & Przedborski, S. (2004). Parkinson’s Disease mechanisms and models. Neuron, 39, 889–909.De Deurwaerdère, P., Di Giovanni, G., & Millan, M. J. (2017). Expanding the repertoire of L-DOPA’s actions: A comprehensive review of its functional neurochemistry. Progress in Neurobiology, 151, 57–100. https://doi.org/10.1016/j.pneurobio.2016.07.002Decressac, M. (2012). Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Experimental Neurology, 10. http://files/718/Decressac - 2012 - Comparison of the behavioural and histological cha.pdfDel Tredici, K., & Braak, H. (2016). Sporadic Parkinson’s disease: Development and distribution of α-synuclein pathology. Neuropathology and Applied Neurobiology, 42(1), 33–50. https://doi.org/10.1111/nan.12298DeLong, M. R., & Wichmann, T. (2015). Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. JAMA Neurology, 72(11), 1354. https://doi.org/10.1001/jamaneurol.2015.2397Deumens, R., Blokland, A., & Prickaerts, J. (2002a). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891Deumens, R., Blokland, A., & Prickaerts, J. (2002b). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. In Experimental Neurology (Vol. 175, Issue 2, pp. 303–317). Academic Press Inc. https://doi.org/10.1006/exnr.2002.7891Ding, W., Ding, L., Han, Y., & Mu, L. (2015). Neurodegeneration and cognition in Parkinson’s disease: a review. European Review for Medical and Pharmacological Sciences, 19, 2275–2281.Eagle, A. L., Olumolade, O. O., & Otani, H. (2015). Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: A model for early Parkinson’s disease. Neuroscience Research, 92, 71–79. https://doi.org/10.1016/j.neures.2014.11.002Engelender, S., & Isacson, O. (2017). The Threshold Theory for Parkinson’s Disease. Trends in Neurosciences, 40(1), 4–14. https://doi.org/10.1016/j.tins.2016.10.008Erkkinen, M. G., Kim, M., & Geschwind, M. D. (2018). Major Neurodegenerative Diseases. 1–44.Evenden, J., Marston, H., Jones, G., Giardini, V., Lenard, L., Everitt, B., & Robbins, T. (1989). Effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on visual discrimination acquisition, performance and reversal in the rat. In Behavioural Brain Research (Vol. 32).Fasano, A., Mazzoni, A., & Falotico, E. (2022). Reaching and Grasping Movements in Parkinson’s Disease: A Review. In Journal of Parkinson’s Disease (Vol. 12, Issue 4, pp. 1083–1113). IOS Press BV. https://doi.org/10.3233/JPD-213082Fleming, S. M. (2009). Behavioral Outcome Measures for the Assessment of Sensorimotor Function in Animal Models of Movement Disorders. In International Review of Neurobiology (Vol. 89, Issue C, pp. 57–65). https://doi.org/10.1016/S0074-7742(09)89003-XGargiulo AT, Hu J, Ravaglia IC, Hawks A, L. X., Sweasy K, & Grafe L. (2022). Sex differences in cognitive flexibility are driven by the estrous cycle and stress-dependent. Frontiers in Behavioral Neuroscience, 16(958301), 1–20.Gee, L., Smith, H., De La Cruz, P., Campbell, J., Fama, C., Haller, J., Ramirez-Zamora, A., Durphy, J., Hanspal, E., Molho, E., Barba, A., Shin, D., & Pilitsis, J. G. (2015). The Influence of Bilateral Subthalamic Nucleus Deep Brain Stimulation on Impulsivity and Prepulse Inhibition in Parkinson’s Disease Patients. Stereotactic and Functional Neurosurgery, 93(4), 265–270. https://doi.org/10.1159/000381558Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M., & Poldrack, R. A. (2010). Neural Components Underlying Behavioral Flexibility in Human Reversal Learning. Cerebral Cortex, 20(8), 1843–1852. https://doi.org/10.1093/cercor/bhp247Gilmour, G., Arguello, A., Bari, A., Brown, V. J., Carter, C., Floresco, S. B., Jentsch, D. J., Tait, D. S., Young, J. W., & Robbins, T. W. (2013). Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience & Biobehavioral Reviews, 37(9), 2125–2140. https://doi.org/10.1016/j.neubiorev.2012.04.006Goarin, E. H. F., Lingawi, N. W., & Laurent, V. (2018). Role Played by the Passage of Time in Reversal Learning. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00075Gómez-Nieto, R., Hormigo, S., & López, D. E. (2020). Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. In Brain Sciences (Vol. 10, Issue 9, pp. 1–15). MDPI AG. https://doi.org/10.3390/brainsci10090639Graham, F. K., & Murray, G. M. (1977). Siologicai Psychology (Vol. 5, Issue 1).Grauer, S. M., Hodgson, R., & Hyde, L. A. (2014). MitoPark mice, an animal model of Parkinson’s disease, show enhanced prepulse inhibition of acoustic startle and no loss of gating in response to the adenosine A2A antagonist SCH 412348. Psychopharmacology, 231(7), 1325–1337. https://doi.org/10.1007/s00213-013-3320-5Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018a). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018b). Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 374, 80–90. https://doi.org/10.1016/j.neuroscience.2018.01.032Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008a). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178Haik, K. L., Shear, D. A., Hargrove, C., Patton, J., Mazei-Robison, M., Sandstrom, M. I., & Dunbar, G. L. (2008b). 7-Nitroindazole Attenuates 6-Hydroxydopamine-Induced Spatial Learning Deficits and Dopamine Neuron Loss in a Presymptomatic Animal Model of Parkinson’s Disease. Experimental and Clinical Psychopharmacology, 16(2), 178–189. https://doi.org/10.1037/1064-1297.16.2.178Haluk, D. M., & Floresco, S. B. (2009). Ventral Striatal Dopamine Modulation of Different Forms of Behavioral Flexibility. Neuropsychopharmacology, 34(8), 2041–2052. https://doi.org/10.1038/npp.2009.21Harris, C., Aguirre, C., Kolli, S., Das, K., Izquierdo, A., & Soltani, A. (2021). Unique Features of Stimulus-Based Probabilistic Reversal Learning. Behavioral Neuroscience, 135(4), 550–570. https://doi.org/10.1037/bne0000474.suppHart, E. E., Stolyarova, A., Conoscenti, M. A., Minor, T. R., & Izquierdo, A. (2017). Rigid patterns of effortful choice behavior after acute stress in rats. Stress (Amsterdam, Netherlands), 20(1), 19–28. https://doi.org/10.1080/10253890.2016.1258397Hawkes, C. H., Del Tredici, K., & Braak, H. (2010). A timeline for Parkinson’s disease. Parkinsonism and Related Disorders, 16(2), 79–84. https://doi.org/10.1016/j.parkreldis.2009.08.007Hershey, L. A., & Peavy, G. M. (2015). Cognitive decline in Parkinson disease: How steep and crowded is the slope? Neurology, 85(15), 1268–1269. https://doi.org/10.1212/WNL.0000000000002003Hormigo, S., López, D. E., Cardoso, A., Zapata, G., Sepúlveda, J., & Castellano, O. (2018). Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Structure and Function, 223(6), 2733–2751. https://doi.org/10.1007/s00429-018-1654-9Hsieh, T. H., Chen, J. J. J., Chen, L. H., Chiang, P. T., & Lee, H. Y. (2011). Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behavioural Brain Research, 222(1), 1–9. https://doi.org/10.1016/j.bbr.2011.03.031Humphries, M. D., Khamassi, M., & Gurney, K. (2012). Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience, FEB. https://doi.org/10.3389/fnins.2012.00009Issy, A. C., Padovan-Neto, F. E., Lazzarini, M., Bortolanza, M., & Del-Bel, E. (2015). Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson’s disease. Life Sciences, 125, 71–78. https://doi.org/10.1016/j.lfs.2015.01.022Izquierdo, A., Aguirre, C., Hart, E. E., & Stolyarova, A. (2019). Rodent Models of Adaptive Value Learning and Decision-Making. Methods in Molecular Biology (Clifton, N.J.), 2011, 105–119. https://doi.org/10.1007/978-1-4939-9554-7_7Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., & Holmes, A. (2017). The neural basis of reversal learning: An updated perspective. In Neuroscience (Vol. 345, pp. 12–26). Elsevier Ltd. https://doi.org/10.1016/j.neuroscience.2016.03.021Izquierdo, & Jentsch. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620. https://doi.org/10.1007/s00213-011-2579-7Jenni, N. L., Rutledge, G., & Floresco, S. B. (2022). Distinct Medial Orbitofrontal-Striatal Circuits Support Dissociable Component  Processes of Risk/Reward Decision-Making. The Journal of Neuroscience : The Official Journal of the Society for  Neuroscience, 42(13), 2743–2755. https://doi.org/10.1523/JNEUROSCI.2097-21.2022Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3Kamińska, K., Lenda, T., Konieczny, J., Czarnecka, A., & Lorenc-Koci, E. (2017). Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacological Reports, 69(5), 985–994. https://doi.org/10.1016/j.pharep.2017.05.016Klein, A., Wessolleck, J., Papazoglou, A., Metz, G., & Nikkhah, G. (2009). Walking pattern analysis after unilateral lesion and transplantation of fetal dopaminergic progentor cells in rats. Brehavioral Brain Research, 199, 317–325.Kohl, S., Heekeren, K., Klosterkötter, J., & Kuhn, J. (2013). Prepulse inhibition in psychiatric disorders - Apart from schizophrenia. Journal of Psychiatric Research, 47(4), 445–452. https://doi.org/10.1016/j.jpsychires.2012.11.018Kumar, G., Talpos, J., & Steckler, T. (2015). Strain-dependent effects on acquisition and reversal of visual and spatial tasks in a rat touchscreen battery of cognition. Physiology & Behavior, 144, 26–36. https://doi.org/10.1016/j.physbeh.2015.03.001Laclair, M., Febo, M., Nephew, B., Gervais, N. J., Poirier, G., Workman, K., Chumachenko, S., Payne, L., Moore, M. C., King, J. A., & Lacreuse, A. (2019). Sex differences in cognitive flexibility and resting brain networks in middle-aged marmosets. ENeuro, 6(4). https://doi.org/10.1523/ENEURO.0154-19.2019Lange, F., Brückner, C., Knebel, A., Seer, C., & Kopp, B. (2018). Executive dysfunction in Parkinson’s disease: A meta-analysis on the Wisconsin Card Sorting Test literature. Neuroscience and Biobehavioral Reviews, 93(February), 38–56. https://doi.org/10.1016/j.neubiorev.2018.06.014Lange, F., Seer, C., & Kopp, B. (2017). Cognitive flexibility in neurological disorders: Cognitive components and event-related potentials. Neuroscience and Biobehavioral Reviews, 83(July), 496–507. https://doi.org/10.1016/j.neubiorev.2017.09.011Laughlin, R. E., Grant, T. L., Williams, R. W., & Jentsch, J. D. (2011). Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice. Biological Psychiatry, 69(11), 1109–1116. https://doi.org/10.1016/j.biopsych.2011.01.014Lee, B., Groman, S., London, E. D., & Jentsch, J. D. (2007). Dopamine D2/D3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys. Neuropsychopharmacology, 32(10), 2125–2134. https://doi.org/10.1038/sj.npp.1301337Leng, A., Yee, B. K., Feldon, J., & Ferger, B. (2004). Acoustic startle response, prepulse inhibition, and spontaneous locomotor activity in MPTP-treated mice. Behavioural Brain Research, 154(2), 449–456. https://doi.org/10.1016/j.bbr.2004.03.012Lindemann, C., Krauss, J. K., & Schwabe, K. (2012). Deep brain stimulation of the subthalamic nucleus in the 6-hydroxydopamine rat model of Parkinson’s disease: Effects on sensorimotor gating. Behavioural Brain Research, 230(1), 243–250. https://doi.org/10.1016/j.bbr.2012.02.009Linden, J., James, A. S., McDaniel, C., & Jentsch, J. D. (2018). Dopamine D2 Receptors in Dopaminergic Neurons Modulate Performance in a Reversal Learning Task in Mice. Eneuro, 5(1), ENEURO.0229-17.2018. https://doi.org/10.1523/ENEURO.0229-17.2018Lindgren, H. S., Wickens, R., Tait, D. S., Brown, V. J., & Dunnett, S. B. (2013). Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 71, 148–153. https://doi.org/10.1016/j.neuropharm.2013.03.034Lionnet, A., Leclair-Visonneau, L., Neunlist, M., Murayama, S., Takao, M., Adler, C. H., Derkinderen, P., & Beach, T. G. (2018). Does Parkinson’s disease start in the gut? Acta Neuropathologica, 135(1). https://doi.org/10.1007/s00401-017-1777-8Mann, A., & Chesselet, M.-F. (2015). Techniques for Motor Assessment in Rodents. In Movement Disorders (pp. 139–157). Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780124051959000081Mcfarland, K., Price, D. L., & Bonhaus, D. W. (2008). Pimavanserin , a 5-HT 2A inverse agonist , reverses psychosis-like behaviors in a rodent model of Parkinson ’ s disease. 681–692. https://doi.org/10.1097/FBP.0b013e32834aff98McFarland, K., Price, D. L., Davis, C. N., Ma, J. N., Bonhaus, D. W., Burstein, E. S., & Olsson, R. (2013). AC-186, a selective nonsteroidal estrogen receptor β agonist, shows gender specific neuroprotection in a Parkinson’s disease rat model. ACS Chemical Neuroscience, 4(9), 1249–1255. https://doi.org/10.1021/cn400132uMehler-Wex, C., Riederer, P., & Gerlach, M. (2006). Dopaminergic Dysbalance in Distinct Basal Ganglia Neurocircuits: Implications for the Pathophysiology of Parkinson´s Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. Neurotoxicity Research, 10, 167–179. www.NeurotoxicityResearch.comMeloni, E. G., & Davis, M. (2004). The substancia nigra pars reticulata mediates the enhancement of startle by the dopamine D1 receptor agonist SKF 82958 in rats. Psychopharmacology, 174(2), 228–236. https://doi.org/10.1007/s00213-003-1728-zMeloni, Edward., & Davies, Michael. (2000). Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substantia nigra pars compacta: corresponding changes in c-Fos expression in the caudate–putamen. Brain Reserach, 879(1–2), 93–104.Metz, G. A., Tse, A., Ballermann, M., Smith, L. K., & Fouad, K. (2005). The unilateral 6-OHDA rat model of Parkinson’s disease revisited: An electromyographic and behavioural analysis. European Journal of Neuroscience, 22(3), 735–744. https://doi.org/10.1111/j.1460-9568.2005.04238.xMonastero, R., Cicero, C. E., Baschi, R., Davì, M., Luca, A., Restivo, V., Zangara, C., Fierro, B., Zappia, M., & Nicoletti, A. (2018). Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS). Journal of Neurology, 265(5), 1050–1058. https://doi.org/10.1007/s00415-018-8800-4Moustafa, A. A. (2011). Levodopa enhances reward learning but impairs reversal learning in parkinson’s disease patients. Frontiers in Human Neuroscience, 4(JANUARY), 1–2. https://doi.org/10.3389/fnhum.2010.00240Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. In Trends in Cognitive Sciences (Vol. 15, Issue 10, pp. 453–459). https://doi.org/10.1016/j.tics.2011.07.011Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. In Progress in Neurobiology (Vol. 67).Nilsson, S. R. O., Alsiö, J., Somerville, E. M., & Clifton, P. G. (2015). The rat’s not for turning: Dissociating the psychological components of cognitive inflexibility. In Neuroscience and Biobehavioral Reviews (Vol. 56, pp. 1–14). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2015.06.015O’Neill, M., & Brown, V. J. (2007). The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiology of Learning and Memory, 88(1), 75–81. https://doi.org/10.1016/j.nlm.2007.03.003Perriol, M. P., Dujardin, K., Derambure, P., Marcq, A., Bourriez, J. L., Laureau, E., Pasquier, F., Defebvre, L., & Destée, A. (2005). Disturbance of sensory filtering in dementia with Lewy bodies: Comparison with Parkinson’s disease dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 106–108. https://doi.org/10.1136/jnnp.2003.035022Pilz, P., & Schnitzler, H.-Ulrich. (1996). Habituation and Sensitization of the Acoustic Startle Response in Rats: Amplitude, Threshold, and Latency Measures. ..” Neurobiology of Learning and Memory , 66(1), 67–79.Przedborski, S. (2005). Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism and Related Disorders, 11(SUPPL. 1). https://doi.org/10.1016/j.parkreldis.2004.10.012Rastegar, D., Ho, N., Halliday, G. ., & Dzamko, N. (2019). Parkinson’s progression prediction using machine learning and serum cytokines. Npj Parkinson’s Disease, 5(1), 1–8. https://doi.org/10.1038/s41531-019-0086-4Savica, R., Grossardt, B. R., Rocca, W. A., & Bower, J. H. (2018). Parkinson disease with and without Dementia: A prevalence study and future projections. Movement Disorders, 33(4), 537–543. https://doi.org/10.1002/mds.27277Seip, K., Young, J., Youg, M., & Shapiro, M. (2017). Partial Lesion of the Nigrostriatal Dopamine Pathway in Rats Impairs Egocentric Learning but Not Spatial Learning or Behavioral Flexibility. Behavioral Neuroscience, 131, 135–142. https://doi.org/10.1037/bne0000189.suppSeip-Cammack, K. M., Young, J. J., Young, M. E., & Shapiro, M. L. (2017). Partial lesion of the nigrostriatal dopamine pathway in rats impairs egocentric  learning but not spatial learning or behavioral flexibility. Behavioral Neuroscience, 131(2), 135–142. https://doi.org/10.1037/bne0000189Simola, N., Morelli, M., & Carta, A. (2007). The 6-Hydroxydopamine Model of Parkinson’s Disease. 11(3–4), 151–167.Sinclair, E. B., Hildebrandt, B. A., Culbert, K. M., Klump, K. L., & Sisk, C. L. (2017). Preliminary evidence of sex differences in behavioral and neural responses to palatable food reward in rats. Physiology and Behavior, 176, 165–173. https://doi.org/10.1016/j.physbeh.2017.03.042Smith, A. J., & Hawkins, P. (2016). Good science, good sense and good sensibilities: The three Ss of Carol Newton. Animals, 6(11). https://doi.org/10.3390/ani6110070Stirpe, P., Hoffman, M., Badiali, D., & Colosimo, C. (2016). Constipation: an emerging risk factor for Parkinson’s disease? European Journal of Neurology, 23(11), 1606–1613. https://doi.org/10.1111/ene.13082Stoker, T., & Greenlad, J. (2018). Parkinson ’ s Disease Pathogenesis and clinical aspects. Codon Publications.Stolyarova, A., O’Dell, S. J., Marshall, J. F., & Izquierdo, A. (2014). Positive and negative feedback learning and associated dopamine and serotonin  transporter binding after methamphetamine. Behavioural Brain Research, 271, 195–202. https://doi.org/10.1016/j.bbr.2014.06.031Sullivan, L., Shaffer, H., Hill, C., & Del Arco, A. (2019). Time-dependent changes in cognitive flexibility performance during intermittent social stress: Relevance for motivation and reward-seeking behavior. Behavioural Brain Research, 370. https://doi.org/10.1016/j.bbr.2019.111972Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication. Neuropsychologia, 38(5), 596–612. https://doi.org/10.1016/S0028-3932(99)00103-7Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985a). Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behavioral and Neural Biology, 44(3), 354–363. https://doi.org/10.1016/S0163-1047(85)90640-5Taghzouti, K., Louilot, A., Herman, J. P., Le Moal, M., & Simon, H. (1985b). Alternation Behavior, Spatial Discrimination, and Reversal Disturbances following 6-Hydroxydopamine Lesions in the Nucleus Accumbens of the Rat. In BEHAVIORAL AND NEURAL BIOLOGY (Vol. 44).Tait, D., & Brown, V. (2012). Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdf. Springer Reference. http://files/295/Behavioral Flexibility Attentional Shifting, Rule Switching and Response Reversal.pdfTait, D. S., Phillips, J. M., Blackwell, A. D., & Brown, V. J. (2017). Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial  striatum on attentional set-shifting in the rat. Neuroscience, 345, 287–296. https://doi.org/10.1016/j.neuroscience.2016.08.008Takahashi, H., Hashimoto, R., Iwase, M., Ishii, R., Kamio, Y., & Takeda, M. (2011). Prepulse inhibition of startle response: Recent advances in human studies of psychiatric disease. Clinical Psychopharmacology and Neuroscience, 9(3), 102–110. https://doi.org/10.9758/cpn.2011.9.3.102Tang, W., McDowell, K., Limsam, M., Neerchal, N. K., Yarowsky, P., & Tasch, U. (2010). Locomotion analysis of Sprague-Dawley rats before and after injecting 6-OHDA. Behavioural Brain Research, 210(1), 131–133. https://doi.org/10.1016/j.bbr.2010.02.012Trenado, C., Boschheidgen, M., Rübenach, J., N’Diaye, K., Schnitzler, A., Mallet, L., & Wojtecki, L. (2018). Assessment of Metacognition and Reversal Learning in Parkinson’s Disease: Preliminary Results. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00343Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124(8), 901–905. https://doi.org/10.1007/s00702-017-1686-yVaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I., & Seidler, R. (2013). Dopamine overdose hypothesis: Evidence and clinical implications. Movement Disorders, 28(14), 1920–1929. https://doi.org/10.1002/mds.25687Valsamis, B., & Schmid, S. (2011). Habituation and prepulse inhibition of acoustic startle in rodents. Journal of Visualized Experiments, 55, 2–11. https://doi.org/10.3791/3446Videnovic, A. (2018). Disturbances of Sleep and Alertness in Parkinson’s Disease. Current Neurology and Neuroscience Reports, 18(6). https://doi.org/10.1007/s11910-018-0838-2Zeng, X. S., Geng, W. S., & Jia, J. J. (2018). Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. In ASN Neuro (Vol. 10). SAGE Publications Inc. https://doi.org/10.1177/1759091418777438Zhou, M., Zhang, W., Chang, J., Wang, J., Zheng, W., Yang, Y., Wen, P., Li, M., & Xiao, H. (2015). Gait analysis in three different 6-hydroxydopamine rat models of Parkinson’s disease. Neuroscience Letters, 584, 184–189. https://doi.org/10.1016/j.neulet.2014.10.032Zoetmulder, M., Biernat, H. B., Nikolic, M., Korbo, L., Friberg, L., & Jennum, P. J. (2014). Prepulse Inhibition is Associated with Attention, Processing Speed, and 123I-FP-CIT SPECT in Parkinson’s Disease. Journal of Parkinson’s Disease, 4(1), 77–87. https://doi.org/10.3233/JPD-130307201810717PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/9e8594b5-cc77-40ae-9187-3a1f7f8a2506/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f01c1599-a4cd-4af8-ba48-5610d022871b/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdfEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdfapplication/pdf19585003https://repositorio.uniandes.edu.co/bitstreams/5813b9ff-700e-4ce9-8add-10fce5cbbdf8/downloadc7006315a9a6668a462e856c4d3d1fedMD54autorizacion_tesis.pdfautorizacion_tesis.pdfHIDEapplication/pdf221529https://repositorio.uniandes.edu.co/bitstreams/03f72292-166e-4673-a77d-e9df3d4a2447/download72ead2c3e25fd48d19269c1383ec24adMD53TEXTEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.txtEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.txtExtracted texttext/plain100319https://repositorio.uniandes.edu.co/bitstreams/1e62db88-1573-402e-a60b-effe9842e4ee/downloadd26a4134aebaa203dad567b6339b6ae1MD55autorizacion_tesis.pdf.txtautorizacion_tesis.pdf.txtExtracted texttext/plain2125https://repositorio.uniandes.edu.co/bitstreams/a61b8a23-8c6e-4335-875a-5a03fcd1e0c4/downloadb67297f0b1c2acdff4152c6647825dd5MD57THUMBNAILEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.jpgEffects of the unilateral lesion of the substantia nigra compacta with 6-OHDA on reversal learning and prepulse inhibition in male and female Wistar rats.pdf.jpgGenerated Thumbnailimage/jpeg6338https://repositorio.uniandes.edu.co/bitstreams/de9ac18a-be84-413b-aad5-7e04164d0638/download2f2702e74563d094010f11e4d8f8a2cbMD56autorizacion_tesis.pdf.jpgautorizacion_tesis.pdf.jpgGenerated Thumbnailimage/jpeg11011https://repositorio.uniandes.edu.co/bitstreams/a818f904-a50b-43ee-ac81-30eaf1591c4d/downloadd40d1a7f1ad29c9de199c509094b2211MD581992/73645oai:repositorio.uniandes.edu.co:1992/736452024-08-26 15:21:27.07http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K