HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment
Financial credit risk scoring is of the utmost importance for credit lenders, a well-designed risk management strategy allows lenders to make better decisions in terms of collocation of financial products and credit limits while keeping losses bounded. In this paper, we propose a Heterogeneous Graph...
- Autores:
-
Acevedo Viloria, Jaime David
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/55695
- Acceso en línea:
- http://hdl.handle.net/1992/55695
- Palabra clave:
- Graph Neural Networks
Credit Risk
Super-App
Alternative Data
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_16178a108f01cf4ffb2cb648c4a9d451 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/55695 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
title |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
spellingShingle |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment Graph Neural Networks Credit Risk Super-App Alternative Data Ingeniería |
title_short |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
title_full |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
title_fullStr |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
title_full_unstemmed |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
title_sort |
HanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environment |
dc.creator.fl_str_mv |
Acevedo Viloria, Jaime David |
dc.contributor.advisor.spa.fl_str_mv |
Correa Bahnsen, Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Valencia Arboleda, Carlos Felipe |
dc.contributor.author.spa.fl_str_mv |
Acevedo Viloria, Jaime David |
dc.contributor.jury.spa.fl_str_mv |
Cabrales Arévalo, Sergio Andrés Zarruk Valencia, David |
dc.subject.keyword.none.fl_str_mv |
Graph Neural Networks Credit Risk Super-App Alternative Data |
topic |
Graph Neural Networks Credit Risk Super-App Alternative Data Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Financial credit risk scoring is of the utmost importance for credit lenders, a well-designed risk management strategy allows lenders to make better decisions in terms of collocation of financial products and credit limits while keeping losses bounded. In this paper, we propose a Heterogeneous Graph Attention Network model that leverages the many interactions found in a Super-App for the Credit Risk assessment of its users with only Alternative Data. Through the proposed model we manage to learn not only for the scarce amount of users with credit history but also from the users with no credit history; promoting financial inclusion in the process. We test our model in a real-life database of 3.5k users drawn from a Super-App, proving that our model achieves an AUC of 0.69 in terms of classifying whether the users will pay back or not. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-22T20:10:31Z |
dc.date.available.none.fl_str_mv |
2022-02-22T20:10:31Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/55695 |
dc.identifier.pdf.spa.fl_str_mv |
25467.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/55695 |
identifier_str_mv |
25467.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.spa.fl_str_mv |
Maestría en Ingeniería Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Industrial |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/2ebf38cd-2ff5-4419-9151-b4ab0010ed80/download https://repositorio.uniandes.edu.co/bitstreams/835aaff7-1c79-4a10-8bd9-86d2d7a48751/download https://repositorio.uniandes.edu.co/bitstreams/f1e2bf0e-593d-4d4a-b5d8-d09453a5f550/download |
bitstream.checksum.fl_str_mv |
3d113dae35eb43c4ba80413ebecdda2d 5a1bd54b1cdfb740a4a5d132830d7733 5a223fe2ccbad01cc0f8ba42a7b0ffb1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134003908542464 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Bahnsen, Alejandro37c53098-2130-4ce5-b505-46af4c65daf2400Valencia Arboleda, Carlos Felipevirtual::12880-1Acevedo Viloria, Jaime Davidafe76135-c40c-461b-b3b3-cfc0ca5f10ba500Cabrales Arévalo, Sergio AndrésZarruk Valencia, David2022-02-22T20:10:31Z2022-02-22T20:10:31Z2021http://hdl.handle.net/1992/5569525467.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Financial credit risk scoring is of the utmost importance for credit lenders, a well-designed risk management strategy allows lenders to make better decisions in terms of collocation of financial products and credit limits while keeping losses bounded. In this paper, we propose a Heterogeneous Graph Attention Network model that leverages the many interactions found in a Super-App for the Credit Risk assessment of its users with only Alternative Data. Through the proposed model we manage to learn not only for the scarce amount of users with credit history but also from the users with no credit history; promoting financial inclusion in the process. We test our model in a real-life database of 3.5k users drawn from a Super-App, proving that our model achieves an AUC of 0.69 in terms of classifying whether the users will pay back or not.La calificación del riesgo de crédito financiero es de suma importancia para los prestamistas de crédito, una estrategia de gestión de riesgo bien diseñada permite a los prestamistas tomar mejores decisiones en términos de colocación de productos financieros y límites de crédito, manteniendo las pérdidas limitadas. En este artículo, proponemos un modelo de Graph Attention Networks que aprovecha las muchas interacciones encontradas en una Super-App para la evaluación del Riesgo de Crédito de sus usuarios con solo Datos Alternativos. A través del modelo propuesto logramos aprender no solo de la escasa cantidad de usuarios con historial crediticio sino también de los usuarios sin historial crediticio; promover la inclusión financiera en el proceso. Probamos nuestro modelo en una base de datos de la vida real de 3.5k usuarios extraídos de una Super-App, lo que demuestra que nuestro modelo logra un AUC de 0.69 en términos de clasificar si los usuarios pagarán o no.Magíster en Ingeniería IndustrialMaestría11 páginasapplication/pdfspaUniversidad de los AndesMaestría en Ingeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería IndustrialHanCred: Heterogeneous graph attention networks for credit risk assessment in a Super-App environmentTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGraph Neural NetworksCredit RiskSuper-AppAlternative DataIngeniería201119605Publicationhttps://scholar.google.es/citations?user=vPH5LywAAAAJvirtual::12880-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000271403virtual::12880-1e1de19e8-629e-401d-a9d3-77eea3d2db48virtual::12880-1e1de19e8-629e-401d-a9d3-77eea3d2db48virtual::12880-1THUMBNAIL25467.pdf.jpg25467.pdf.jpgIM Thumbnailimage/jpeg27476https://repositorio.uniandes.edu.co/bitstreams/2ebf38cd-2ff5-4419-9151-b4ab0010ed80/download3d113dae35eb43c4ba80413ebecdda2dMD53TEXT25467.pdf.txt25467.pdf.txtExtracted texttext/plain60871https://repositorio.uniandes.edu.co/bitstreams/835aaff7-1c79-4a10-8bd9-86d2d7a48751/download5a1bd54b1cdfb740a4a5d132830d7733MD52ORIGINAL25467.pdfapplication/pdf768181https://repositorio.uniandes.edu.co/bitstreams/f1e2bf0e-593d-4d4a-b5d8-d09453a5f550/download5a223fe2ccbad01cc0f8ba42a7b0ffb1MD511992/55695oai:repositorio.uniandes.edu.co:1992/556952024-03-13 14:47:55.16https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |