Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-

En este trabajo de grado se realiza la investigación de la síntesis y aplicaciones de moléculas híbridas inorgánica/orgánica de 7-ferrocenilpirazolo[1,5-a]pirimidina. Las aplicaciones se centran en la detección óptica de protón en medio orgánico y en la detección óptica y electroquímica de cianuro....

Full description

Autores:
Peña Bernal, Carlos Arturo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/56303
Acceso en línea:
http://hdl.handle.net/1992/56303
Palabra clave:
Pyrazolo[1,5-a]pyrimidine
Colvatochromism
Chemosensor
Cyanide
Quimiosensores
Pirazolopirimidinas
Química
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_1112fda8f3487b8cc809ce11e40e17b9
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/56303
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
title Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
spellingShingle Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
Pyrazolo[1,5-a]pyrimidine
Colvatochromism
Chemosensor
Cyanide
Quimiosensores
Pirazolopirimidinas
Química
title_short Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
title_full Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
title_fullStr Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
title_full_unstemmed Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
title_sort Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-
dc.creator.fl_str_mv Peña Bernal, Carlos Arturo
dc.contributor.advisor.none.fl_str_mv Portilla Salinas, Jaime Antonio
Tigreros Ortíz, Alexis
dc.contributor.author.none.fl_str_mv Peña Bernal, Carlos Arturo
dc.contributor.jury.none.fl_str_mv Gamba Sánchez, Diego Alexander
Chaur Valencia, Manuel Noe
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de Investigación en Compuestos Bio-orgánicos (GICOBIORG)
dc.subject.keyword.none.fl_str_mv Pyrazolo[1,5-a]pyrimidine
Colvatochromism
Chemosensor
Cyanide
topic Pyrazolo[1,5-a]pyrimidine
Colvatochromism
Chemosensor
Cyanide
Quimiosensores
Pirazolopirimidinas
Química
dc.subject.armarc.none.fl_str_mv Quimiosensores
Pirazolopirimidinas
dc.subject.themes.es_CO.fl_str_mv Química
description En este trabajo de grado se realiza la investigación de la síntesis y aplicaciones de moléculas híbridas inorgánica/orgánica de 7-ferrocenilpirazolo[1,5-a]pirimidina. Las aplicaciones se centran en la detección óptica de protón en medio orgánico y en la detección óptica y electroquímica de cianuro.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-03-10T19:58:08Z
dc.date.available.none.fl_str_mv 2022-03-10T19:58:08Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/56303
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/56303
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Wang, B.; Anslyn, E. V. Chemosensors: Principles, Strategies, and Applications; John Wiley & Sons, 2011.
Khalil, G.; Brückner, C.; Ghandehari, M. Molecular Probes. In Optical Phenomenology and Applications: Health Monitoring for Infrastructure Materials and the Environment; Ghandehari, M., Ed.; Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, 2018; pp 35-48. https://doi.org/10.1007/978-3-319-70715-0_4.
Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9 (6), 106381. https://doi.org/10.1016/j.jece.2021.106381.
Patil, N. S.; Dhake, R. B.; Ahamed, M. I.; Fegade, U. A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). J. Fluoresc. 2020, 30 (6), 1295-1330. https://doi.org/10.1007/s10895-020-02554-7.
Fukuhara, G. Analytical Supramolecular Chemistry: Colorimetric and Fluorimetric Chemosensors. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100340. https://doi.org/10.1016/j.jphotochemrev.2020.100340.
Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for D-Metal Ions: A Review in the Past, Present and Future Prospect. J. Mol. Struct. 2019, 1193, 89-102. https://doi.org/10.1016/j.molstruc.2019.05.007.
Wu, D.; C. Sedgwick, A.; Gunnlaugsson, T.; U. Akkaya, E.; Yoon, J.; D. James, T. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46 (23), 7105-7123. https://doi.org/10.1039/C7CS00240H.
Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S. Chemodosimeters: An Approach for Detection and Estimation of Biologically and Medically Relevant Metal Ions, Anions and Thiols. Coord. Chem. Rev. 2012, 256 (17), 1992-2028. https://doi.org/10.1016/j.ccr.2012.04.013.
Pati, P. B. Organic Chemodosimeter for Cyanide: A Nucleophilic Approach. Sens. Actuators B Chem. 2016, 222, 374-390. https://doi.org/10.1016/j.snb.2015.08.044.
Lee, S. Y.; Lee, J. J.; Bok, K. H.; Kim, J. A.; So, Y. K.; Kim, C. A Colorimetric Chemosensor for the Sequential Recognition of Mercury (II) and Iodide in Aqueous Media. Inorg. Chem. Commun. 2016, 70, 147-152. https://doi.org/10.1016/j.inoche.2016.06.004.
Zhong, Z.; Zhang, D.; Li, D.; Zheng, G.; Tian, Z. Turn-on Fluorescence Sensor Based on Naphthalene Anhydride for Hg2+. Tetrahedron 2016, 72 (49), 8050-8054. https://doi.org/10.1016/j.tet.2016.10.033.
Xu, W.-J.; Qi, D.-Q.; You, J.-Z.; Hu, F.-F.; Bian, J.-Y.; Yang, C.-X.; Huang, J. Coumarin-Based "Turn-off" Fluorescent Chemosensor with High Selectivity for Cu2+ in Aqueous Solution. J. Mol. Struct. 2015, 1091, 133-137. https://doi.org/10.1016/j.molstruc.2015.02.083.
Wei, Y.; Aydin, Z.; Zhang, Y.; Liu, Z.; Guo, M. A Turn-on Fluorescent Sensor for Imaging Labile Fe3+ in Live Neuronal Cells at Subcellular Resolution. ChemBioChem 2012, 13 (11), 1569-1573. https://doi.org/10.1002/cbic.201200202.
Samanta, S.; Manna, U.; Ray, T.; Das, G. An Aggregation-Induced Emission (AIE) Active Probe for Multiple Targets: A Fluorescent Sensor for Zn2+ and Al3+ & a Colorimetric Sensor for Cu2+ and F. Dalton Trans. 2015, 44 (43), 18902-18910. https://doi.org/10.1039/C5DT03186A.
Cho, H.; Chae, J. B.; Kim, C. A Thiophene-Based Blue-Fluorescent Emitting Chemosensor for Detecting Indium (III) Ion. Inorg. Chem. Commun. 2018, 97, 171-175. https://doi.org/10.1016/j.inoche.2018.09.037.
Bakker, E.; Telting-Diaz, M. Electrochemical Sensors. Anal. Chem. 2002, 74 (12), 2781-2800. https://doi.org/10.1021/ac0202278.
Gale, P. A.; Caltagirone, C. Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2018, 354, 2-27. https://doi.org/10.1016/j.ccr.2017.05.003.
McNaughton, D. A.; Fares, M.; Picci, G.; Gale, P. A.; Caltagirone, C. Advances in Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2021, 427, 213573. https://doi.org/10.1016/j.ccr.2020.213573.
Ataman, D.; Akkaya, E. U. Selective Chromogenic Response via Regioselective Binding of Cations: A Novel Approach in Chemosensor Design. Tetrahedron Lett. 2002, 43 (22), 3981-3983. https://doi.org/10.1016/S0040-4039(02)00725-6.
Liu, Z.; Zhang, C.; Wang, X.; He, W.; Guo, Z. Design and Synthesis of a Ratiometric Fluorescent Chemosensor for Cu(II) with a Fluorophore Hybridization Approach. Org. Lett. 2012, 14 (17), 4378-4381. https://doi.org/10.1021/ol301849z.
Qin, J.; Yang, Z.; Fan, L.; Cheng, X.; Li, T.; Wang, B. Design and Synthesis of a Chemosensor for the Detection of Al3+ Based on ESIPT. Anal. Methods 2014, 6 (18), 7343-7348. https://doi.org/10.1039/C4AY01330A.
DiScenza, D. J.; Culton, E.; Verderame, M.; Lynch, J.; Serio, N.; Levine, M. Towards Rational Chemosensor Design through Improved Understanding of Experimental Parameter Variation and Tolerance in Cyclodextrin-Promoted Fluorescence Detection. Chemosensors 2017, 5 (4), 34. https://doi.org/10.3390/chemosensors5040034.
K. Sahoo, S. Fluorescent Chemosensors Containing Redox-Active Ferrocene: A Review. Dalton Trans. 2021, 50 (34), 11681-11700. https://doi.org/10.1039/D1DT02077C.
Fu, Y.; S. Finney, N. Small-Molecule Fluorescent Probes and Their Design. RSC Adv. 2018, 8 (51), 29051-29061. https://doi.org/10.1039/C8RA02297F.
Geddes, C. D.; Lakowicz, J. R. Advanced Concepts in Fluorescence Sensing: Part A: Small Molecule Sensing; Springer Science & Business Media, 2007.
Fang, Y.; Dehaen, W. Small-Molecule-Based Fluorescent Probes for f-Block Metal Ions: A New Frontier in Chemosensors. Coord. Chem. Rev. 2021, 427, 213524. https://doi.org/10.1016/j.ccr.2020.213524.
Pal, A.; Ranjan Bhatta, S.; Thakur, A. Recent Advances in the Development of Ferrocene Based Electroactive Small Molecules for Cation Recognition: A Comprehensive Review of the Years 2010-2020. Coord. Chem. Rev. 2021, 431, 213685. https://doi.org/10.1016/j.ccr.2020.213685.
Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T. D.; Lin, W. Small Molecule Based Fluorescent Chemosensors for Imaging the Microenvironment within Specific Cellular Regions. Chem. Soc. Rev. 2021, 50 (21), 12098-12150. https://doi.org/10.1039/D1CS00645B.
Lewis, G. N.; Calvin, M. The Color of Organic Substances. https://pubs.acs.org/doi/pdf/10.1021/cr60081a004 (accessed 2021 -11 -03). https://doi.org/10.1021/cr60081a004.
What is Solvatochromism? | The Journal of Physical Chemistry B https://pubs-acs-org.ezproxy.uniandes.edu.co:8443/doi/10.1021/jp1097487 (accessed 2021 -11 -03).
Nigam, S.; Rutan, S. Principles and Applications of Solvatochromism. Appl. Spectrosc. 2001, 55 (11), 362A-370A.
Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; John Wiley & Sons, 2010.
Afri, M.; Gottlieb, H. E.; Frimer, A. A. Reichardt's Dye: The NMR Story of the Solvatochromic Betaine Dye. Can. J. Chem. 2014, 92 (2), 128-134. https://doi.org/10.1139/cjc-2013-0349.
Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds; CRC Press, 1992.
Fowler, F. W.; Katritzky, A. R.; Rutherford, R. J. D. The Correlation of Solvent Effects on Physical and Chemical Properties. J. Chem. Soc. B Phys. Org. 1971, No. 0, 460-469. https://doi.org/10.1039/J29710000460.
Abraham, M. H.; Taft, R. W.; Kamlet, M. J. Linear Solvation Energy Relationships. 15. Heterolytic Decomposition of the Tert-Butyl Halides. J. Org. Chem. 1981, 46 (15), 3053-3056. https://doi.org/10.1021/jo00328a012.
Catalán, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113 (17), 5951-5960. https://doi.org/10.1021/jp8095727.
Jacques, P. On the Relative Contributions of Nonspecific and Specific Interactions to the Unusual Solvtochromism of a Typical Merocyanine Dye. J. Phys. Chem. 1986, 90 (22), 5535-5539. https://doi.org/10.1021/j100280a012.
Machado, C.; Nascimento, M. de G.; Rezende, M. C. Solvato- and Halo-Chromic Behaviour of Some 4-[(N-Methylpyridiniumyl)Methylidineamino]Phenolate Dyes. J. Chem. Soc. Perkin Trans. 2 1994, No. 12, 2539-2544. https://doi.org/10.1039/P29940002539.
de Melo, C. E. A.; Nandi, L. G.; Domínguez, M.; Rezende, M. C.; Machado, V. G. Solvatochromic Behavior of Dyes with Dimethylamino Electron-Donor and Nitro Electron-Acceptor Groups in Their Molecular Structure. J. Phys. Org. Chem. 2015, 28 (4), 250-260. https://doi.org/10.1002/poc.3402.
Knauer, B. R.; Napier, J. J. The Nitrogen Hyperfine Splitting Constant of the Nitroxide Functional Group as a Solvent Polarity Parameter. The Relative Importance for a Solvent Polarity Parameter of Its Being a Cybotactic Probe vs. Its Being a Model Process. J. Am. Chem. Soc. 1976, 98 (15), 4395-4400. https://doi.org/10.1021/ja00431a010.
Achelle, S.; Rodríguez-López, J.; Bure, F.; Robin-le Guen, F. Tuning the Photophysical Properties of Push-Pull Azaheterocyclic Chromophores by Protonation: A Brief Overview of a French-Spanish-Czech Project. Chem. Rec. 2020, 20 (5), 440-451. https://doi.org/10.1002/tcr.201900064.
Dong, Y.; Yang, J.; Zhang, H.; Zhan, X.-Y.; He, S.; Shi, Z.-C.; Zhang, X.-M.; Wang, J.-Y. Cobalt-Catalyzed Cycloamination: Synthesis and Photophysical Properties of Polycyclic N-Heterocycles. Org. Lett. 2020, 22 (13), 5151-5156. https://doi.org/10.1021/acs.orglett.0c01753.
Krantz, K. E.; Weisflog, S. L.; Frey, N. C.; Yang, W.; Dickie, D. A.; Webster, C. E.; Gilliard Jr., R. J. Planar, Stair-Stepped, and Twisted: Modulating Structure and Photophysics in Pyrene- and Benzene-Fused N-Heterocyclic Boranes. Chem. Eur. J. 2020, 26 (44), 10072-10082. https://doi.org/10.1002/chem.202002118.
Needham, L.-M.; Weber, J.; Pearson, C. M.; Do, D. T.; Gorka, F.; Lyu, G.; Bohndiek, S. E.; Snaddon, T. N.; Lee, S. F. A Comparative Photophysical Study of Structural Modifications of Thioflavin T-Inspired Fluorophores. J. Phys. Chem. Lett. 2020, 11 (19), 8406-8416. https://doi.org/10.1021/acs.jpclett.0c01549.
Tigreros, A.; Rosero, H.-A.; Castillo, J.-C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395-401. https://doi.org/10.1016/j.talanta.2018.12.100.
Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain. Chem. Eng. 2021, 9 (36), 12058-12069. https://doi.org/10.1021/acssuschemeng.1c01689.
Tigreros, A.; Aranzazu, S.-L.; Bravo, N.-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a ]Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10 (65), 39542-39552. https://doi.org/10.1039/D0RA07716J.
Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angew. Chem. Int. Ed. 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150.
Wu, Y.-C.; Li, H.-J.; Liu, L.; Wang, D.; Yang, H.-Z.; Chen, Y.-J. Efficient Construction of Pyrazolo[1,5-a]Pyrimidine Scaffold and Its Exploration as a New Heterocyclic Fluorescent Platform. J. Fluoresc. 2008, 18 (2), 357-363. https://doi.org/10.1007/s10895-007-0275-0.
Castillo, J.-C.; Portilla, J. RECENT ADVANCES IN THE SYNTHESIS OF NEW PYRAZOLE DERIVATIVES. Targets Heterocycl. Syst. Vol 22 2019, No. 22, 194. https://doi.org/10.17374/targets.2019.22.194.
Castillo, J.-C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5-a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem. 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571.
Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693-19712. https://doi.org/10.1039/D0RA02394A.
Castillo, J.-C.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5- a ]Pyrimidines through a One-Pot Sequence. RSC Adv. 2017, 7 (45), 28483-28488. https://doi.org/10.1039/C7RA04336H.
Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. J. Am. Chem. Soc. 1952, 74 (8), 2125-2126. https://doi.org/10.1021/ja01128a527.
Astruc, D. Why Is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2016, 2017. https://doi.org/10.1002/ejic.201600983.
Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96 (2), 877-910. https://doi.org/10.1021/cr940053x.
Noviandri, I.; Brown, K. N.; Fleming, D. S.; Gulyas, P. T.; Lay, P. A.; Masters, A. F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103 (32), 6713-6722. https://doi.org/10.1021/jp991381+.
Gagne, R. R.; Koval, C. A.; Lisensky, G. C. Ferrocene as an internal standard for electrochemical measurements https://pubs.acs.org/doi/pdf/10.1021/ic50211a080 (accessed 2021 -06 -19). https://doi.org/10.1021/ic50211a080.
Calabrese, J. C.; Cheng, L. T.; Green, J. C.; Marder, S. R.; Tam, W. Molecular Second-Order Optical Nonlinearities of Metallocenes. J. Am. Chem. Soc. 1991, 113 (19), 7227-7232. https://doi.org/10.1021/ja00019a020.
Durand, R. J.; Achelle, S.; Gauthier, S.; Cabon, N.; Ducamp, M.; Kahlal, S.; Saillard, J.-Y.; Barsella, A.; Robin-Le Guen, F. Incorporation of a Ferrocene Unit in the -Conjugated Structure of Donor-Linker-Acceptor (D- -A) Chromophores for Nonlinear Optics (NLO). Dyes Pigments 2018, 155, 68-74. https://doi.org/10.1016/j.dyepig.2018.03.029.
Molina, P.; Tárraga, A.; Caballero, A. Ferrocene-Based Small Molecules for Multichannel Molecular Recognition of Cations and Anions. Eur. J. Inorg. Chem. 2008, 2008 (22), 3401-3417. https://doi.org/10.1002/ejic.200800474.
Antufeva, A. D.; Zhulanov, V. E.; Dmitriev, M. B.; Mokrushin, I. G.; Shklyaeva, E. V.; Abashev, G. G. New Nitrogen Heterocycles Containing a Ferrocene Fragment: Optical and Physicochemical Properties. Russ. J. Gen. Chem. 2017, 87 (3), 470-478. https://doi.org/10.1134/S1070363217030161.
Guo, Y.; Wang, S.-Q.; Ding, Z.-Q.; Zhou, J.; Ruan, B.-F. Synthesis, Characterization and Antitumor Activity of Novel Ferrocene Bisamide Derivatives Containing Pyrimidine-Moiety. J. Organomet. Chem. 2017, 851, 150-159. https://doi.org/10.1016/j.jorganchem.2017.09.032.
Liang, X.; Guo, P.; Yang, W.; Li, M.; Jiang, C.; Sun, W.; Loh, T.-P.; Jiang, Y. Stereoselective Synthesis of Trifluoromethyl-Substituted 2H-Furan-Amines from Enaminones. Chem. Commun. 2020, 56 (13), 2043-2046. https://doi.org/10.1039/C9CC08582C.
Xiang, D.; Noel, J.; Shao, H.; Dupas, G.; Merbouh, N.; Yu, H.-Z. Unique Intramolecular Electronic Communications in Mono-Ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature. Electrochimica Acta 2015, 162, 31-35. https://doi.org/10.1016/j.electacta.2014.10.146.
Jia, J.; Cui, Y.; Li, Y.; Sheng, W.; Han, L.; Gao, J. Synthesis, Third-Order Nonlinear Optical Properties and Theoretical Analysis of Vinylferrocene Derivatives. Dyes Pigments 2013, 98 (2), 273-279. https://doi.org/10.1016/j.dyepig.2013.01.028.
Huang, H.; Xin, Z.; Yuan, L.; Wang, B.-Y.; Cao, Q.-Y. New Ferrocene-Pyrene Dyads Bearing Amide/Thiourea Hybrid Donors for Anion Recognition. Inorganica Chim. Acta 2018, 483, 425-430. https://doi.org/10.1016/j.ica.2018.08.055.
Vidal, M.; Pastenes, C.; Rezende, M. C.; Aliaga, C.; Domínguez, M. The Inverted Solvatochromism of Protonated Ferrocenylethenyl-Pyrimidines: The First Example of the Solvatochromic Reversal of a Hybrid Organic/Inorganic Dye. Org. Chem. Front. 2019, 6 (23), 3896-3901. https://doi.org/10.1039/C9QO01043B.
Kaping, S.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Ultrasound Assisted Synthesis of Pyrazolo[1,5-a]Pyrimidine-Antipyrine Hybrids and Their Anti-Inflammatory and Anti-Cancer Activities. Eur. J. Chem. 2020, 11 (1), 68-79. https://doi.org/10.5155/eurjchem.11.1.68-79.1942.
Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N. A Facile, Regioselective Synthesis of Novel 3-(N-Phenylcarboxamide)Pyrazolo[1,5-a]Pyrimidine Analogs in the Presence of KHSO$$_{4}$$in Aqueous Media Assisted by Ultrasound and Their Antibacterial Activities. Mol. Divers. 2016, 20 (2), 379-390. https://doi.org/10.1007/s11030-015-9639-6.
Jayasudha, P.; Manivannan, R.; Elango, K. P. Simple Colorimetric Chemodosimeters for Selective Sensing of Cyanide Ion in Aqueous Solution via Termination of ICT Transition by Michael Addition. Sens. Actuators B Chem. 2015, 221, 1441-1448. https://doi.org/10.1016/j.snb.2015.08.017.
Nam, N. L.; Grandberg, I. I.; Sorokin, V. I. Pyrazolopyrimidines Based on 5-Aminopyrazoles Unsubstituted at the Position 1. Chem. Heterocycl. Compd. 2002, 38 (11), 1371-1374. https://doi.org/10.1023/A:1022186627777.
Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. A Highly Sensitive Near-Infrared Fluorescent Probe for Cysteine and Homocysteine in Living Cells. Chem. Commun. 2013, 49 (80), 9176-9178. https://doi.org/10.1039/C3CC45519J.
Chevalier, A.; Zhang, Y.; Khdour, O. M.; Kaye, J. B.; Hecht, S. M. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting. J. Am. Chem. Soc. 2016, 138 (37), 12009-12012. https://doi.org/10.1021/jacs.6b06229.
Huang, Y.; Ru, H.; Bao, B.; Yu, J.; Li, J.; Zang, Y.; Lu, W. The Design of a Novel Near-Infrared Fluorescent HDAC Inhibitor and Image of Tumor Cells. Bioorg. Med. Chem. 2020, 28 (17), 115639. https://doi.org/10.1016/j.bmc.2020.115639.
Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94 (8), 2319-2358. https://doi.org/10.1021/cr00032a005.
Aliaga, C.; Domínguez, M.; Rojas, P.; Rezende, M. C. A Comparison of Multiparametric Methods for the Interpretation of Solvent-Dependent Chemical Processes. J. Mol. Liq. 2020, 312, 113362. https://doi.org/10.1016/j.molliq.2020.113362.
Sengül, Ü. Comparing Determination Methods of Detection and Quantification Limits for Aflatoxin Analysis in Hazelnut. J. Food Drug Anal. 2016, 24 (1), 56-62. https://doi.org/10.1016/j.jfda.2015.04.009.
Sola, A.; Tárraga, A.; Molina, P. The Ferrocene-Pyrylium Dyad as a Selective Colorimetric Chemodosimeter for the Toxic Cyanide and Hydrogen Sulfide Anions in Water. Org. Biomol. Chem. 2014, 12 (16), 2547-2551. https://doi.org/10.1039/C4OB00157E.
Kim, S. M.; Kang, M.; Choi, I.; Lee, J. J.; Kim, C. A Highly Selective Colorimetric Chemosensor for Cyanide and Sulfide in Aqueous Solution: Experimental and Theoretical Studies. New J. Chem. 2016, 40 (9), 7768-7778. https://doi.org/10.1039/C6NJ01832G.
Rao, P. G.; Saritha, B.; Rao, T. S. Highly Selective Reaction Based Colorimetric and Fluorometric Chemosensors for Cyanide Detection via ICT off in Aqueous Solution. J. Photochem. Photobiol. Chem. 2019, 372, 177-185. https://doi.org/10.1016/j.jphotochem.2018.12.018.
Qian, G.; Li, X.; Wang, Z. Y. Visible and Near-Infrared Chemosensor for Colorimetric and Ratiometric Detection of Cyanide. J. Mater. Chem. 2009, 19 (4), 522-530. https://doi.org/10.1039/B813478B.
Babu, B.; Mack, J.; Nyokong, T. Naked Eye and Colorimetric Detection of Cyanide with a 1,3-Diethyl-2-Thiobarbituric Acid Substituted Ferrocene Chemosensor. ChemistrySelect 2021, 6 (7), 1448-1452. https://doi.org/10.1002/slct.202100163.
WHO. Guidelines for Drinking-Water Quality, Fourth Edition. 564.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 65 hojas
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Maestría en Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Química
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/576aba56-009e-4c2a-b155-60367bfb3a15/download
https://repositorio.uniandes.edu.co/bitstreams/505d483a-e3be-478e-b236-3d380acaf8d3/download
https://repositorio.uniandes.edu.co/bitstreams/5f388bb5-40d6-4e3c-87b6-c9aea26daa85/download
https://repositorio.uniandes.edu.co/bitstreams/f2c4cff5-0ea5-4009-a847-ee34c7ee754f/download
https://repositorio.uniandes.edu.co/bitstreams/6e1a1763-44be-42eb-869d-1096bbb695f7/download
https://repositorio.uniandes.edu.co/bitstreams/2cc4c95c-a40e-41f6-aeef-98b905b96d67/download
https://repositorio.uniandes.edu.co/bitstreams/f37fbe55-ff1c-47ee-8bf9-cb5f698dcce0/download
https://repositorio.uniandes.edu.co/bitstreams/49d4df43-9a85-45f0-a2f2-fa7ba34c7c52/download
bitstream.checksum.fl_str_mv cd063989339663428453ef092d69d066
73fb76865d16d6fdbbda186eeaeb485d
4460e5956bc1d1639be9ae6146a50347
5aa5c691a1ffe97abd12c2966efcb8d6
c32561ec055bf49905b40f4250dcf215
d9cf48726c07e43acbcead80260a4b21
21c4dd62c13c9a3d057484348ad6fff7
994741f2950173502242e39405746416
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133846050668544
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Portilla Salinas, Jaime Antoniovirtual::3240-1Tigreros Ortíz, Alexisvirtual::3241-1Peña Bernal, Carlos Arturob6d5bc29-bd00-4cf5-975a-8a6d9e1d7b59600Gamba Sánchez, Diego AlexanderChaur Valencia, Manuel NoeGrupo de Investigación en Compuestos Bio-orgánicos (GICOBIORG)2022-03-10T19:58:08Z2022-03-10T19:58:08Z2021-12http://hdl.handle.net/1992/56303instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este trabajo de grado se realiza la investigación de la síntesis y aplicaciones de moléculas híbridas inorgánica/orgánica de 7-ferrocenilpirazolo[1,5-a]pirimidina. Las aplicaciones se centran en la detección óptica de protón en medio orgánico y en la detección óptica y electroquímica de cianuro.This work investigates the rational design of novel chemosensors based on hybrid inorganic/organic structures for detecting H+ and CN-. The synthesis of chemosensors that integrate ferrocene and pyrazolo[1,5-a]pyrimidine molecules is due to the D-A behavior this hybrid system exhibits. A solvatochromic study of 7-ferrocenyl-2-methylpyrazolo[1,5-a]pyrimidine, along with a multiparametric analysis from Catalán's coefficients, is made to understand better how the probe molecule interacts with different solvents in the determination and quantification of H+, with calculated LoD of 0.63 µmol L-1. The integration of an indolium moiety was used for the colorimetric sensing of CN-. The chemosensor showed an intense red coloration losing upon the nucleophilic addition of CN- to the chemosensor molecule with calculated LoD of 0.11 µmol L-1, well below the WHO requirements (1.9 µmol L-1).Magíster en QuímicaMaestría65 hojasengUniversidad de los AndesMaestría en QuímicaFacultad de CienciasDepartamento de QuímicaDesign and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN-Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMPyrazolo[1,5-a]pyrimidineColvatochromismChemosensorCyanideQuimiosensoresPirazolopirimidinasQuímicaWang, B.; Anslyn, E. V. Chemosensors: Principles, Strategies, and Applications; John Wiley & Sons, 2011.Khalil, G.; Brückner, C.; Ghandehari, M. Molecular Probes. In Optical Phenomenology and Applications: Health Monitoring for Infrastructure Materials and the Environment; Ghandehari, M., Ed.; Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, 2018; pp 35-48. https://doi.org/10.1007/978-3-319-70715-0_4.Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9 (6), 106381. https://doi.org/10.1016/j.jece.2021.106381.Patil, N. S.; Dhake, R. B.; Ahamed, M. I.; Fegade, U. A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). J. Fluoresc. 2020, 30 (6), 1295-1330. https://doi.org/10.1007/s10895-020-02554-7.Fukuhara, G. Analytical Supramolecular Chemistry: Colorimetric and Fluorimetric Chemosensors. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100340. https://doi.org/10.1016/j.jphotochemrev.2020.100340.Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for D-Metal Ions: A Review in the Past, Present and Future Prospect. J. Mol. Struct. 2019, 1193, 89-102. https://doi.org/10.1016/j.molstruc.2019.05.007.Wu, D.; C. Sedgwick, A.; Gunnlaugsson, T.; U. Akkaya, E.; Yoon, J.; D. James, T. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46 (23), 7105-7123. https://doi.org/10.1039/C7CS00240H.Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S. Chemodosimeters: An Approach for Detection and Estimation of Biologically and Medically Relevant Metal Ions, Anions and Thiols. Coord. Chem. Rev. 2012, 256 (17), 1992-2028. https://doi.org/10.1016/j.ccr.2012.04.013.Pati, P. B. Organic Chemodosimeter for Cyanide: A Nucleophilic Approach. Sens. Actuators B Chem. 2016, 222, 374-390. https://doi.org/10.1016/j.snb.2015.08.044.Lee, S. Y.; Lee, J. J.; Bok, K. H.; Kim, J. A.; So, Y. K.; Kim, C. A Colorimetric Chemosensor for the Sequential Recognition of Mercury (II) and Iodide in Aqueous Media. Inorg. Chem. Commun. 2016, 70, 147-152. https://doi.org/10.1016/j.inoche.2016.06.004.Zhong, Z.; Zhang, D.; Li, D.; Zheng, G.; Tian, Z. Turn-on Fluorescence Sensor Based on Naphthalene Anhydride for Hg2+. Tetrahedron 2016, 72 (49), 8050-8054. https://doi.org/10.1016/j.tet.2016.10.033.Xu, W.-J.; Qi, D.-Q.; You, J.-Z.; Hu, F.-F.; Bian, J.-Y.; Yang, C.-X.; Huang, J. Coumarin-Based "Turn-off" Fluorescent Chemosensor with High Selectivity for Cu2+ in Aqueous Solution. J. Mol. Struct. 2015, 1091, 133-137. https://doi.org/10.1016/j.molstruc.2015.02.083.Wei, Y.; Aydin, Z.; Zhang, Y.; Liu, Z.; Guo, M. A Turn-on Fluorescent Sensor for Imaging Labile Fe3+ in Live Neuronal Cells at Subcellular Resolution. ChemBioChem 2012, 13 (11), 1569-1573. https://doi.org/10.1002/cbic.201200202.Samanta, S.; Manna, U.; Ray, T.; Das, G. An Aggregation-Induced Emission (AIE) Active Probe for Multiple Targets: A Fluorescent Sensor for Zn2+ and Al3+ & a Colorimetric Sensor for Cu2+ and F. Dalton Trans. 2015, 44 (43), 18902-18910. https://doi.org/10.1039/C5DT03186A.Cho, H.; Chae, J. B.; Kim, C. A Thiophene-Based Blue-Fluorescent Emitting Chemosensor for Detecting Indium (III) Ion. Inorg. Chem. Commun. 2018, 97, 171-175. https://doi.org/10.1016/j.inoche.2018.09.037.Bakker, E.; Telting-Diaz, M. Electrochemical Sensors. Anal. Chem. 2002, 74 (12), 2781-2800. https://doi.org/10.1021/ac0202278.Gale, P. A.; Caltagirone, C. Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2018, 354, 2-27. https://doi.org/10.1016/j.ccr.2017.05.003.McNaughton, D. A.; Fares, M.; Picci, G.; Gale, P. A.; Caltagirone, C. Advances in Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2021, 427, 213573. https://doi.org/10.1016/j.ccr.2020.213573.Ataman, D.; Akkaya, E. U. Selective Chromogenic Response via Regioselective Binding of Cations: A Novel Approach in Chemosensor Design. Tetrahedron Lett. 2002, 43 (22), 3981-3983. https://doi.org/10.1016/S0040-4039(02)00725-6.Liu, Z.; Zhang, C.; Wang, X.; He, W.; Guo, Z. Design and Synthesis of a Ratiometric Fluorescent Chemosensor for Cu(II) with a Fluorophore Hybridization Approach. Org. Lett. 2012, 14 (17), 4378-4381. https://doi.org/10.1021/ol301849z.Qin, J.; Yang, Z.; Fan, L.; Cheng, X.; Li, T.; Wang, B. Design and Synthesis of a Chemosensor for the Detection of Al3+ Based on ESIPT. Anal. Methods 2014, 6 (18), 7343-7348. https://doi.org/10.1039/C4AY01330A.DiScenza, D. J.; Culton, E.; Verderame, M.; Lynch, J.; Serio, N.; Levine, M. Towards Rational Chemosensor Design through Improved Understanding of Experimental Parameter Variation and Tolerance in Cyclodextrin-Promoted Fluorescence Detection. Chemosensors 2017, 5 (4), 34. https://doi.org/10.3390/chemosensors5040034.K. Sahoo, S. Fluorescent Chemosensors Containing Redox-Active Ferrocene: A Review. Dalton Trans. 2021, 50 (34), 11681-11700. https://doi.org/10.1039/D1DT02077C.Fu, Y.; S. Finney, N. Small-Molecule Fluorescent Probes and Their Design. RSC Adv. 2018, 8 (51), 29051-29061. https://doi.org/10.1039/C8RA02297F.Geddes, C. D.; Lakowicz, J. R. Advanced Concepts in Fluorescence Sensing: Part A: Small Molecule Sensing; Springer Science & Business Media, 2007.Fang, Y.; Dehaen, W. Small-Molecule-Based Fluorescent Probes for f-Block Metal Ions: A New Frontier in Chemosensors. Coord. Chem. Rev. 2021, 427, 213524. https://doi.org/10.1016/j.ccr.2020.213524.Pal, A.; Ranjan Bhatta, S.; Thakur, A. Recent Advances in the Development of Ferrocene Based Electroactive Small Molecules for Cation Recognition: A Comprehensive Review of the Years 2010-2020. Coord. Chem. Rev. 2021, 431, 213685. https://doi.org/10.1016/j.ccr.2020.213685.Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T. D.; Lin, W. Small Molecule Based Fluorescent Chemosensors for Imaging the Microenvironment within Specific Cellular Regions. Chem. Soc. Rev. 2021, 50 (21), 12098-12150. https://doi.org/10.1039/D1CS00645B.Lewis, G. N.; Calvin, M. The Color of Organic Substances. https://pubs.acs.org/doi/pdf/10.1021/cr60081a004 (accessed 2021 -11 -03). https://doi.org/10.1021/cr60081a004.What is Solvatochromism? | The Journal of Physical Chemistry B https://pubs-acs-org.ezproxy.uniandes.edu.co:8443/doi/10.1021/jp1097487 (accessed 2021 -11 -03).Nigam, S.; Rutan, S. Principles and Applications of Solvatochromism. Appl. Spectrosc. 2001, 55 (11), 362A-370A.Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; John Wiley & Sons, 2010.Afri, M.; Gottlieb, H. E.; Frimer, A. A. Reichardt's Dye: The NMR Story of the Solvatochromic Betaine Dye. Can. J. Chem. 2014, 92 (2), 128-134. https://doi.org/10.1139/cjc-2013-0349.Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds; CRC Press, 1992.Fowler, F. W.; Katritzky, A. R.; Rutherford, R. J. D. The Correlation of Solvent Effects on Physical and Chemical Properties. J. Chem. Soc. B Phys. Org. 1971, No. 0, 460-469. https://doi.org/10.1039/J29710000460.Abraham, M. H.; Taft, R. W.; Kamlet, M. J. Linear Solvation Energy Relationships. 15. Heterolytic Decomposition of the Tert-Butyl Halides. J. Org. Chem. 1981, 46 (15), 3053-3056. https://doi.org/10.1021/jo00328a012.Catalán, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113 (17), 5951-5960. https://doi.org/10.1021/jp8095727.Jacques, P. On the Relative Contributions of Nonspecific and Specific Interactions to the Unusual Solvtochromism of a Typical Merocyanine Dye. J. Phys. Chem. 1986, 90 (22), 5535-5539. https://doi.org/10.1021/j100280a012.Machado, C.; Nascimento, M. de G.; Rezende, M. C. Solvato- and Halo-Chromic Behaviour of Some 4-[(N-Methylpyridiniumyl)Methylidineamino]Phenolate Dyes. J. Chem. Soc. Perkin Trans. 2 1994, No. 12, 2539-2544. https://doi.org/10.1039/P29940002539.de Melo, C. E. A.; Nandi, L. G.; Domínguez, M.; Rezende, M. C.; Machado, V. G. Solvatochromic Behavior of Dyes with Dimethylamino Electron-Donor and Nitro Electron-Acceptor Groups in Their Molecular Structure. J. Phys. Org. Chem. 2015, 28 (4), 250-260. https://doi.org/10.1002/poc.3402.Knauer, B. R.; Napier, J. J. The Nitrogen Hyperfine Splitting Constant of the Nitroxide Functional Group as a Solvent Polarity Parameter. The Relative Importance for a Solvent Polarity Parameter of Its Being a Cybotactic Probe vs. Its Being a Model Process. J. Am. Chem. Soc. 1976, 98 (15), 4395-4400. https://doi.org/10.1021/ja00431a010.Achelle, S.; Rodríguez-López, J.; Bure, F.; Robin-le Guen, F. Tuning the Photophysical Properties of Push-Pull Azaheterocyclic Chromophores by Protonation: A Brief Overview of a French-Spanish-Czech Project. Chem. Rec. 2020, 20 (5), 440-451. https://doi.org/10.1002/tcr.201900064.Dong, Y.; Yang, J.; Zhang, H.; Zhan, X.-Y.; He, S.; Shi, Z.-C.; Zhang, X.-M.; Wang, J.-Y. Cobalt-Catalyzed Cycloamination: Synthesis and Photophysical Properties of Polycyclic N-Heterocycles. Org. Lett. 2020, 22 (13), 5151-5156. https://doi.org/10.1021/acs.orglett.0c01753.Krantz, K. E.; Weisflog, S. L.; Frey, N. C.; Yang, W.; Dickie, D. A.; Webster, C. E.; Gilliard Jr., R. J. Planar, Stair-Stepped, and Twisted: Modulating Structure and Photophysics in Pyrene- and Benzene-Fused N-Heterocyclic Boranes. Chem. Eur. J. 2020, 26 (44), 10072-10082. https://doi.org/10.1002/chem.202002118.Needham, L.-M.; Weber, J.; Pearson, C. M.; Do, D. T.; Gorka, F.; Lyu, G.; Bohndiek, S. E.; Snaddon, T. N.; Lee, S. F. A Comparative Photophysical Study of Structural Modifications of Thioflavin T-Inspired Fluorophores. J. Phys. Chem. Lett. 2020, 11 (19), 8406-8416. https://doi.org/10.1021/acs.jpclett.0c01549.Tigreros, A.; Rosero, H.-A.; Castillo, J.-C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395-401. https://doi.org/10.1016/j.talanta.2018.12.100.Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain. Chem. Eng. 2021, 9 (36), 12058-12069. https://doi.org/10.1021/acssuschemeng.1c01689.Tigreros, A.; Aranzazu, S.-L.; Bravo, N.-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a ]Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10 (65), 39542-39552. https://doi.org/10.1039/D0RA07716J.Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angew. Chem. Int. Ed. 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150.Wu, Y.-C.; Li, H.-J.; Liu, L.; Wang, D.; Yang, H.-Z.; Chen, Y.-J. Efficient Construction of Pyrazolo[1,5-a]Pyrimidine Scaffold and Its Exploration as a New Heterocyclic Fluorescent Platform. J. Fluoresc. 2008, 18 (2), 357-363. https://doi.org/10.1007/s10895-007-0275-0.Castillo, J.-C.; Portilla, J. RECENT ADVANCES IN THE SYNTHESIS OF NEW PYRAZOLE DERIVATIVES. Targets Heterocycl. Syst. Vol 22 2019, No. 22, 194. https://doi.org/10.17374/targets.2019.22.194.Castillo, J.-C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5-a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem. 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571.Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693-19712. https://doi.org/10.1039/D0RA02394A.Castillo, J.-C.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5- a ]Pyrimidines through a One-Pot Sequence. RSC Adv. 2017, 7 (45), 28483-28488. https://doi.org/10.1039/C7RA04336H.Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. J. Am. Chem. Soc. 1952, 74 (8), 2125-2126. https://doi.org/10.1021/ja01128a527.Astruc, D. Why Is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2016, 2017. https://doi.org/10.1002/ejic.201600983.Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96 (2), 877-910. https://doi.org/10.1021/cr940053x.Noviandri, I.; Brown, K. N.; Fleming, D. S.; Gulyas, P. T.; Lay, P. A.; Masters, A. F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103 (32), 6713-6722. https://doi.org/10.1021/jp991381+.Gagne, R. R.; Koval, C. A.; Lisensky, G. C. Ferrocene as an internal standard for electrochemical measurements https://pubs.acs.org/doi/pdf/10.1021/ic50211a080 (accessed 2021 -06 -19). https://doi.org/10.1021/ic50211a080.Calabrese, J. C.; Cheng, L. T.; Green, J. C.; Marder, S. R.; Tam, W. Molecular Second-Order Optical Nonlinearities of Metallocenes. J. Am. Chem. Soc. 1991, 113 (19), 7227-7232. https://doi.org/10.1021/ja00019a020.Durand, R. J.; Achelle, S.; Gauthier, S.; Cabon, N.; Ducamp, M.; Kahlal, S.; Saillard, J.-Y.; Barsella, A.; Robin-Le Guen, F. Incorporation of a Ferrocene Unit in the -Conjugated Structure of Donor-Linker-Acceptor (D- -A) Chromophores for Nonlinear Optics (NLO). Dyes Pigments 2018, 155, 68-74. https://doi.org/10.1016/j.dyepig.2018.03.029.Molina, P.; Tárraga, A.; Caballero, A. Ferrocene-Based Small Molecules for Multichannel Molecular Recognition of Cations and Anions. Eur. J. Inorg. Chem. 2008, 2008 (22), 3401-3417. https://doi.org/10.1002/ejic.200800474.Antufeva, A. D.; Zhulanov, V. E.; Dmitriev, M. B.; Mokrushin, I. G.; Shklyaeva, E. V.; Abashev, G. G. New Nitrogen Heterocycles Containing a Ferrocene Fragment: Optical and Physicochemical Properties. Russ. J. Gen. Chem. 2017, 87 (3), 470-478. https://doi.org/10.1134/S1070363217030161.Guo, Y.; Wang, S.-Q.; Ding, Z.-Q.; Zhou, J.; Ruan, B.-F. Synthesis, Characterization and Antitumor Activity of Novel Ferrocene Bisamide Derivatives Containing Pyrimidine-Moiety. J. Organomet. Chem. 2017, 851, 150-159. https://doi.org/10.1016/j.jorganchem.2017.09.032.Liang, X.; Guo, P.; Yang, W.; Li, M.; Jiang, C.; Sun, W.; Loh, T.-P.; Jiang, Y. Stereoselective Synthesis of Trifluoromethyl-Substituted 2H-Furan-Amines from Enaminones. Chem. Commun. 2020, 56 (13), 2043-2046. https://doi.org/10.1039/C9CC08582C.Xiang, D.; Noel, J.; Shao, H.; Dupas, G.; Merbouh, N.; Yu, H.-Z. Unique Intramolecular Electronic Communications in Mono-Ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature. Electrochimica Acta 2015, 162, 31-35. https://doi.org/10.1016/j.electacta.2014.10.146.Jia, J.; Cui, Y.; Li, Y.; Sheng, W.; Han, L.; Gao, J. Synthesis, Third-Order Nonlinear Optical Properties and Theoretical Analysis of Vinylferrocene Derivatives. Dyes Pigments 2013, 98 (2), 273-279. https://doi.org/10.1016/j.dyepig.2013.01.028.Huang, H.; Xin, Z.; Yuan, L.; Wang, B.-Y.; Cao, Q.-Y. New Ferrocene-Pyrene Dyads Bearing Amide/Thiourea Hybrid Donors for Anion Recognition. Inorganica Chim. Acta 2018, 483, 425-430. https://doi.org/10.1016/j.ica.2018.08.055.Vidal, M.; Pastenes, C.; Rezende, M. C.; Aliaga, C.; Domínguez, M. The Inverted Solvatochromism of Protonated Ferrocenylethenyl-Pyrimidines: The First Example of the Solvatochromic Reversal of a Hybrid Organic/Inorganic Dye. Org. Chem. Front. 2019, 6 (23), 3896-3901. https://doi.org/10.1039/C9QO01043B.Kaping, S.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Ultrasound Assisted Synthesis of Pyrazolo[1,5-a]Pyrimidine-Antipyrine Hybrids and Their Anti-Inflammatory and Anti-Cancer Activities. Eur. J. Chem. 2020, 11 (1), 68-79. https://doi.org/10.5155/eurjchem.11.1.68-79.1942.Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N. A Facile, Regioselective Synthesis of Novel 3-(N-Phenylcarboxamide)Pyrazolo[1,5-a]Pyrimidine Analogs in the Presence of KHSO$$_{4}$$in Aqueous Media Assisted by Ultrasound and Their Antibacterial Activities. Mol. Divers. 2016, 20 (2), 379-390. https://doi.org/10.1007/s11030-015-9639-6.Jayasudha, P.; Manivannan, R.; Elango, K. P. Simple Colorimetric Chemodosimeters for Selective Sensing of Cyanide Ion in Aqueous Solution via Termination of ICT Transition by Michael Addition. Sens. Actuators B Chem. 2015, 221, 1441-1448. https://doi.org/10.1016/j.snb.2015.08.017.Nam, N. L.; Grandberg, I. I.; Sorokin, V. I. Pyrazolopyrimidines Based on 5-Aminopyrazoles Unsubstituted at the Position 1. Chem. Heterocycl. Compd. 2002, 38 (11), 1371-1374. https://doi.org/10.1023/A:1022186627777.Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. A Highly Sensitive Near-Infrared Fluorescent Probe for Cysteine and Homocysteine in Living Cells. Chem. Commun. 2013, 49 (80), 9176-9178. https://doi.org/10.1039/C3CC45519J.Chevalier, A.; Zhang, Y.; Khdour, O. M.; Kaye, J. B.; Hecht, S. M. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting. J. Am. Chem. Soc. 2016, 138 (37), 12009-12012. https://doi.org/10.1021/jacs.6b06229.Huang, Y.; Ru, H.; Bao, B.; Yu, J.; Li, J.; Zang, Y.; Lu, W. The Design of a Novel Near-Infrared Fluorescent HDAC Inhibitor and Image of Tumor Cells. Bioorg. Med. Chem. 2020, 28 (17), 115639. https://doi.org/10.1016/j.bmc.2020.115639.Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94 (8), 2319-2358. https://doi.org/10.1021/cr00032a005.Aliaga, C.; Domínguez, M.; Rojas, P.; Rezende, M. C. A Comparison of Multiparametric Methods for the Interpretation of Solvent-Dependent Chemical Processes. J. Mol. Liq. 2020, 312, 113362. https://doi.org/10.1016/j.molliq.2020.113362.Sengül, Ü. Comparing Determination Methods of Detection and Quantification Limits for Aflatoxin Analysis in Hazelnut. J. Food Drug Anal. 2016, 24 (1), 56-62. https://doi.org/10.1016/j.jfda.2015.04.009.Sola, A.; Tárraga, A.; Molina, P. The Ferrocene-Pyrylium Dyad as a Selective Colorimetric Chemodosimeter for the Toxic Cyanide and Hydrogen Sulfide Anions in Water. Org. Biomol. Chem. 2014, 12 (16), 2547-2551. https://doi.org/10.1039/C4OB00157E.Kim, S. M.; Kang, M.; Choi, I.; Lee, J. J.; Kim, C. A Highly Selective Colorimetric Chemosensor for Cyanide and Sulfide in Aqueous Solution: Experimental and Theoretical Studies. New J. Chem. 2016, 40 (9), 7768-7778. https://doi.org/10.1039/C6NJ01832G.Rao, P. G.; Saritha, B.; Rao, T. S. Highly Selective Reaction Based Colorimetric and Fluorometric Chemosensors for Cyanide Detection via ICT off in Aqueous Solution. J. Photochem. Photobiol. Chem. 2019, 372, 177-185. https://doi.org/10.1016/j.jphotochem.2018.12.018.Qian, G.; Li, X.; Wang, Z. Y. Visible and Near-Infrared Chemosensor for Colorimetric and Ratiometric Detection of Cyanide. J. Mater. Chem. 2009, 19 (4), 522-530. https://doi.org/10.1039/B813478B.Babu, B.; Mack, J.; Nyokong, T. Naked Eye and Colorimetric Detection of Cyanide with a 1,3-Diethyl-2-Thiobarbituric Acid Substituted Ferrocene Chemosensor. ChemistrySelect 2021, 6 (7), 1448-1452. https://doi.org/10.1002/slct.202100163.WHO. Guidelines for Drinking-Water Quality, Fourth Edition. 564.201015711Publication15cce969-be9e-4320-94bc-85afca78cca4virtual::3240-1414d9804-44aa-4365-ae62-1ed45847007fvirtual::3241-115cce969-be9e-4320-94bc-85afca78cca4virtual::3240-1414d9804-44aa-4365-ae62-1ed45847007fvirtual::3241-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000370380virtual::3240-1TEXTTesis Carlos Peña - Final.pdf.txtTesis Carlos Peña - Final.pdf.txtExtracted texttext/plain111972https://repositorio.uniandes.edu.co/bitstreams/576aba56-009e-4c2a-b155-60367bfb3a15/downloadcd063989339663428453ef092d69d066MD56Formato_JP.pdf.txtFormato_JP.pdf.txtExtracted texttext/plain1814https://repositorio.uniandes.edu.co/bitstreams/505d483a-e3be-478e-b236-3d380acaf8d3/download73fb76865d16d6fdbbda186eeaeb485dMD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/5f388bb5-40d6-4e3c-87b6-c9aea26daa85/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/f2c4cff5-0ea5-4009-a847-ee34c7ee754f/download5aa5c691a1ffe97abd12c2966efcb8d6MD53THUMBNAILTesis Carlos Peña - Final.pdf.jpgTesis Carlos Peña - Final.pdf.jpgIM Thumbnailimage/jpeg5698https://repositorio.uniandes.edu.co/bitstreams/6e1a1763-44be-42eb-869d-1096bbb695f7/downloadc32561ec055bf49905b40f4250dcf215MD57Formato_JP.pdf.jpgFormato_JP.pdf.jpgIM Thumbnailimage/jpeg16578https://repositorio.uniandes.edu.co/bitstreams/2cc4c95c-a40e-41f6-aeef-98b905b96d67/downloadd9cf48726c07e43acbcead80260a4b21MD59ORIGINALTesis Carlos Peña - Final.pdfTesis Carlos Peña - Final.pdfTrabajo de gradoapplication/pdf2550514https://repositorio.uniandes.edu.co/bitstreams/f37fbe55-ff1c-47ee-8bf9-cb5f698dcce0/download21c4dd62c13c9a3d057484348ad6fff7MD54Formato_JP.pdfFormato_JP.pdfHIDEapplication/pdf306438https://repositorio.uniandes.edu.co/bitstreams/49d4df43-9a85-45f0-a2f2-fa7ba34c7c52/download994741f2950173502242e39405746416MD551992/56303oai:repositorio.uniandes.edu.co:1992/563032024-03-13 12:23:21.234http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==