Spärck: Information retrieval system of machine learning good practices for software engineering

In this project, we propose a tool for the developers to search for good machine learning (ML) practices appropriate for the software engineering (SE) assignments they are working on. We expect this tool makes ML good practices easily accessible and promotes their use. For this, we defined a structu...

Full description

Autores:
Cabra Acela, Laura Helena
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64399
Acceso en línea:
http://hdl.handle.net/1992/64399
Palabra clave:
Machine learning
Information retrieval
Good practices
Software engineering
Ingeniería
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNIANDES2_10f72d2b76093d1e25c7c6f7f4a7a140
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64399
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Spärck: Information retrieval system of machine learning good practices for software engineering
title Spärck: Information retrieval system of machine learning good practices for software engineering
spellingShingle Spärck: Information retrieval system of machine learning good practices for software engineering
Machine learning
Information retrieval
Good practices
Software engineering
Ingeniería
title_short Spärck: Information retrieval system of machine learning good practices for software engineering
title_full Spärck: Information retrieval system of machine learning good practices for software engineering
title_fullStr Spärck: Information retrieval system of machine learning good practices for software engineering
title_full_unstemmed Spärck: Information retrieval system of machine learning good practices for software engineering
title_sort Spärck: Information retrieval system of machine learning good practices for software engineering
dc.creator.fl_str_mv Cabra Acela, Laura Helena
dc.contributor.advisor.none.fl_str_mv Mojica Hanke, Anamaría Irmgard
Linares Vásquez, Mario
dc.contributor.author.none.fl_str_mv Cabra Acela, Laura Helena
dc.subject.keyword.none.fl_str_mv Machine learning
Information retrieval
Good practices
Software engineering
topic Machine learning
Information retrieval
Good practices
Software engineering
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description In this project, we propose a tool for the developers to search for good machine learning (ML) practices appropriate for the software engineering (SE) assignments they are working on. We expect this tool makes ML good practices easily accessible and promotes their use. For this, we defined a structure that described the relationships between stages of the ML pipeline, tasks, and good practices. Moreover, we implemented and validated an information retrieval (IR) model for the good practices gathered. Furthermore, we developed and validated a platform that allows users to search for good practices in ML for SE. This platform includes three main features: (i) a search bar that uses the implemented IR model. (ii) a tool to filter the practices by tasks. (iii) an interactive tool that classifies the information by the relationship between stages, tasks, and practices.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-15
dc.date.accessioned.none.fl_str_mv 2023-01-31T19:12:34Z
dc.date.available.none.fl_str_mv 2023-01-31T19:12:34Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64399
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64399
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu. ¿Why is Developing Machine Learning Applications Challenging? A Study on Stack Overflow Posts?. In: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 2019, pp. 1-11 (cit. on p. 3)
Saleema Amershi, Andrew Begel, Christian Bird, et al. "Software engineering for machine learning: A case study". In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE- SEIP). IEEE. 2019, pp. 291-300 (cit. on pp. 3, 9, 23)
AWS. Monitor, detect, and handle model performance degradation (cit. on pp. 26, 27)
Stella Biderman and Walter J Scheirer. "Pitfalls in machine learning research: Reexamining the development cycle". In: (2020) (cit. on p. 3)
Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. " O'Reilly Media, Inc.", 2009 (cit. on p. 9)
David M Blei, Andrew Y Ng, and Michael I Jordan. "Latent dirichlet allocation". In: Journal of machine Learning research 3.Jan (2003), pp. 993-1022 (cit. on p. 9)
Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. "Probabilistic information retrieval approach for ranking of database query results". In: ACM Transactions on Database Systems (TODS) 31.3 (2006), pp. 1134-1168 (cit. on p. 4)
Jai Raj Choudhary. What is model validation. 2020 (cit. on pp. 26, 27)
CloudFactory. The Ultimate Guide to data labeling for machine learning (cit. on pp. 26, 27)
European Commission. HIGH-LEVEL EXPERT GROUP ON ARTIFICIAL INTELLI- GENCE. 2019 (cit. on p. 3)
Datagen. Model training. 2022 (cit. on pp. 26, 27)
dewangNautiyal. ML: Underfitting and overfitting. 2022 (cit. on pp. 26, 27)
Universidad Duke. Model maintenance (cit. on pp. 26, 27)
Davide Falessi, Natalia Juristo, Claes Wohlin, et al. "Empirical software engineering experts on the use of students and professionals in experiments". In: Empirical Software Engineering 23.1 (2018), pp. 452-489 (cit. on p. 17)
Robert Feldt, Thomas Zimmermann, Gunnar R Bergersen, et al. "Four commentaries on the use of students and professionals in empirical software engineering experiments". In: Empirical Software Engineering 23.6 (2018), pp. 3801-3820 (cit. on p. 17)
Google. Creating instructions for human labelers (cit. on pp. 26, 27)
Google. Introduction to transforming data (cit. on pp. 26, 27)
Bingbing Jiang, Zhengyu Li, Huanhuan Chen, and Anthony G Cohn. "Latent topic text representation learning on statistical manifold". In: IEEE transac- tions on neural networks and learning systems 29.11 (2018), pp. 5643-5654 (cit. on p. 8)
Markku Lahtela and Philip (Provenance) Kaplan. What is data labeling. 1966 (cit. on pp. 26, 27)
Seok Won Lee and David C Rine. "Missing requirements and relationship discovery through proxy viewpoints model. In: Proceedings of the 2004 ACM symposium on Applied Computing. 2004, pp. 1513-1518 (cit. on pp. 4, 5)
Michael A. Lones. ¿How to avoid machine learning pitfalls: a guide for academic researchers?. In: CoRR abs/2108.02497 (2021). arXiv: 2108.02497 (cit. on pp. 3, 23)
Lotame. What are the methods of data collection?: How to collect data. 2022 (cit. on pp. 26, 27)
Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. "Recovering traceability links in software artifact management systems using information retrieval methods". In: ACM Transactions on Software Engineering and Methodology (TOSEM) 16.4 (2007), 13 es (cit. on pp. 4, 5)
Anamaria Mojica-Hanke, Andrea Bayona, Mario Linares-Vásquez, Steffen Herbold, and Fabio A. González. What are the Machine Learning best practices reported by practitioners on Stack Exchange? (Cit. on pp. 4, 9)
Nicolás Munar González and Nicolás Tobo Urrutia. "Software best practices for machine learning." In: 2022 (cit. on p. 4)
Google PAIR. People + AI Guidebook. 2021 (cit. on pp. 3, 4, 9)
Harshil Patel. What is feature engineering-importance, tools and techniques for machine learning. 2021 (cit. on pp. 26, 27)
Martin F Porter. "An algorithm for suffix stripping". In: Program (1980) (cit. on p. 9)
Stephen Robertson, Hugo Zaragoza, et al. "The probabilistic relevance framework: BM25 and beyond". In: Foundations and Trends® in Information Retrieval 3.4 (2009), pp. 333-389 (cit. on p. 9)
Gerard Salton, Anita Wong, and Chung-Shu Yang. "A vector space model for automatic indexing". In: Communications of the ACM 18.11 (1975), pp. 613- 620 (cit. on pp. 8, 9)
Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. "Adoption and effects of software engineering best practices in machine learning". In: Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 2020, pp. 1-12 (cit. on pp. 3, 23)
Deval Shah. The Essential Guide to data augmentation in Deep Learning (cit. on pp. 26, 27)
Eric J Stierna and Neil C Rowe. "Applying information-retrieval methods to software reuse: a case study". In: Information processing & management 39.1 (2003), pp. 67-74 (cit. on pp. 4, 5)
SuperAnnotate. The Ultimate Guide to Data Labeling: How to label data for ML (cit. on pp. 26, 27)
Tableau. Guide to data cleaning: Definition, benefits, components, and how to clean your data (cit. on pp. 26, 27)
Talend. What is data profiling? data profiling tools and examples (cit. on pp. 26, 27)
CFI Team. Data Anonymization. 2022 (cit. on pp. 26, 27)
Michail Vlachos. "Dimensionality Reduction". In: Encyclopedia of Machine Learning. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 274-279 (cit. on pp. 26, 27)
Kathleen Walch. How to build a machine learning model in 7 steps: TechTarget. 2021 (cit. on pp. 26, 27)
David Weedmark. A 4-step guide to machine learning model deployment. 2022 (cit. on pp. 26, 27)
Brett Wujek, Patrick Hall, and Funda Gunes. "Best practices for machine learning applications". In: SAS Institute Inc (2016) (cit. on p. 3)
Haining Yao, Letha H Etzkorn, and Shamsnaz Virani. "Automated classification and retrieval of reusable software components". In: Journal of the American society for information science and technology 59.4 (2008), pp. 613-627 (cit. on pp. 4, 5)
Martin Zinkevich. Rules of machine learning: Best Practices for ML Engineering. 2021 (cit. on p. 3)
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 40 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/97e1ca84-cde1-4d34-be74-53111d9af975/download
https://repositorio.uniandes.edu.co/bitstreams/d49cb342-d93a-4e46-9454-802f64d8dbc6/download
https://repositorio.uniandes.edu.co/bitstreams/a5eed6c0-5d83-4dd2-b41b-4b55f00471c8/download
https://repositorio.uniandes.edu.co/bitstreams/f3abbfb5-8c86-4eda-b1db-e057820500ae/download
https://repositorio.uniandes.edu.co/bitstreams/f51eb4d9-ad67-46e3-b811-5a91299b5350/download
https://repositorio.uniandes.edu.co/bitstreams/b0edfccf-3e81-430e-b755-805244119be3/download
https://repositorio.uniandes.edu.co/bitstreams/11129034-9ff8-474c-8ef0-03b9a7939c71/download
https://repositorio.uniandes.edu.co/bitstreams/6f833994-2d0e-4d91-b87f-75c41d528721/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
84a900c9dd4b2a10095a94649e1ce116
f6665dfc28e9b22d7c3dfdfd040d3f47
5741c85d5fb860b3e1b2f767dcc847ff
689ca5be04db7039f6084b95bb95e60d
ab30b5e4ad422ba6f535e34d86c73d02
c0a7e271b9e4137d861b2a535a01c394
a2d93919e3f00acfe165778c364332b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818112028771876864
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Hanke, Anamaría Irmgard8b69098e-58c5-4e7b-a9a8-f133293320ac600Linares Vásquez, Mariovirtual::15892-1Cabra Acela, Laura Helenaa3c26bde-c709-498e-b599-0c4fd4b73d4e6002023-01-31T19:12:34Z2023-01-31T19:12:34Z2022-12-15http://hdl.handle.net/1992/64399instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this project, we propose a tool for the developers to search for good machine learning (ML) practices appropriate for the software engineering (SE) assignments they are working on. We expect this tool makes ML good practices easily accessible and promotes their use. For this, we defined a structure that described the relationships between stages of the ML pipeline, tasks, and good practices. Moreover, we implemented and validated an information retrieval (IR) model for the good practices gathered. Furthermore, we developed and validated a platform that allows users to search for good practices in ML for SE. This platform includes three main features: (i) a search bar that uses the implemented IR model. (ii) a tool to filter the practices by tasks. (iii) an interactive tool that classifies the information by the relationship between stages, tasks, and practices.Ingeniero de Sistemas y ComputaciónPregrado40 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónSpärck: Information retrieval system of machine learning good practices for software engineeringTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMachine learningInformation retrievalGood practicesSoftware engineeringIngenieríaM. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu. ¿Why is Developing Machine Learning Applications Challenging? A Study on Stack Overflow Posts?. In: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 2019, pp. 1-11 (cit. on p. 3)Saleema Amershi, Andrew Begel, Christian Bird, et al. "Software engineering for machine learning: A case study". In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE- SEIP). IEEE. 2019, pp. 291-300 (cit. on pp. 3, 9, 23)AWS. Monitor, detect, and handle model performance degradation (cit. on pp. 26, 27)Stella Biderman and Walter J Scheirer. "Pitfalls in machine learning research: Reexamining the development cycle". In: (2020) (cit. on p. 3)Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. " O'Reilly Media, Inc.", 2009 (cit. on p. 9)David M Blei, Andrew Y Ng, and Michael I Jordan. "Latent dirichlet allocation". In: Journal of machine Learning research 3.Jan (2003), pp. 993-1022 (cit. on p. 9)Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. "Probabilistic information retrieval approach for ranking of database query results". In: ACM Transactions on Database Systems (TODS) 31.3 (2006), pp. 1134-1168 (cit. on p. 4)Jai Raj Choudhary. What is model validation. 2020 (cit. on pp. 26, 27)CloudFactory. The Ultimate Guide to data labeling for machine learning (cit. on pp. 26, 27)European Commission. HIGH-LEVEL EXPERT GROUP ON ARTIFICIAL INTELLI- GENCE. 2019 (cit. on p. 3)Datagen. Model training. 2022 (cit. on pp. 26, 27)dewangNautiyal. ML: Underfitting and overfitting. 2022 (cit. on pp. 26, 27)Universidad Duke. Model maintenance (cit. on pp. 26, 27)Davide Falessi, Natalia Juristo, Claes Wohlin, et al. "Empirical software engineering experts on the use of students and professionals in experiments". In: Empirical Software Engineering 23.1 (2018), pp. 452-489 (cit. on p. 17)Robert Feldt, Thomas Zimmermann, Gunnar R Bergersen, et al. "Four commentaries on the use of students and professionals in empirical software engineering experiments". In: Empirical Software Engineering 23.6 (2018), pp. 3801-3820 (cit. on p. 17)Google. Creating instructions for human labelers (cit. on pp. 26, 27)Google. Introduction to transforming data (cit. on pp. 26, 27)Bingbing Jiang, Zhengyu Li, Huanhuan Chen, and Anthony G Cohn. "Latent topic text representation learning on statistical manifold". In: IEEE transac- tions on neural networks and learning systems 29.11 (2018), pp. 5643-5654 (cit. on p. 8)Markku Lahtela and Philip (Provenance) Kaplan. What is data labeling. 1966 (cit. on pp. 26, 27)Seok Won Lee and David C Rine. "Missing requirements and relationship discovery through proxy viewpoints model. In: Proceedings of the 2004 ACM symposium on Applied Computing. 2004, pp. 1513-1518 (cit. on pp. 4, 5)Michael A. Lones. ¿How to avoid machine learning pitfalls: a guide for academic researchers?. In: CoRR abs/2108.02497 (2021). arXiv: 2108.02497 (cit. on pp. 3, 23)Lotame. What are the methods of data collection?: How to collect data. 2022 (cit. on pp. 26, 27)Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. "Recovering traceability links in software artifact management systems using information retrieval methods". In: ACM Transactions on Software Engineering and Methodology (TOSEM) 16.4 (2007), 13 es (cit. on pp. 4, 5)Anamaria Mojica-Hanke, Andrea Bayona, Mario Linares-Vásquez, Steffen Herbold, and Fabio A. González. What are the Machine Learning best practices reported by practitioners on Stack Exchange? (Cit. on pp. 4, 9)Nicolás Munar González and Nicolás Tobo Urrutia. "Software best practices for machine learning." In: 2022 (cit. on p. 4)Google PAIR. People + AI Guidebook. 2021 (cit. on pp. 3, 4, 9)Harshil Patel. What is feature engineering-importance, tools and techniques for machine learning. 2021 (cit. on pp. 26, 27)Martin F Porter. "An algorithm for suffix stripping". In: Program (1980) (cit. on p. 9)Stephen Robertson, Hugo Zaragoza, et al. "The probabilistic relevance framework: BM25 and beyond". In: Foundations and Trends® in Information Retrieval 3.4 (2009), pp. 333-389 (cit. on p. 9)Gerard Salton, Anita Wong, and Chung-Shu Yang. "A vector space model for automatic indexing". In: Communications of the ACM 18.11 (1975), pp. 613- 620 (cit. on pp. 8, 9)Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. "Adoption and effects of software engineering best practices in machine learning". In: Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 2020, pp. 1-12 (cit. on pp. 3, 23)Deval Shah. The Essential Guide to data augmentation in Deep Learning (cit. on pp. 26, 27)Eric J Stierna and Neil C Rowe. "Applying information-retrieval methods to software reuse: a case study". In: Information processing & management 39.1 (2003), pp. 67-74 (cit. on pp. 4, 5)SuperAnnotate. The Ultimate Guide to Data Labeling: How to label data for ML (cit. on pp. 26, 27)Tableau. Guide to data cleaning: Definition, benefits, components, and how to clean your data (cit. on pp. 26, 27)Talend. What is data profiling? data profiling tools and examples (cit. on pp. 26, 27)CFI Team. Data Anonymization. 2022 (cit. on pp. 26, 27)Michail Vlachos. "Dimensionality Reduction". In: Encyclopedia of Machine Learning. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 274-279 (cit. on pp. 26, 27)Kathleen Walch. How to build a machine learning model in 7 steps: TechTarget. 2021 (cit. on pp. 26, 27)David Weedmark. A 4-step guide to machine learning model deployment. 2022 (cit. on pp. 26, 27)Brett Wujek, Patrick Hall, and Funda Gunes. "Best practices for machine learning applications". In: SAS Institute Inc (2016) (cit. on p. 3)Haining Yao, Letha H Etzkorn, and Shamsnaz Virani. "Automated classification and retrieval of reusable software components". In: Journal of the American society for information science and technology 59.4 (2008), pp. 613-627 (cit. on pp. 4, 5)Martin Zinkevich. Rules of machine learning: Best Practices for ML Engineering. 2021 (cit. on p. 3)201820775Publicationhttps://scholar.google.es/citations?user=55fmMcoAAAAJvirtual::15892-10000-0003-0161-2888virtual::15892-10cbe51ff-e35a-4c3a-ad77-609b3cdfc9b2virtual::15892-10cbe51ff-e35a-4c3a-ad77-609b3cdfc9b2virtual::15892-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/97e1ca84-cde1-4d34-be74-53111d9af975/download5aa5c691a1ffe97abd12c2966efcb8d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/d49cb342-d93a-4e46-9454-802f64d8dbc6/download84a900c9dd4b2a10095a94649e1ce116MD52THUMBNAILThesis-LHCA-201820775.pdf.jpgThesis-LHCA-201820775.pdf.jpgIM Thumbnailimage/jpeg3481https://repositorio.uniandes.edu.co/bitstreams/a5eed6c0-5d83-4dd2-b41b-4b55f00471c8/downloadf6665dfc28e9b22d7c3dfdfd040d3f47MD57autorizacio¿n tesis_fA.pdf.jpgautorizacio¿n tesis_fA.pdf.jpgIM Thumbnailimage/jpeg17074https://repositorio.uniandes.edu.co/bitstreams/f3abbfb5-8c86-4eda-b1db-e057820500ae/download5741c85d5fb860b3e1b2f767dcc847ffMD58TEXTThesis-LHCA-201820775.pdf.txtThesis-LHCA-201820775.pdf.txtExtracted texttext/plain165430https://repositorio.uniandes.edu.co/bitstreams/f51eb4d9-ad67-46e3-b811-5a91299b5350/download689ca5be04db7039f6084b95bb95e60dMD56autorizacio¿n tesis_fA.pdf.txtautorizacio¿n tesis_fA.pdf.txtExtracted texttext/plain2140https://repositorio.uniandes.edu.co/bitstreams/b0edfccf-3e81-430e-b755-805244119be3/downloadab30b5e4ad422ba6f535e34d86c73d02MD59ORIGINALThesis-LHCA-201820775.pdfThesis-LHCA-201820775.pdfapplication/pdf4557276https://repositorio.uniandes.edu.co/bitstreams/11129034-9ff8-474c-8ef0-03b9a7939c71/downloadc0a7e271b9e4137d861b2a535a01c394MD55autorizacio¿n tesis_fA.pdfautorizacio¿n tesis_fA.pdfHIDEapplication/pdf199789https://repositorio.uniandes.edu.co/bitstreams/6f833994-2d0e-4d91-b87f-75c41d528721/downloada2d93919e3f00acfe165778c364332b2MD531992/64399oai:repositorio.uniandes.edu.co:1992/643992024-03-13 15:34:50.451http://creativecommons.org/licenses/by-sa/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==