Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance

La revisión de alcance aborda el auge de las vacunas basadas en mRNA tras la pandemia de COVID-19, destacando sus ventajas para estrategias profilácticas y terapéuticas. El objetivo es resumir la evidencia sobre los usos novedosos de estas vacunas en ensayos clínicos con humanos, analizando su inmun...

Full description

Autores:
Rodríguez Sánchez, Daniel Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75935
Acceso en línea:
https://hdl.handle.net/1992/75935
Palabra clave:
mRNA
Vacuna
Profiláctico
Ensayos clínicos
Microbiología
Rights
openAccess
License
Attribution-NonCommercial 4.0 International
id UNIANDES2_10c7acd3f62540617b50d63a41f764b8
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75935
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
title Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
spellingShingle Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
mRNA
Vacuna
Profiláctico
Ensayos clínicos
Microbiología
title_short Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
title_full Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
title_fullStr Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
title_full_unstemmed Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
title_sort Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance
dc.creator.fl_str_mv Rodríguez Sánchez, Daniel Felipe
dc.contributor.advisor.none.fl_str_mv Valderrama Aguirre, Augusto Elias
dc.contributor.author.none.fl_str_mv Rodríguez Sánchez, Daniel Felipe
dc.contributor.researchgroup.none.fl_str_mv Instituto de Investigaciones Biomédicas
dc.subject.keyword.none.fl_str_mv mRNA
topic mRNA
Vacuna
Profiláctico
Ensayos clínicos
Microbiología
dc.subject.keyword.spa.fl_str_mv Vacuna
Profiláctico
Ensayos clínicos
dc.subject.themes.spa.fl_str_mv Microbiología
description La revisión de alcance aborda el auge de las vacunas basadas en mRNA tras la pandemia de COVID-19, destacando sus ventajas para estrategias profilácticas y terapéuticas. El objetivo es resumir la evidencia sobre los usos novedosos de estas vacunas en ensayos clínicos con humanos, analizando su inmunogenicidad y seguridad. La metodología siguió la guía PRISMA-ScR, incluyendo búsquedas en PubMed, Scopus, Web of Science, Science Direct y Google. Los resultados indican que la mayoría de las vacunas están en fase clínica 1, con pocos eventos adversos graves reportados, reforzando su seguridad. Las vacunas mRNA-1345, mRNA-1653 y mRNA-1010 mostraron la mayor capacidad para aumentar los títulos de anticuerpos neutralizantes, sugiriendo su potencial para avanzar a fases clínicas superiores.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-31T19:29:04Z
dc.date.available.none.fl_str_mv 2025-01-31T19:29:04Z
dc.date.issued.none.fl_str_mv 2025-01-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75935
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75935
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduction and Targeted Therapy. 2023 Sep 20;8(1):365.
Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A Comprehensive Review of mRNA Vaccines. International Journal of Molecular Sciences. 2023 Jan 31;24(3):2700.
Singh P, Anand A, Rana S, Kumar A, Goel P, Kumar S, et al. Impact of COVID-19 vaccination: a global perspective. Frontiers in Public Health. 2024 Jan 11;11.
Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines. 2020 Feb 4;5(1):11.
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Frontiers in Immunology. 2019 Mar 27;10.
WHO. WHO’s Science Council issues report on mRNA vaccine technology [Internet]. 2023 [cited 2025 Jan 15]. Available from: https://www.who.int/news/item/13-12-2023-who-s-science-council-issues-report-on-mrna-vaccine-technology?form=MG0AV3
Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, et al. Results of the First Phase I/II Clinical Vaccination Trial With Direct Injection of mRNA. Journal of Immunotherapy. 2008 Feb;31(2):180–8.
Rhodes SJ, Knight GM, Kirschner DE, White RG, Evans TG. Dose finding for new vaccines: The role for immunostimulation/immunodynamic modelling. Journal of Theoretical Biology. 2019 Mar;465:51–5.
Yue J, Liu Y, Zhao M, Bi X, Li G, Liang W. The R&D landscape for infectious disease vaccines. Nature Reviews Drug Discovery. 2023 Nov 20;22(11):867–8.
Douglas RG, Samant VB. The Vaccine Industry. In: Plotkin’s Vaccines. Elsevier; 2018. p. 41-50.e1.
Johns Hopkins University Medicine. How can Covid-19 vaccine development be done quickly and safely? [Internet]. [cited 2025 Jan 22]. Available from: https://coronavirus.jhu.edu/vaccines/timeline
Ghosh S, Banerjee M, Chattopadhyay AK. Effect of vaccine dose intervals: Considering immunity levels, vaccine efficacy, and strain variants for disease control strategy. PLOS ONE. 2024 Sep 19;19(9):e0310152.
James EC, Dunn D, Cook AD, Clamp AR, Sydes MR. Overlap between adverse events (AEs) and serious adverse events (SAEs): a case study of a phase III cancer clinical trial. Trials. 2020 Dec 17;21(1):802.
Patel SS, Winkle P, Faccin A, Nordio F, LeFevre I, Galindo C. An open-label, Phase 3 trial of TAK-003, a live attenuated dengue tetravalent vaccine, in healthy US adults: immunogenicity and safety when administered during the second half of a 24-month shelf-life. Human Vaccines & Immunotherapeutics. 2023 Aug 17;19(2).
Haas JW, Bender FL, Ballou S, Kelley JM, Wilhelm M, Miller FG, et al. Frequency of Adverse Events in the Placebo Arms of COVID-19 Vaccine Trials. JAMA Network Open. 2022 Jan 18;5(1):e2143955.
Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, et al. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022 Sep;40(40):5798–805.
Jackson LA, Yu O, Belongia EA, Hambidge SJ, Nelson J, Baxter R, et al. Frequency of medically attended adverse events following tetanus and diphtheria toxoid vaccine in adolescents and young adults: a Vaccine Safety Datalink study. BMC Infectious Diseases. 2009 Dec 5;9(1):165.
Aziz M, Iheanacho F, Hashmi MF. Physiology, Antibody. 2025.
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines. 2021 Nov 23;9(12):1376.
Liu J, Mao Q, Wu X, He Q, Bian L, Bai Y, et al. Considerations for the Feasibility of Neutralizing Antibodies as a Surrogate Endpoint for COVID-19 Vaccines. Frontiers in Immunology. 2022 Apr 27;13.
Maher S, Assaly NM el, Aly DM, Atta S, Fteah AM, Badawi H, et al. Comparative study of neutralizing antibodies titers in response to different types of COVID-19 vaccines among a group of egyptian healthcare workers. Virology Journal. 2024 Nov 5;21(1):277.
Nauta J. Statistics in Clinical and Observational Vaccine Studies. Cham: Springer International Publishing; 2020. 23–32.
Ananworanich J, Lee IT, Ensz D, Carmona L, Schaefers K, Avanesov A, et al. Safety and Immunogenicity of mRNA-1010, an Investigational Seasonal Influenza Vaccine, in Healthy Adults: Results From a Phase 1/2 Randomized Trial. The Journal of Infectious Diseases. 2024 Jun 27;
Shaw CA, August A, Bart S, Booth PGJ, Knightly C, Brasel T, et al. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults. Vaccine. 2023 Jun;41(26):3898–906.
Essink B, Chu L, Seger W, Barranco E, le Cam N, Bennett H, et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. The Lancet Infectious Diseases. 2023 May;23(5):621–33.
Aldrich C, Leroux–Roels I, Huang KB, Bica MA, Loeliger E, Schoenborn-Kellenberger O, et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine. 2021 Feb;39(8):1310–8.
Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet. 2017 Sep;390(10101):1511–20.
August A, Shaw CA, Lee H, Knightly C, Kalidindia S, Chu L, et al. Safety and Immunogenicity of an mRNA-Based Human Metapneumovirus and Parainfluenza Virus Type 3 Combined Vaccine in Healthy Adults. Open Forum Infectious Diseases. 2022 Jul 4;9(7).
Feldman RA, Fuhr R, Smolenov I, (Mick) Ribeiro A, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019 May;37(25):3326–34.
Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Molecular Therapy. 2017 Jun;25(6):1316–27.
Lee IT, Nachbagauer R, Ensz D, Schwartz H, Carmona L, Schaefers K, et al. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nature Communications. 2023 Jun 19;14(1):3631.
Ananworanich J, Lee IT, Ensz D, Carmona L, Schaefers K, Avanesov A, et al. Safety and Immunogenicity of mRNA-1010, an Investigational Seasonal Influenza Vaccine, in Healthy Adults: Results From a Phase 1/2 Randomized Trial. The Journal of Infectious Diseases. 2024 Jun 27;
Hsu D, Jayaraman A, Pucci A, Joshi R, Mancini K, Chen HL, et al. Safety and immunogenicity of mRNA-based seasonal influenza vaccines formulated to include multiple A/H3N2 strains with or without the B/Yamagata strain in US adults aged 50–75 years: a phase 1/2, open-label, randomised trial. The Lancet Infectious Diseases. 2024 Sep;
Wu K, Hou YJ, Makrinos D, Liu R, Zhu A, Koch M, et al. Characterization of humoral and cellular immunologic responses to an mRNA-based human cytomegalovirus vaccine from a phase 1 trial of healthy adults. Journal of Virology. 2024 Apr 16;98(4).
Hu X, Karthigeyan KP, Herbek S, Valencia SM, Jenks JA, Webster H, et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. The Journal of Infectious Diseases. 2024 Aug 16;230(2):455–66.
Fierro C, Brune D, Shaw M, Schwartz H, Knightly C, Lin J, et al. Safety and Immunogenicity of a Messenger RNA–Based Cytomegalovirus Vaccine in Healthy Adults: Results From a Phase 1 Randomized Clinical Trial. The Journal of Infectious Diseases. 2024 Sep 23;230(3):e668–78.
Aliprantis AO, Shaw CA, Griffin P, Farinola N, Railkar RA, Cao X, et al. A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adults. Human Vaccines & Immunotherapeutics. 2021 May 4;17(5):1248–61.
Nussbaum J, Cao X, Railkar RA, Sachs JR, Spellman DS, Luk J, et al. Evaluation of a stabilized RSV pre-fusion F mRNA vaccine: Preclinical studies and Phase 1 clinical testing in healthy adults. Vaccine. 2023 Oct;41(44):6488–501.
Shaw CA, Mithani R, Kapoor A, Dhar R, Wilson L, el Asmar L, et al. Safety, Tolerability, and Immunogenicity of an mRNA-Based Respiratory Syncytial Virus Vaccine in Healthy Young Adults in a Phase 1 Clinical Trial. The Journal of Infectious Diseases. 2024 Sep 23;230(3):e637–46.
Goswami J, Baqui AH, Doreski PA, Perez Marc G, Jimenez G, Ahmed S, et al. Humoral Immunogenicity of mRNA-1345 RSV Vaccine in Older Adults. The Journal of Infectious Diseases. 2024 Nov 15;230(5):e996–1006.
Shaw CA, Essink B, Harper C, Mithani R, Kapoor A, Dhar R, et al. Safety and Immunogenicity of an mRNA-Based RSV Vaccine Including a 12-Month Booster in a Phase 1 Clinical Trial in Healthy Older Adults. The Journal of Infectious Diseases. 2024 Sep 23;230(3):e647–56.
dc.rights.en.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 31 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Microbiología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/070ae545-3565-4d8a-9fe7-1d3e1c217f7b/download
https://repositorio.uniandes.edu.co/bitstreams/a06ada8f-cdbd-4681-8b74-8dcbbc7a2321/download
https://repositorio.uniandes.edu.co/bitstreams/210fcc5f-8cc0-4d94-8bed-338276ff2fc9/download
https://repositorio.uniandes.edu.co/bitstreams/e0bff529-7a60-4ea3-a7a2-7abff39015b7/download
https://repositorio.uniandes.edu.co/bitstreams/1fa9aa93-8f17-4687-92eb-1e1df9ef97af/download
https://repositorio.uniandes.edu.co/bitstreams/85b32947-9152-4d49-aa04-41810bce6d93/download
https://repositorio.uniandes.edu.co/bitstreams/38e660dc-4fdf-4773-81c8-b5379f2a261b/download
https://repositorio.uniandes.edu.co/bitstreams/194f0adf-f2d3-4f10-9c5b-df39107c136d/download
bitstream.checksum.fl_str_mv 24013099e9e6abb1575dc6ce0855efd5
ae9e573a68e7f92501b6913cc846c39f
7ce90208a4fa236c412ef180e258821b
29a23ed070cc765b5d58cd0e7d2a2e21
fb6be1cde330735a5f15c687bf3e11e3
5393e2628f25252b91e4bb81565c553b
014caf6245494574dd9a6485b6c0a6cd
6f205ba33edad54132b84be3dbf27cd3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159140599431168
spelling Valderrama Aguirre, Augusto Eliasvirtual::23014-1Rodríguez Sánchez, Daniel FelipeInstituto de Investigaciones Biomédicas2025-01-31T19:29:04Z2025-01-31T19:29:04Z2025-01-31https://hdl.handle.net/1992/75935instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La revisión de alcance aborda el auge de las vacunas basadas en mRNA tras la pandemia de COVID-19, destacando sus ventajas para estrategias profilácticas y terapéuticas. El objetivo es resumir la evidencia sobre los usos novedosos de estas vacunas en ensayos clínicos con humanos, analizando su inmunogenicidad y seguridad. La metodología siguió la guía PRISMA-ScR, incluyendo búsquedas en PubMed, Scopus, Web of Science, Science Direct y Google. Los resultados indican que la mayoría de las vacunas están en fase clínica 1, con pocos eventos adversos graves reportados, reforzando su seguridad. Las vacunas mRNA-1345, mRNA-1653 y mRNA-1010 mostraron la mayor capacidad para aumentar los títulos de anticuerpos neutralizantes, sugiriendo su potencial para avanzar a fases clínicas superiores.Pregrado31 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Avances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcanceTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPmRNAVacunaProfilácticoEnsayos clínicosMicrobiologíaZhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduction and Targeted Therapy. 2023 Sep 20;8(1):365.Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A Comprehensive Review of mRNA Vaccines. International Journal of Molecular Sciences. 2023 Jan 31;24(3):2700.Singh P, Anand A, Rana S, Kumar A, Goel P, Kumar S, et al. Impact of COVID-19 vaccination: a global perspective. Frontiers in Public Health. 2024 Jan 11;11.Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines. 2020 Feb 4;5(1):11.Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA Vaccines for Infectious Diseases. Frontiers in Immunology. 2019 Mar 27;10.WHO. WHO’s Science Council issues report on mRNA vaccine technology [Internet]. 2023 [cited 2025 Jan 15]. Available from: https://www.who.int/news/item/13-12-2023-who-s-science-council-issues-report-on-mrna-vaccine-technology?form=MG0AV3Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, et al. Results of the First Phase I/II Clinical Vaccination Trial With Direct Injection of mRNA. Journal of Immunotherapy. 2008 Feb;31(2):180–8.Rhodes SJ, Knight GM, Kirschner DE, White RG, Evans TG. Dose finding for new vaccines: The role for immunostimulation/immunodynamic modelling. Journal of Theoretical Biology. 2019 Mar;465:51–5.Yue J, Liu Y, Zhao M, Bi X, Li G, Liang W. The R&D landscape for infectious disease vaccines. Nature Reviews Drug Discovery. 2023 Nov 20;22(11):867–8.Douglas RG, Samant VB. The Vaccine Industry. In: Plotkin’s Vaccines. Elsevier; 2018. p. 41-50.e1.Johns Hopkins University Medicine. How can Covid-19 vaccine development be done quickly and safely? [Internet]. [cited 2025 Jan 22]. Available from: https://coronavirus.jhu.edu/vaccines/timelineGhosh S, Banerjee M, Chattopadhyay AK. Effect of vaccine dose intervals: Considering immunity levels, vaccine efficacy, and strain variants for disease control strategy. PLOS ONE. 2024 Sep 19;19(9):e0310152.James EC, Dunn D, Cook AD, Clamp AR, Sydes MR. Overlap between adverse events (AEs) and serious adverse events (SAEs): a case study of a phase III cancer clinical trial. Trials. 2020 Dec 17;21(1):802.Patel SS, Winkle P, Faccin A, Nordio F, LeFevre I, Galindo C. An open-label, Phase 3 trial of TAK-003, a live attenuated dengue tetravalent vaccine, in healthy US adults: immunogenicity and safety when administered during the second half of a 24-month shelf-life. Human Vaccines & Immunotherapeutics. 2023 Aug 17;19(2).Haas JW, Bender FL, Ballou S, Kelley JM, Wilhelm M, Miller FG, et al. Frequency of Adverse Events in the Placebo Arms of COVID-19 Vaccine Trials. JAMA Network Open. 2022 Jan 18;5(1):e2143955.Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, et al. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022 Sep;40(40):5798–805.Jackson LA, Yu O, Belongia EA, Hambidge SJ, Nelson J, Baxter R, et al. Frequency of medically attended adverse events following tetanus and diphtheria toxoid vaccine in adolescents and young adults: a Vaccine Safety Datalink study. BMC Infectious Diseases. 2009 Dec 5;9(1):165.Aziz M, Iheanacho F, Hashmi MF. Physiology, Antibody. 2025.Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines. 2021 Nov 23;9(12):1376.Liu J, Mao Q, Wu X, He Q, Bian L, Bai Y, et al. Considerations for the Feasibility of Neutralizing Antibodies as a Surrogate Endpoint for COVID-19 Vaccines. Frontiers in Immunology. 2022 Apr 27;13.Maher S, Assaly NM el, Aly DM, Atta S, Fteah AM, Badawi H, et al. Comparative study of neutralizing antibodies titers in response to different types of COVID-19 vaccines among a group of egyptian healthcare workers. Virology Journal. 2024 Nov 5;21(1):277.Nauta J. Statistics in Clinical and Observational Vaccine Studies. Cham: Springer International Publishing; 2020. 23–32.Ananworanich J, Lee IT, Ensz D, Carmona L, Schaefers K, Avanesov A, et al. Safety and Immunogenicity of mRNA-1010, an Investigational Seasonal Influenza Vaccine, in Healthy Adults: Results From a Phase 1/2 Randomized Trial. The Journal of Infectious Diseases. 2024 Jun 27;Shaw CA, August A, Bart S, Booth PGJ, Knightly C, Brasel T, et al. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults. Vaccine. 2023 Jun;41(26):3898–906.Essink B, Chu L, Seger W, Barranco E, le Cam N, Bennett H, et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. The Lancet Infectious Diseases. 2023 May;23(5):621–33.Aldrich C, Leroux–Roels I, Huang KB, Bica MA, Loeliger E, Schoenborn-Kellenberger O, et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine. 2021 Feb;39(8):1310–8.Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet. 2017 Sep;390(10101):1511–20.August A, Shaw CA, Lee H, Knightly C, Kalidindia S, Chu L, et al. Safety and Immunogenicity of an mRNA-Based Human Metapneumovirus and Parainfluenza Virus Type 3 Combined Vaccine in Healthy Adults. Open Forum Infectious Diseases. 2022 Jul 4;9(7).Feldman RA, Fuhr R, Smolenov I, (Mick) Ribeiro A, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019 May;37(25):3326–34.Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Molecular Therapy. 2017 Jun;25(6):1316–27.Lee IT, Nachbagauer R, Ensz D, Schwartz H, Carmona L, Schaefers K, et al. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nature Communications. 2023 Jun 19;14(1):3631.Ananworanich J, Lee IT, Ensz D, Carmona L, Schaefers K, Avanesov A, et al. Safety and Immunogenicity of mRNA-1010, an Investigational Seasonal Influenza Vaccine, in Healthy Adults: Results From a Phase 1/2 Randomized Trial. The Journal of Infectious Diseases. 2024 Jun 27;Hsu D, Jayaraman A, Pucci A, Joshi R, Mancini K, Chen HL, et al. Safety and immunogenicity of mRNA-based seasonal influenza vaccines formulated to include multiple A/H3N2 strains with or without the B/Yamagata strain in US adults aged 50–75 years: a phase 1/2, open-label, randomised trial. The Lancet Infectious Diseases. 2024 Sep;Wu K, Hou YJ, Makrinos D, Liu R, Zhu A, Koch M, et al. Characterization of humoral and cellular immunologic responses to an mRNA-based human cytomegalovirus vaccine from a phase 1 trial of healthy adults. Journal of Virology. 2024 Apr 16;98(4).Hu X, Karthigeyan KP, Herbek S, Valencia SM, Jenks JA, Webster H, et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. The Journal of Infectious Diseases. 2024 Aug 16;230(2):455–66.Fierro C, Brune D, Shaw M, Schwartz H, Knightly C, Lin J, et al. Safety and Immunogenicity of a Messenger RNA–Based Cytomegalovirus Vaccine in Healthy Adults: Results From a Phase 1 Randomized Clinical Trial. The Journal of Infectious Diseases. 2024 Sep 23;230(3):e668–78.Aliprantis AO, Shaw CA, Griffin P, Farinola N, Railkar RA, Cao X, et al. A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adults. Human Vaccines & Immunotherapeutics. 2021 May 4;17(5):1248–61.Nussbaum J, Cao X, Railkar RA, Sachs JR, Spellman DS, Luk J, et al. Evaluation of a stabilized RSV pre-fusion F mRNA vaccine: Preclinical studies and Phase 1 clinical testing in healthy adults. Vaccine. 2023 Oct;41(44):6488–501.Shaw CA, Mithani R, Kapoor A, Dhar R, Wilson L, el Asmar L, et al. Safety, Tolerability, and Immunogenicity of an mRNA-Based Respiratory Syncytial Virus Vaccine in Healthy Young Adults in a Phase 1 Clinical Trial. The Journal of Infectious Diseases. 2024 Sep 23;230(3):e637–46.Goswami J, Baqui AH, Doreski PA, Perez Marc G, Jimenez G, Ahmed S, et al. Humoral Immunogenicity of mRNA-1345 RSV Vaccine in Older Adults. The Journal of Infectious Diseases. 2024 Nov 15;230(5):e996–1006.Shaw CA, Essink B, Harper C, Mithani R, Kapoor A, Dhar R, et al. Safety and Immunogenicity of an mRNA-Based RSV Vaccine Including a 12-Month Booster in a Phase 1 Clinical Trial in Healthy Older Adults. The Journal of Infectious Diseases. 2024 Sep 23;230(3):e647–56.202110341Publicationhttps://scholar.google.es/citations?user=sMRDr-wAAAAJvirtual::23014-10000-0002-5255-1440virtual::23014-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253944virtual::23014-1d4e1348f-39c0-4961-8b1c-621c08f4fb2avirtual::23014-1d4e1348f-39c0-4961-8b1c-621c08f4fb2avirtual::23014-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/070ae545-3565-4d8a-9fe7-1d3e1c217f7b/download24013099e9e6abb1575dc6ce0855efd5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/a06ada8f-cdbd-4681-8b74-8dcbbc7a2321/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALAvances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance.pdfAvances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance.pdfapplication/pdf1723577https://repositorio.uniandes.edu.co/bitstreams/210fcc5f-8cc0-4d94-8bed-338276ff2fc9/download7ce90208a4fa236c412ef180e258821bMD53202110341_ForAutEntTesis_TraGraSisBib_202420.pdf202110341_ForAutEntTesis_TraGraSisBib_202420.pdfHIDEapplication/pdf381054https://repositorio.uniandes.edu.co/bitstreams/e0bff529-7a60-4ea3-a7a2-7abff39015b7/download29a23ed070cc765b5d58cd0e7d2a2e21MD54TEXTAvances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance.pdf.txtAvances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance.pdf.txtExtracted texttext/plain67690https://repositorio.uniandes.edu.co/bitstreams/1fa9aa93-8f17-4687-92eb-1e1df9ef97af/downloadfb6be1cde330735a5f15c687bf3e11e3MD55202110341_ForAutEntTesis_TraGraSisBib_202420.pdf.txt202110341_ForAutEntTesis_TraGraSisBib_202420.pdf.txtExtracted texttext/plain2061https://repositorio.uniandes.edu.co/bitstreams/85b32947-9152-4d49-aa04-41810bce6d93/download5393e2628f25252b91e4bb81565c553bMD57THUMBNAILAvances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance.pdf.jpgAvances en estrategias profilácticas basadas en mRNA para enfermedades virales diferentes a COVID-19: Revisión de alcance.pdf.jpgGenerated Thumbnailimage/jpeg6858https://repositorio.uniandes.edu.co/bitstreams/38e660dc-4fdf-4773-81c8-b5379f2a261b/download014caf6245494574dd9a6485b6c0a6cdMD56202110341_ForAutEntTesis_TraGraSisBib_202420.pdf.jpg202110341_ForAutEntTesis_TraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg10936https://repositorio.uniandes.edu.co/bitstreams/194f0adf-f2d3-4f10-9c5b-df39107c136d/download6f205ba33edad54132b84be3dbf27cd3MD581992/75935oai:repositorio.uniandes.edu.co:1992/759352025-03-05 09:39:01.889http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K