Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico
Para un mayor entendimiento, las bacterias usadas en este estudio fueron previamente caracterizadas por Camilo Racedo Pulido por medio de pruebas bioquímicas; como lo fueron la producción de ácido indol-3-ácetico (IAA), producción de sideróforos, solubilización de fosfato, crecimiento en medio libre...
- Autores:
-
Hernández Alcántara, Natalia
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75968
- Acceso en línea:
- https://hdl.handle.net/1992/75968
- Palabra clave:
- Bacterias promotoras de crecimiento vegetal (PGPB)
Cambio climático
Agricultura
Estrés hídrico
Biofertilizantes
Biopelículas
Colonización de raíces
Genes de alivio del estrés
Nitrificación
Microbiología
- Rights
- embargoedAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_1094f30e5f1c0fc20913025714a33ccf |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75968 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
dc.title.alternative.eng.fl_str_mv |
Characterization of rhizosphere bacteria as colonizers of roots and relievers of stress due to water deficit. |
title |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
spellingShingle |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico Bacterias promotoras de crecimiento vegetal (PGPB) Cambio climático Agricultura Estrés hídrico Biofertilizantes Biopelículas Colonización de raíces Genes de alivio del estrés Nitrificación Microbiología |
title_short |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
title_full |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
title_fullStr |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
title_full_unstemmed |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
title_sort |
Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico |
dc.creator.fl_str_mv |
Hernández Alcántara, Natalia |
dc.contributor.advisor.none.fl_str_mv |
Bernal Giraldo, Adriana Jimena Rada Rincón, Fermín José |
dc.contributor.author.none.fl_str_mv |
Hernández Alcántara, Natalia |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Interacciones Moleculares Microbianas |
dc.subject.keyword.spa.fl_str_mv |
Bacterias promotoras de crecimiento vegetal (PGPB) Cambio climático Agricultura Estrés hídrico Biofertilizantes Biopelículas Colonización de raíces Genes de alivio del estrés Nitrificación |
topic |
Bacterias promotoras de crecimiento vegetal (PGPB) Cambio climático Agricultura Estrés hídrico Biofertilizantes Biopelículas Colonización de raíces Genes de alivio del estrés Nitrificación Microbiología |
dc.subject.themes.spa.fl_str_mv |
Microbiología |
description |
Para un mayor entendimiento, las bacterias usadas en este estudio fueron previamente caracterizadas por Camilo Racedo Pulido por medio de pruebas bioquímicas; como lo fueron la producción de ácido indol-3-ácetico (IAA), producción de sideróforos, solubilización de fosfato, crecimiento en medio libre de nitrógeno, producción de ácido 1-aminociclopropano-1-carboxílico desaminasa (ACCD) y producción de exopolisacáridos. Asimismo, se realizó una amplificación para el gen nifH. Estos organismos se encuentran actualmente en la colección de bacterias del Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura (LIMMA). |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-31T23:06:25Z |
dc.date.issued.none.fl_str_mv |
2025-01-31 |
dc.date.accepted.none.fl_str_mv |
2025-01-31 |
dc.date.available.none.fl_str_mv |
2075-02-04 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75968 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75968 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520. Acevedo, J. D., & Dussán, J. (2020). Ammonium Cycling and Nitrification Stimulation during Oil Sludge Remediation by Gram-Positive Bacteria Lysinibacillus sphaericus Using Red Wiggler Earthworm Eisenia fetida. AgriEngineering, 2(4), 544-555. Acosta, A. F. (2024). Bioprospección de bacterias con potencial biofertilizante de rizosfera de yuca. Universidad de los Andes. Ajijah, N., Fiodor, A., Pandey, A. K., Rana, A., & Pranaw, K. (2023). Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity, 15(1), 112. Alhede, M., Qvortrup, K., Liebrechts, R., Høiby, N., Givskov, M., & Bjarnsholt, T. (2012). Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunology & Medical Microbiology, 65(2), 335-342. Ali, S.S., Kornaros,M., Manni,A., Al-Tohamy,R., El-Shanshoury,A.E.-R., Matter,I.M., Elsamahy,T. Sobhy,M., & Sun,J. (2021). Advances in microorganisms-based bio-fertilizers: Major mechanisms and applications. Biofertilizers, 371-385. Amoo, A. E., & Babalola, O. O. (2017). Ammonia-oxidizing microorganisms: key players in the promotion of plant growth. Journal of soil science and plant nutrition, 17(4), 935-947. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032 Aziz, T., Maqsood, M. A., Kanwal, S., Hussain, S., Ahmad, H., and Sabir, M. (2015). Fertilizers and environment: issues and challenges. Crop production and global environmental issues, pages 575–598 Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32 (11), 1559-1570. Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of experimental botany, 67(4), 995-1002. Blake, C., Christensen, M. N., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15-25. Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS one, 8(2), e56329. Boyer, J. S. (1982). Plant productivity and environment. Science, 218(4571), 443-448. Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019). The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability, 11(1), 222. Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1-31. Coffey, B. M., & Anderson, G. G. (2014). Biofilm formation in the 96-well microtiter plate. Pseudomonas methods and protocols, 631-641. Costa, O. Y., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in microbiology, 9, 1636. Di, H. J., Cameron, K. C., Podolyan, A., & Robinson, A. (2014). Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biology and Biochemistry, 73, 59-68. Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M. (2012). Drought Stress in Plants: An Overview. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. Galloway, A. F., Knox, P., & Krause, K. (2020). Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytologist, 225(4), 1461-1469. Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. Glick, B. R., & Gamalero, E. (2021). Recent developments in the study of plant microbiomes. Microorganisms, 9(7), 1533. Glick, B.R. (2020). Issues Regarding the Use of PGPB. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500. Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102. Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International journal of systematic and evolutionary microbiology, 70(11), 5753-5798. Hakeem, K. R., Dar, G. H., Mehmood, M. A., & Bhat, R. A. (Eds.). (2021). Microbiota and Biofertilizers. Springer. Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., ... & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157. Hu, H. W., Macdonald, C. A., Trivedi, P., Holmes, B., Bodrossy, L., He, J. Z., & Singh, B. K. (2015). Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environmental microbiology, 17(2), 444-461. Jefferson, K. K. (2004). What drives bacteria to produce a biofilm?. FEMS microbiology letters, 236(2), 163-173. Johnson, A. D. (2010). An extended IUPAC nomenclature code for polymorphic nucleic acids. Bioinformatics, 26(10), 1386-1389. Kang, S. M., Khan, A. L., Waqas, M., Asaf, S., Lee, K. E., Park, Y. G., ... & Lee, I. J. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 14(1), 416-423. Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217-227. Kenawy, A., Dailin, D. J., Abo-Zaid, G. A., Malek, R. A., Ambehabati, K. K., Zakaria, K. H. N., ... & El Enshasy, H. A. (2019). Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. Plant growth promoting rhizobacteria for sustainable stress management: volume 2: rhizobacteria in biotic stress management, 1-35. Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2018). Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene, 5, 225-240. Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A., & Shahid, M. A. (2020). Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy, 10(11), 1683. Kuo, D. H., Robinson, K. G., Layton, A. C., Meyers, A. J., & Sayler, G. S. (2010). Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. Journal of industrial microbiology and biotechnology, 37(7), 751-757. Ladha, J. K., Peoples, M. B., Reddy, P. M., Biswas, J. C., Bennett, A., Jat, M. L., & Krupnik, T. J. (2022). Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 283, 108541. Luo, L., Zhao, C., Wang, E., Raza, A., & Yin, C. (2022). Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiological research, 259, 127016. Manter, D. K., Hamm, A. K., & Deel, H. L. (2023). Community structure and abundance of ACC deaminase containing bacteria in soils with 16S-PICRUSt2 inference or direct acdS gene sequencing. Journal of Microbiological Methods, 211, 106740. Mao, D.-P., Zhou, Q., Chen, C.-Y., & Quan, Z.-X. (2012).Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiology, 12 (1). Marcos, M. S., Bertiller, M. B., Cisneros, H. S., & Olivera, N. L. (2016). Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte. Pedobiologia, 59(1-2), 1-10. Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., ... & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in microbiology, 11, 928. Naing, A. H., Jeong, H. Y., Jung, S. K., & Kim, C. K. (2021). Overexpression of 1-Aminocyclopropane-1-carboxylic acid Deaminase (acdS) gene in Petunia hybrida improves tolerance to abiotic stresses. Frontiers in Plant Science, 12, 737490. Nanda, A., Mohapatra, B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59-65. Nandhini, S. U., & Selvam, M. M. (2013). Bioactive compounds produced by Streptomyces strain. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 176-178. Nascimento, F. X., Brígido, C., Glick, B. R., & Oliveira, S. (2012). ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS microbiology letters, 336(1), 26-37. Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of basic microbiology, 58(12), 1009-1022. Nicholson, W. L. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences CMLS, 59, 410-416. Nordgaard, M., Blake, C., Maróti, G., Hu, G., Wang, Y., Strube, M. L., & Kovács, Á. T. (2022). Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. Iscience, 25(6). Norton, J. M., & Stark, J. M. (2011). Regulation and measurement of nitrification in terrestrial systems. Methods in enzymology, 486, 343-368. Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological research, 209, 21-32. Osborne, B. B., Baron, J. S., & Wallenstein, M. D. (2016). Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats. Frontiers of Earth Science, 10, 1-12. Pandit, A., Adholeya, A., Cahill, D., Brau, L., & Kochar, M. (2020). Microbial biofilms in nature: unlocking their potential for agricultural applications. Journal of applied microbiology, 129(2), 199-211. Parke, J. L. (1991). Root colonization by indigenous and introduced microorganisms. In The Rhizosphere and Plant Growth: Papers presented at a Symposium held May 8–11, 1989, at the Beltsville Agricultural Research Center (BARC), Beltsville, Maryland (pp. 33-42). Springer Netherlands. Parween, T., Bhandari, P., Siddiqui, Z. H., Jan, S., Fatma, T., & Patanjali, 4P. K. (2017). Biofilm: a next-generation biofertilizer. Mycoremediation and Environmental Sustainability: Volume 1, 39-51. Percival Scientific, Inc. (2023). AR-66L3 - Percival Scientific, Inc. https://www.percival-scientific.com/product/ar-66l3/ Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR amelioration in sustainable agriculture, 129-157. Racedo Pulido, C. (2023). Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico. Universidad de los Andes. Ramakrishna, W., Yadav, R. & Li, K. (2019). Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 138, 10-18. Ramesh, C., Nuthan, B.R., Mahadevakumar, S., Sridhar, K.R., & Satish, S. (2023). Plant growth-promoting potential of endophytic bacteria for sustainable agriculture. In U.C. Naik & M.S. Jisha (Eds.), Endophytic Association: What, Why and How (pp. 457-486). Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. Relucenti, M., Familiari, G., Donfrancesco, O., Taurino, M., Li, X., Chen, R., ... & Selan, L. (2021). Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons. Biology, 10(1), 51. Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E., & Brkljacic, J. (2014). Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. Arabidopsis protocols, 3-25. Salomon, M. V., Funes Pinter, I., Piccoli, P., & Bottini, R. (2017). Use of plant growth-promoting rhizobacteria as biocontrol agents: induced systemic resistance against biotic stress in plants. Microbial applications vol. 2: Biomedicine, agriculture and industry, 133-152. Sasse, J., Martinoia, E., & Northen, T. (2018). Feed your friends: do plant exudates shape the root microbiome?. Trends in plant science, 23(1), 25-41. Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1:287–292. Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675 (2012). Sharma, K., Sharma, S., Vaishnav, A., Jain, R., Singh, D., Singh, H. B., ... & Singh, S. (2022). Salt‐tolerant PGPR strain Priestia endophytica SK1 promotes fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. Journal of Applied Microbiology, 133(5), 2802-2813. Shekhawat, K., Fröhlich, K., García-Ramírez, G. X., Trapp, M. A., & Hirt, H. (2022). Ethylene: A Master Regulator of Plant–Microbe Interactions under Abiotic Stresses. Cells, 12(1), 31. Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Frontiers in microbiology, 6, 937. Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology, 38, 401-419. Stark, J.M., Firestone, M.K. 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and environmental microbiology. 61, 218-221. Thakur, R., Dhar, H., Swarnkar, M. K., Soni, R., Sharma, K. C., Singh, A. K., ... & Gulati, A. (2024). Understanding the Molecular Mechanism of PGPR Strain Priestia megaterium from Tea Rhizosphere for Stress Alleviation and Crop Growth Enhancement. Plant Stress, 12, 100494. Thibeaux, R., Kainiu, M., & Goarant, C. (2020). Biofilm formation and quantification using the 96-microtiter plate. In Leptospira spp. Methods and Protocols (pp. 207-214). New York, NY: Springer US. Trivedi,P., Leach,J.E., Tringe,S.G., Sa,T., & Singh,B.K.(2020). Plant–Microbiome Ineractions: From Community Assembly to Plant Health. Nature Reviews Microbiology, 18 (11), 607-621. Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability, 7(6), 7833-7865. Wang, D. C., Jiang, C. H., Zhang, L. N., Chen, L., Zhang, X. Y., & Guo, J. H. (2019). Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. International journal of molecular sciences, 20(24), 6271. Xin, X. F., Kvitko, B., & He, S. Y. (2018). Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 16(5), 316-328. Yamamoto, S., & Harayama, S. (1996). Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. International Journal of Systematic and Evolutionary Microbiology, 46(2), 506-511. Zymo Research. (2024). Quick-DNA Miniprep Plus Kit. Zymo Research International https://zymoresearch.eu/products/quick-dna-miniprep-plus-kit |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
33 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Microbiología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/a034dd00-8762-4316-ac79-41d388dfc991/download https://repositorio.uniandes.edu.co/bitstreams/a7ed2e53-6edd-4723-aaae-11649dd23503/download https://repositorio.uniandes.edu.co/bitstreams/5c9d6ada-c330-48a2-ab73-bc85cdd76769/download https://repositorio.uniandes.edu.co/bitstreams/72a29a3a-dcd7-4c13-8e3f-06d72d5a597a/download https://repositorio.uniandes.edu.co/bitstreams/a242dfa1-3e19-48de-b5e2-7bdf9aabc388/download https://repositorio.uniandes.edu.co/bitstreams/66048bc9-6ce3-43dc-90fc-37bba719efac/download https://repositorio.uniandes.edu.co/bitstreams/a6b09df6-1d5b-487f-bae3-dacb353f52ec/download |
bitstream.checksum.fl_str_mv |
c7a733f7fb0481b241c13a3a1c443cc0 147360015115675bd71bb606b3a081db ae9e573a68e7f92501b6913cc846c39f 27a0e7fa96d9ea1ea500e3bbab889178 459b49a1b69d8d842ba5977ec86aa9b1 cfd4ba43f26209a76d9c24851af60c12 beaad94ed0dcdbf6dd694137c9117810 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159111891517440 |
spelling |
Bernal Giraldo, Adriana Jimenavirtual::22965-1Rada Rincón, Fermín JoséHernández Alcántara, NataliaFacultad de Ciencias::Interacciones Moleculares Microbianas2025-01-31T23:06:25Z2075-02-042025-01-312025-01-31https://hdl.handle.net/1992/75968instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Para un mayor entendimiento, las bacterias usadas en este estudio fueron previamente caracterizadas por Camilo Racedo Pulido por medio de pruebas bioquímicas; como lo fueron la producción de ácido indol-3-ácetico (IAA), producción de sideróforos, solubilización de fosfato, crecimiento en medio libre de nitrógeno, producción de ácido 1-aminociclopropano-1-carboxílico desaminasa (ACCD) y producción de exopolisacáridos. Asimismo, se realizó una amplificación para el gen nifH. Estos organismos se encuentran actualmente en la colección de bacterias del Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura (LIMMA).El cambio climático ha impactado gravemente la agricultura, alterando los ciclos estacionales y aumentando la incidencia de estreses abióticos en los cultivos. La sequía, representa una amenaza crítica para la productividad agrícola, ya que afecta el desarrollo y la fisiología vegetal. Por lo anterior, se ha recurrido al uso excesivo de agroquímicos para maximizar los rendimientos de los cultivos, lo que ha generado graves consecuencias ambientales. Sin embargo, las bacterias promotoras del crecimiento vegetal (PGPB) han surgido como una alternativa biotecnológica prometedora para mitigar el estrés hídrico, mejorar la productividad agrícola y contribuir a la seguridad alimentaria sin afectar los ecosistemas. Con base en esto, en este estudio se caracterizaron cinco bacterias rizosféricas aisladas de Plukenetia volubilis L. con potencial como PGPB. Para ello, se evaluó su capacidad para formar biopelículas, colonizar raíces y promover el crecimiento vegetal in vitro en Arabidopsis thaliana L. mediante mediciones morfológicas, como área foliar, peso húmedo y longitud de raíz, así como la amplificación de los genes acdS y amoA y la subunidad 16S del RNAr. Los resultados revelaron la presencia de genes relacionados con el alivio de estrés en plantas y la nitrificación en tres de las bacterias analizadas. Asimismo, uno de los morfotipos identificados presento una gran capacidad para formar biopelículas y colonizar raíces; sin embargo, no promovió el crecimiento vegetal. Por otro lado, se halló una bacteria con actividad como PGPB, donde destaco por su habilidad para formar biopelículas, colonizar eficientemente raíces y estimular el crecimiento de A. thaliana en condiciones in vitro. Estos hallazgos sugieren que esta bacteria podría mejorar la tolerancia de las plantas a la sequía; sin embargo, se requieren estudios adicionales en otros modelos vegetales para validar su eficacia y ampliar su aplicabilidad.Climate change has significantly impacted agriculture by altering seasonal cycles and increasing the incidence of abiotic stressors on crops. Drought poses a critical threat to agricultural productivity by affecting plant development and physiology. In response, there has been excessive use of agrochemicals to maximize crop yields, leading to serious environmental consequences. In this context, plant growth-promoting bacteria (PGPB) have emerged as a promising biotechnological alternative to mitigate water stress, enhance agricultural productivity, and contribute to food security, without negatively impacting the ecosystem. In this study, five rhizosphere bacteria isolated from Plukenetia volubilis L. with potential as PGPB were characterized. We evaluated their capacity to form biofilms, colonize roots, and promote plant growth in vitro in Arabidopsis thaliana L. through morphological measurements such as leaf area, wet weight, and root length. Additionally, we assessed the amplification of the acdS and amoA genes along with the 16S RNAr subunit. The results revealed the presence of genes related to stress relief in plants and nitrification in three of the analyzed bacteria. Furthermore, we identified a bacterium with a significant capacity to form biofilms and colonize roots; however, instead of promoting plant growth, it acted as a stress factor under the evaluated conditions. Conversely, other bacteria with PGPB activity demonstrated a strong ability to form biofilms, efficiently colonize roots, and stimulate the growth of A. thaliana under in vitro conditions. These findings suggest that this bacterium could improve plant tolerance to drought. However, additional studies in other plant models are required to validate their efficacy and expand their applicability.Pregrado33 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias Biológicashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCaracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídricoCharacterization of rhizosphere bacteria as colonizers of roots and relievers of stress due to water deficit.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBacterias promotoras de crecimiento vegetal (PGPB)Cambio climáticoAgriculturaEstrés hídricoBiofertilizantesBiopelículasColonización de raícesGenes de alivio del estrésNitrificaciónMicrobiologíaAbdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10(6), 520.Acevedo, J. D., & Dussán, J. (2020). Ammonium Cycling and Nitrification Stimulation during Oil Sludge Remediation by Gram-Positive Bacteria Lysinibacillus sphaericus Using Red Wiggler Earthworm Eisenia fetida. AgriEngineering, 2(4), 544-555.Acosta, A. F. (2024). Bioprospección de bacterias con potencial biofertilizante de rizosfera de yuca. Universidad de los Andes.Ajijah, N., Fiodor, A., Pandey, A. K., Rana, A., & Pranaw, K. (2023). Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity, 15(1), 112.Alhede, M., Qvortrup, K., Liebrechts, R., Høiby, N., Givskov, M., & Bjarnsholt, T. (2012). Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunology & Medical Microbiology, 65(2), 335-342.Ali, S.S., Kornaros,M., Manni,A., Al-Tohamy,R., El-Shanshoury,A.E.-R., Matter,I.M., Elsamahy,T. Sobhy,M., & Sun,J. (2021). Advances in microorganisms-based bio-fertilizers: Major mechanisms and applications. Biofertilizers, 371-385.Amoo, A. E., & Babalola, O. O. (2017). Ammonia-oxidizing microorganisms: key players in the promotion of plant growth. Journal of soil science and plant nutrition, 17(4), 935-947.Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032Aziz, T., Maqsood, M. A., Kanwal, S., Hussain, S., Ahmad, H., and Sabir, M. (2015). Fertilizers and environment: issues and challenges. Crop production and global environmental issues, pages 575–598Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32 (11), 1559-1570.Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140.Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of experimental botany, 67(4), 995-1002.Blake, C., Christensen, M. N., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15-25.Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS one, 8(2), e56329.Boyer, J. S. (1982). Plant productivity and environment. Science, 218(4571), 443-448.Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019). The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability, 11(1), 222.Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1-31.Coffey, B. M., & Anderson, G. G. (2014). Biofilm formation in the 96-well microtiter plate. Pseudomonas methods and protocols, 631-641.Costa, O. Y., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in microbiology, 9, 1636.Di, H. J., Cameron, K. C., Podolyan, A., & Robinson, A. (2014). Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biology and Biochemistry, 73, 59-68.Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M. (2012). Drought Stress in Plants: An Overview. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg.Galloway, A. F., Knox, P., & Krause, K. (2020). Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytologist, 225(4), 1461-1469.Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15.Glick, B. R., & Gamalero, E. (2021). Recent developments in the study of plant microbiomes. Microorganisms, 9(7), 1533.Glick, B.R. (2020). Issues Regarding the Use of PGPB. In: Beneficial Plant-Bacterial Interactions. Springer, Cham.Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500.Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102.Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International journal of systematic and evolutionary microbiology, 70(11), 5753-5798.Hakeem, K. R., Dar, G. H., Mehmood, M. A., & Bhat, R. A. (Eds.). (2021). Microbiota and Biofertilizers. Springer.Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., ... & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers inSustainable Food Systems, 5, 617157.Hu, H. W., Macdonald, C. A., Trivedi, P., Holmes, B., Bodrossy, L., He, J. Z., & Singh, B. K. (2015). Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environmental microbiology, 17(2), 444-461.Jefferson, K. K. (2004). What drives bacteria to produce a biofilm?. FEMS microbiology letters, 236(2), 163-173.Johnson, A. D. (2010). An extended IUPAC nomenclature code for polymorphic nucleic acids. Bioinformatics, 26(10), 1386-1389.Kang, S. M., Khan, A. L., Waqas, M., Asaf, S., Lee, K. E., Park, Y. G., ... & Lee, I. J. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 14(1), 416-423.Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217-227.Kenawy, A., Dailin, D. J., Abo-Zaid, G. A., Malek, R. A., Ambehabati, K. K., Zakaria, K. H. N., ... & El Enshasy, H. A. (2019). Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. Plant growth promoting rhizobacteria for sustainable stress management: volume 2: rhizobacteria in biotic stress management, 1-35.Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2018). Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene, 5, 225-240.Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A., & Shahid, M. A. (2020). Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy, 10(11), 1683.Kuo, D. H., Robinson, K. G., Layton, A. C., Meyers, A. J., & Sayler, G. S. (2010). Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. Journal of industrial microbiology and biotechnology, 37(7), 751-757.Ladha, J. K., Peoples, M. B., Reddy, P. M., Biswas, J. C., Bennett, A., Jat, M. L., & Krupnik, T. J. (2022). Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 283, 108541.Luo, L., Zhao, C., Wang, E., Raza, A., & Yin, C. (2022). Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiological research, 259, 127016.Manter, D. K., Hamm, A. K., & Deel, H. L. (2023). Community structure and abundance of ACC deaminase containing bacteria in soils with 16S-PICRUSt2 inference or direct acdS gene sequencing. Journal of Microbiological Methods, 211, 106740.Mao, D.-P., Zhou, Q., Chen, C.-Y., & Quan, Z.-X. (2012).Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiology, 12 (1).Marcos, M. S., Bertiller, M. B., Cisneros, H. S., & Olivera, N. L. (2016). Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte. Pedobiologia, 59(1-2), 1-10.Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., ... & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in microbiology, 11, 928.Naing, A. H., Jeong, H. Y., Jung, S. K., & Kim, C. K. (2021). Overexpression of 1-Aminocyclopropane-1-carboxylic acid Deaminase (acdS) gene in Petunia hybrida improves tolerance to abiotic stresses. Frontiers in Plant Science, 12, 737490.Nanda, A., Mohapatra, B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59-65.Nandhini, S. U., & Selvam, M. M. (2013). Bioactive compounds produced by Streptomyces strain. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 176-178.Nascimento, F. X., Brígido, C., Glick, B. R., & Oliveira, S. (2012). ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS microbiology letters, 336(1), 26-37.Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of basic microbiology, 58(12), 1009-1022.Nicholson, W. L. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences CMLS, 59, 410-416.Nordgaard, M., Blake, C., Maróti, G., Hu, G., Wang, Y., Strube, M. L., & Kovács, Á. T. (2022). Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. Iscience, 25(6).Norton, J. M., & Stark, J. M. (2011). Regulation and measurement of nitrification in terrestrial systems. Methods in enzymology, 486, 343-368.Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological research, 209, 21-32.Osborne, B. B., Baron, J. S., & Wallenstein, M. D. (2016). Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats. Frontiers of Earth Science, 10, 1-12.Pandit, A., Adholeya, A., Cahill, D., Brau, L., & Kochar, M. (2020). Microbial biofilms in nature: unlocking their potential for agricultural applications. Journal of applied microbiology, 129(2), 199-211.Parke, J. L. (1991). Root colonization by indigenous and introduced microorganisms. In The Rhizosphere and Plant Growth: Papers presented at a Symposium held May 8–11, 1989, at the Beltsville Agricultural Research Center (BARC), Beltsville, Maryland (pp. 33-42). Springer Netherlands.Parween, T., Bhandari, P., Siddiqui, Z. H., Jan, S., Fatma, T., & Patanjali, 4P. K. (2017). Biofilm: a next-generation biofertilizer. Mycoremediation and Environmental Sustainability: Volume 1, 39-51.Percival Scientific, Inc. (2023). AR-66L3 - Percival Scientific, Inc. https://www.percival-scientific.com/product/ar-66l3/Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. PGPR amelioration in sustainable agriculture, 129-157.Racedo Pulido, C. (2023). Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico. Universidad de los Andes.Ramakrishna, W., Yadav, R. & Li, K. (2019). Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 138, 10-18.Ramesh, C., Nuthan, B.R., Mahadevakumar, S., Sridhar, K.R., & Satish, S. (2023). Plant growth-promoting potential of endophytic bacteria for sustainable agriculture. In U.C. Naik & M.S. Jisha (Eds.), Endophytic Association: What, Why and How (pp. 457-486).Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34.Relucenti, M., Familiari, G., Donfrancesco, O., Taurino, M., Li, X., Chen, R., ... & Selan, L. (2021). Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons. Biology, 10(1), 51.Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E., & Brkljacic, J. (2014). Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses. Arabidopsis protocols, 3-25.Salomon, M. V., Funes Pinter, I., Piccoli, P., & Bottini, R. (2017). Use of plant growth-promoting rhizobacteria as biocontrol agents: induced systemic resistance against biotic stress in plants. Microbial applications vol. 2: Biomedicine, agriculture and industry, 133-152.Sasse, J., Martinoia, E., & Northen, T. (2018). Feed your friends: do plant exudates shape the root microbiome?. Trends in plant science, 23(1), 25-41.Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1:287–292.Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675 (2012).Sharma, K., Sharma, S., Vaishnav, A., Jain, R., Singh, D., Singh, H. B., ... & Singh, S. (2022). Salt‐tolerant PGPR strain Priestia endophytica SK1 promotes fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. Journal of Applied Microbiology, 133(5), 2802-2813.Shekhawat, K., Fröhlich, K., García-Ramírez, G. X., Trapp, M. A., & Hirt, H. (2022). Ethylene: A Master Regulator of Plant–Microbe Interactions under Abiotic Stresses. Cells, 12(1), 31.Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Frontiers in microbiology, 6, 937.Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology, 38, 401-419.Stark, J.M., Firestone, M.K. 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and environmental microbiology. 61, 218-221.Thakur, R., Dhar, H., Swarnkar, M. K., Soni, R., Sharma, K. C., Singh, A. K., ... & Gulati, A. (2024). Understanding the Molecular Mechanism of PGPR Strain Priestia megaterium from Tea Rhizosphere for Stress Alleviation and Crop Growth Enhancement. Plant Stress, 12, 100494.Thibeaux, R., Kainiu, M., & Goarant, C. (2020). Biofilm formation and quantification using the 96-microtiter plate. In Leptospira spp. Methods and Protocols (pp. 207-214). New York, NY: Springer US.Trivedi,P., Leach,J.E., Tringe,S.G., Sa,T., & Singh,B.K.(2020). Plant–Microbiome Ineractions: From Community Assembly to Plant Health. Nature Reviews Microbiology, 18 (11), 607-621.Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability, 7(6), 7833-7865.Wang, D. C., Jiang, C. H., Zhang, L. N., Chen, L., Zhang, X. Y., & Guo, J. H. (2019). Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. International journal of molecular sciences, 20(24), 6271.Xin, X. F., Kvitko, B., & He, S. Y. (2018). Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 16(5), 316-328.Yamamoto, S., & Harayama, S. (1996). Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. International Journal of Systematic and Evolutionary Microbiology, 46(2), 506-511.Zymo Research. (2024). Quick-DNA Miniprep Plus Kit. Zymo Research International https://zymoresearch.eu/products/quick-dna-miniprep-plus-kit202014417Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::22965-10000-0002-3557-697Xvirtual::22965-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::22965-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22965-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22965-1ORIGINAL202014417_ForAutEntTesisTraGraSisBib_202420.pdf202014417_ForAutEntTesisTraGraSisBib_202420.pdfHIDEapplication/pdf177831https://repositorio.uniandes.edu.co/bitstreams/a034dd00-8762-4316-ac79-41d388dfc991/downloadc7a733f7fb0481b241c13a3a1c443cc0MD51Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.pdfCaracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.pdfContiene información confidencial vinculada a una patente en proceso.application/pdf942835https://repositorio.uniandes.edu.co/bitstreams/a7ed2e53-6edd-4723-aaae-11649dd23503/download147360015115675bd71bb606b3a081dbMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5c9d6ada-c330-48a2-ab73-bc85cdd76769/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXT202014417_ForAutEntTesisTraGraSisBib_202420.pdf.txt202014417_ForAutEntTesisTraGraSisBib_202420.pdf.txtExtracted texttext/plain1460https://repositorio.uniandes.edu.co/bitstreams/72a29a3a-dcd7-4c13-8e3f-06d72d5a597a/download27a0e7fa96d9ea1ea500e3bbab889178MD55Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.pdf.txtCaracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.pdf.txtExtracted texttext/plain80272https://repositorio.uniandes.edu.co/bitstreams/a242dfa1-3e19-48de-b5e2-7bdf9aabc388/download459b49a1b69d8d842ba5977ec86aa9b1MD57THUMBNAIL202014417_ForAutEntTesisTraGraSisBib_202420.pdf.jpg202014417_ForAutEntTesisTraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg10329https://repositorio.uniandes.edu.co/bitstreams/66048bc9-6ce3-43dc-90fc-37bba719efac/downloadcfd4ba43f26209a76d9c24851af60c12MD56Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.pdf.jpgCaracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.pdf.jpgGenerated Thumbnailimage/jpeg6442https://repositorio.uniandes.edu.co/bitstreams/a6b09df6-1d5b-487f-bae3-dacb353f52ec/downloadbeaad94ed0dcdbf6dd694137c9117810MD581992/75968oai:repositorio.uniandes.edu.co:1992/759682025-03-05 09:39:00.205https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |