Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis

In recent years, online education has seen remarkable growth, particularly through Massive Open Online Course (MOOC) platforms. These platforms offer a wide range of open courses, making it a problem for users to select one from thousands of courses. Navigating this vast selection led to recommendat...

Full description

Autores:
Pardo Bravo, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73627
Acceso en línea:
https://hdl.handle.net/1992/73627
Palabra clave:
Course recommender systems
Graph neuronal networks
Massive Open Online Course
Ingeniería
Rights
embargoedAccess
License
Attribution 4.0 International
id UNIANDES2_102926450a8e9cf508f398c2bf344ab4
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73627
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
title Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
spellingShingle Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
Course recommender systems
Graph neuronal networks
Massive Open Online Course
Ingeniería
title_short Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
title_full Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
title_fullStr Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
title_full_unstemmed Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
title_sort Graph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysis
dc.creator.fl_str_mv Pardo Bravo, Santiago
dc.contributor.advisor.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.contributor.author.none.fl_str_mv Pardo Bravo, Santiago
dc.contributor.jury.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.subject.keyword.eng.fl_str_mv Course recommender systems
Graph neuronal networks
Massive Open Online Course
topic Course recommender systems
Graph neuronal networks
Massive Open Online Course
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description In recent years, online education has seen remarkable growth, particularly through Massive Open Online Course (MOOC) platforms. These platforms offer a wide range of open courses, making it a problem for users to select one from thousands of courses. Navigating this vast selection led to recommendation systems emerging, enhancing the learning experience by guiding students toward courses aligned with their interests. Addressing this challenge involves three primary approaches. The content-based approach uses the characteristics content of the seen courses to suggest new ones. Collaborative filtering taps into interactions among users with similar preferences, proposing relevant courses. The hybrid approach combines both methods for a comprehensive recommendation system. In a context marked by the rapid expansion of Massive Open Online Courses (MOOCs), there has been a parallel surge in the field of deep learning along with its diverse architectures. Against this backdrop, the focus of this investigation centers on Graph Neural Networks (GNNs), a deep learning architecture explicitly tailored to tackle structured data. In this study, we propose and validate a novel course recommendation model utilizing GNNs on the Xuetang MOOC platform. This research's significance lies in enhancing online course recommendations using GNNs, aiming to elevate user satisfaction and learning effectiveness. Finally, for a comprehensive analysis, we'll compare our model against traditional approaches using the same dataset. This determines GNN's convenience in recommendation precision and relevance against the traditional methods.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-04
dc.date.accessioned.none.fl_str_mv 2024-01-30T19:30:15Z
dc.date.accepted.none.fl_str_mv 2024-01-27
dc.date.available.none.fl_str_mv 2025-01-24
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73627
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73627
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Class Central. A Decade of MOOCs: A Review of MOOC Stats and Trendsin 2021. 2021. url:https://www.classcentral.com/report/moocstats-2021/.
Shrooq Algarni and Frederick Sheldon. “Systematic Review of Recommendation Systems for Course Selection”. In: Machine Learning and Knowledge Extraction 5.2 (2023), pp. 560–596. issn: 2504-4990. doi: 10.3390/make5020033. url: https://www.mdpi.com/2504-4990/5/2/33.
Mayur Badole. A comprehensive guide on recommendation engines and Implementation. Apr. 2022. url: https://www.analyticsvidhya.com/blog/2022/03/a-comprehensive-guide-on-recommendation-enginesand-implementation/.
Tieyuan Liu et al. “A Review of Deep Learning-Based Recommender System in e-Learning Environments”. In: Artif. Intell. Rev. 55.8 (Dec. 2022),pp. 5953–5980. issn: 0269-2821. doi: 10 . 1007 / s10462 - 022 - 10135 - 2.url: https://doi.org/10.1007/s10462-022-10135-2.
Xiang Wang et al. “Neural Graph Collaborative Filtering”. In: Proceedings of the 42nd International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. ACM, July 2019. doi: 10.1145/3331184 . 3331267. url: https : / / doi . org / 10 . 1145 % 2F3331184 .3331267.
Xiangnan He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. 2020. arXiv: 2002.02126 [cs.IR].
JIANG Huowen WU Jing XIE Hui. “Survey of Graph Neural Network in Recommendation System”. In: Journal of Frontiers of Computer Science Technology 16.10, 2249 (2022), pp. 2249–2263. doi: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2203004.
Jifan Yu et al. “MOOCCube: A Large-scale Data Repository for NLP Applications in MOOCs”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, July 2020, pp. 3135–3142. doi: 10.18653/v1/2020.acl-main.285. url: https://aclanthology.org/2020.acl-main.285.
Huanyu Zhang et al. “KGAN: Knowledge Grouping Aggregation Network for course recommendation in MOOCs”. In: Expert Systems with Applications 211 (2023), p. 118344. issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.118344. url: https://www.sciencedirect.com/science/article/pii/S0957417422014646.
Bifeng Li et al. “A personalized recommendation framework based on MOOC system integrating deep learning and big data”. In: Computers and Electrical Engineering 106 (2023), p. 108571. issn: 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2022.108571. url: https://www.sciencedirect.com/science/article/pii/S0045790622007868.
Shengjun Yin, Kailai Yang, and Hongzhi Wang. “A MOOC Courses Recommendation System Based on Learning Behaviours”. In: Proceedings of the ACM Turing Celebration Conference - China. ACM TURC ’20. Hefei, China: Association for Computing Machinery, 2020, pp. 133–137. isbn:9781450375344. doi: 10.1145/3393527.3393550. url: https://doi.org/10.1145/3393527.3393550.
Yusfi Adilaksa and Aina Musdholifah. “Recommendation System for Elective Courses using Content-based Filtering and Weighted Cosine Similarity”. In: 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). 2021, pp. 51–55. doi: 10.1109/ISRITI54043.2021.9702788.
Shivam Baldha. Introduction to collaborative filtering. Mar. 2022. url:https://www.analyticsvidhya.com/blog/2022/02/introductionto-collaborative-filtering/.
Lili Wu. “Collaborative Filtering Recommendation Algorithm for MOOC Resources Based on Deep Learning”. In: Complexity 2021 (Apr. 2021),pp. 1–11. doi: 10.1155/2021/5555226.
Mehbooba P. Shareef, Linda Rose Jimson, and Babita R. Jose. “Hybrid Explainable Educational Recommender Using Self-attention and KnowledgeBased Systems for E-Learning in MOOC Platforms”. In: Responsible Data Science. Ed. by Jimson Mathew et al. Singapore: Springer Nature Singapore, 2022, pp. 61–74. isbn: 978-981-19-4453-6.
Xin Zhou et al. Layer-refined Graph Convolutional Networks for Recommendation. 2022. arXiv: 2207.11088 [cs.IR].
Xinhua Wang et al. “HGNN: Hyperedge-Based Graph Neural Network for MOOC Course Recommendation”. In: Inf. Process. Manage. 59.3 (May 2022). issn: 0306-4573. doi: 10.1016/j.ipm.2022.102938. url: https://doi.org/10.1016/j.ipm.2022.102938.
Mengyue Hang et al. “Lightweight Compositional Embeddings for Incremental Streaming Recommendation”. In: arXiv e-prints, arXiv:2202.02427(Feb. 2022), arXiv:2202.02427. doi: 10.48550/arXiv.2202.02427. arXiv:2202.02427 [cs.LG].
Jiawei Chen et al. “CoSam: An Efficient Collaborative Adaptive Sampler for Recommendation”. In: arXiv e-prints, arXiv:2011.07739 (Nov. 2020),arXiv:2011.07739. doi: 10.48550/arXiv.2011.07739. arXiv: 2011.07739[cs.IR].
Shuvayan Das. Beginners Guide to content based Recommender Systems.Aug. 2023. url: https://www.analyticsvidhya.com/blog/2015/08/beginners-guide-learn-content-based-recommender-systems/#:~:text=Content%2Dbased%20recommender%20systems%20are, mapping%20it%20to%20users%E2%80%99%20preferences.
Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].
Jie Lu et al. “VMD and self-attention mechanism-based Bi-LSTM model for fault detection of optical fiber composite submarine cables”. In: EURASIP Journal on Applied Signal Processing 2023.1, 29 (Dec. 2023), p. 29. doi: 10.1186/s13634-023-00988-2.
Henry W. Leung and Jo Bovy. “Towards an astronomical foundation model for stars with a transformer-based model”. In: 527.1 (Jan. 2024), pp. 1494–1520. doi:10.1093/mnras/stad3015. arXiv: 2308.10944 [astro-ph.IM].
Jie Zhou et al. Graph Neural Networks: A Review of Methods and Applications. 2021. arXiv: 1812.08434 [cs.LG].
Rick Merritt. ¿Qu´e son las redes neuronales de Gr´aficos?: Blog De Nvidia. Oct. 2022. url: https://la.blogs.nvidia.com/2022/10/31/que-sonlas-graph-neural-networks/.
Eric W Weisstein. Bipartite Graph. url: https://mathworld.wolfram.com/BipartiteGraph.html.
Thomas N. Kipf and Max Welling. Semi-Supervised Classification withGraph Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG].
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 34 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/48f75845-ad08-4cf7-920c-8176019cc199/download
https://repositorio.uniandes.edu.co/bitstreams/600635ce-c493-4e50-b710-8b2bd9bbddbd/download
https://repositorio.uniandes.edu.co/bitstreams/979f46b4-9860-40aa-801a-dace3b70092e/download
https://repositorio.uniandes.edu.co/bitstreams/61701a65-94ff-44d4-8ffa-f07cd6e05cb2/download
https://repositorio.uniandes.edu.co/bitstreams/e0ce7eb1-2a54-4d37-af39-a2d2f306dd5e/download
https://repositorio.uniandes.edu.co/bitstreams/fdf15c68-d6db-48a5-bf09-436f52374498/download
https://repositorio.uniandes.edu.co/bitstreams/c575778b-300e-41bd-93ec-9a15fe838a2c/download
https://repositorio.uniandes.edu.co/bitstreams/4ddade77-171f-4448-900a-7b619ca5ef0a/download
bitstream.checksum.fl_str_mv 8a4c5fc37d974af0081f665e3ae43f50
a280c7af95deaa369999acc0aaecc2b2
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
04d6aa4eb14898f079e0fa609bc0689f
87715a8ae21329cf07492c9e03b022cb
6e46c0cf5d5f15c290ab54803812975b
5a91874d66f5367accc98295c72822b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133944261345280
spelling Manrique Piramanrique, Rubén FranciscoPardo Bravo, SantiagoManrique Piramanrique, Rubén Francisco2024-01-30T19:30:15Z2025-01-242023-12-042024-01-27https://hdl.handle.net/1992/73627instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In recent years, online education has seen remarkable growth, particularly through Massive Open Online Course (MOOC) platforms. These platforms offer a wide range of open courses, making it a problem for users to select one from thousands of courses. Navigating this vast selection led to recommendation systems emerging, enhancing the learning experience by guiding students toward courses aligned with their interests. Addressing this challenge involves three primary approaches. The content-based approach uses the characteristics content of the seen courses to suggest new ones. Collaborative filtering taps into interactions among users with similar preferences, proposing relevant courses. The hybrid approach combines both methods for a comprehensive recommendation system. In a context marked by the rapid expansion of Massive Open Online Courses (MOOCs), there has been a parallel surge in the field of deep learning along with its diverse architectures. Against this backdrop, the focus of this investigation centers on Graph Neural Networks (GNNs), a deep learning architecture explicitly tailored to tackle structured data. In this study, we propose and validate a novel course recommendation model utilizing GNNs on the Xuetang MOOC platform. This research's significance lies in enhancing online course recommendations using GNNs, aiming to elevate user satisfaction and learning effectiveness. Finally, for a comprehensive analysis, we'll compare our model against traditional approaches using the same dataset. This determines GNN's convenience in recommendation precision and relevance against the traditional methods.Ingeniero de Sistemas y ComputaciónPregrado34 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfGraph neural networks vs. Traditional methods for recommending MOOC courses: a comparative analysisTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCourse recommender systemsGraph neuronal networksMassive Open Online CourseIngenieríaClass Central. A Decade of MOOCs: A Review of MOOC Stats and Trendsin 2021. 2021. url:https://www.classcentral.com/report/moocstats-2021/.Shrooq Algarni and Frederick Sheldon. “Systematic Review of Recommendation Systems for Course Selection”. In: Machine Learning and Knowledge Extraction 5.2 (2023), pp. 560–596. issn: 2504-4990. doi: 10.3390/make5020033. url: https://www.mdpi.com/2504-4990/5/2/33.Mayur Badole. A comprehensive guide on recommendation engines and Implementation. Apr. 2022. url: https://www.analyticsvidhya.com/blog/2022/03/a-comprehensive-guide-on-recommendation-enginesand-implementation/.Tieyuan Liu et al. “A Review of Deep Learning-Based Recommender System in e-Learning Environments”. In: Artif. Intell. Rev. 55.8 (Dec. 2022),pp. 5953–5980. issn: 0269-2821. doi: 10 . 1007 / s10462 - 022 - 10135 - 2.url: https://doi.org/10.1007/s10462-022-10135-2.Xiang Wang et al. “Neural Graph Collaborative Filtering”. In: Proceedings of the 42nd International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. ACM, July 2019. doi: 10.1145/3331184 . 3331267. url: https : / / doi . org / 10 . 1145 % 2F3331184 .3331267.Xiangnan He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. 2020. arXiv: 2002.02126 [cs.IR].JIANG Huowen WU Jing XIE Hui. “Survey of Graph Neural Network in Recommendation System”. In: Journal of Frontiers of Computer Science Technology 16.10, 2249 (2022), pp. 2249–2263. doi: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2203004.Jifan Yu et al. “MOOCCube: A Large-scale Data Repository for NLP Applications in MOOCs”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, July 2020, pp. 3135–3142. doi: 10.18653/v1/2020.acl-main.285. url: https://aclanthology.org/2020.acl-main.285.Huanyu Zhang et al. “KGAN: Knowledge Grouping Aggregation Network for course recommendation in MOOCs”. In: Expert Systems with Applications 211 (2023), p. 118344. issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.118344. url: https://www.sciencedirect.com/science/article/pii/S0957417422014646.Bifeng Li et al. “A personalized recommendation framework based on MOOC system integrating deep learning and big data”. In: Computers and Electrical Engineering 106 (2023), p. 108571. issn: 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2022.108571. url: https://www.sciencedirect.com/science/article/pii/S0045790622007868.Shengjun Yin, Kailai Yang, and Hongzhi Wang. “A MOOC Courses Recommendation System Based on Learning Behaviours”. In: Proceedings of the ACM Turing Celebration Conference - China. ACM TURC ’20. Hefei, China: Association for Computing Machinery, 2020, pp. 133–137. isbn:9781450375344. doi: 10.1145/3393527.3393550. url: https://doi.org/10.1145/3393527.3393550.Yusfi Adilaksa and Aina Musdholifah. “Recommendation System for Elective Courses using Content-based Filtering and Weighted Cosine Similarity”. In: 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). 2021, pp. 51–55. doi: 10.1109/ISRITI54043.2021.9702788.Shivam Baldha. Introduction to collaborative filtering. Mar. 2022. url:https://www.analyticsvidhya.com/blog/2022/02/introductionto-collaborative-filtering/.Lili Wu. “Collaborative Filtering Recommendation Algorithm for MOOC Resources Based on Deep Learning”. In: Complexity 2021 (Apr. 2021),pp. 1–11. doi: 10.1155/2021/5555226.Mehbooba P. Shareef, Linda Rose Jimson, and Babita R. Jose. “Hybrid Explainable Educational Recommender Using Self-attention and KnowledgeBased Systems for E-Learning in MOOC Platforms”. In: Responsible Data Science. Ed. by Jimson Mathew et al. Singapore: Springer Nature Singapore, 2022, pp. 61–74. isbn: 978-981-19-4453-6.Xin Zhou et al. Layer-refined Graph Convolutional Networks for Recommendation. 2022. arXiv: 2207.11088 [cs.IR].Xinhua Wang et al. “HGNN: Hyperedge-Based Graph Neural Network for MOOC Course Recommendation”. In: Inf. Process. Manage. 59.3 (May 2022). issn: 0306-4573. doi: 10.1016/j.ipm.2022.102938. url: https://doi.org/10.1016/j.ipm.2022.102938.Mengyue Hang et al. “Lightweight Compositional Embeddings for Incremental Streaming Recommendation”. In: arXiv e-prints, arXiv:2202.02427(Feb. 2022), arXiv:2202.02427. doi: 10.48550/arXiv.2202.02427. arXiv:2202.02427 [cs.LG].Jiawei Chen et al. “CoSam: An Efficient Collaborative Adaptive Sampler for Recommendation”. In: arXiv e-prints, arXiv:2011.07739 (Nov. 2020),arXiv:2011.07739. doi: 10.48550/arXiv.2011.07739. arXiv: 2011.07739[cs.IR].Shuvayan Das. Beginners Guide to content based Recommender Systems.Aug. 2023. url: https://www.analyticsvidhya.com/blog/2015/08/beginners-guide-learn-content-based-recommender-systems/#:~:text=Content%2Dbased%20recommender%20systems%20are, mapping%20it%20to%20users%E2%80%99%20preferences.Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].Jie Lu et al. “VMD and self-attention mechanism-based Bi-LSTM model for fault detection of optical fiber composite submarine cables”. In: EURASIP Journal on Applied Signal Processing 2023.1, 29 (Dec. 2023), p. 29. doi: 10.1186/s13634-023-00988-2.Henry W. Leung and Jo Bovy. “Towards an astronomical foundation model for stars with a transformer-based model”. In: 527.1 (Jan. 2024), pp. 1494–1520. doi:10.1093/mnras/stad3015. arXiv: 2308.10944 [astro-ph.IM].Jie Zhou et al. Graph Neural Networks: A Review of Methods and Applications. 2021. arXiv: 1812.08434 [cs.LG].Rick Merritt. ¿Qu´e son las redes neuronales de Gr´aficos?: Blog De Nvidia. Oct. 2022. url: https://la.blogs.nvidia.com/2022/10/31/que-sonlas-graph-neural-networks/.Eric W Weisstein. Bipartite Graph. url: https://mathworld.wolfram.com/BipartiteGraph.html.Thomas N. Kipf and Max Welling. Semi-Supervised Classification withGraph Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG].202013024PublicationORIGINALGraph Neural Networks.pdfGraph Neural Networks.pdfSe deja privado por un año por una posible publicaciónapplication/pdf1149804https://repositorio.uniandes.edu.co/bitstreams/48f75845-ad08-4cf7-920c-8176019cc199/download8a4c5fc37d974af0081f665e3ae43f50MD51autorizacion tesis Santiago Pardo_signed.pdfautorizacion tesis Santiago Pardo_signed.pdfHIDEapplication/pdf507017https://repositorio.uniandes.edu.co/bitstreams/600635ce-c493-4e50-b710-8b2bd9bbddbd/downloada280c7af95deaa369999acc0aaecc2b2MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/979f46b4-9860-40aa-801a-dace3b70092e/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/61701a65-94ff-44d4-8ffa-f07cd6e05cb2/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTGraph Neural Networks.pdf.txtGraph Neural Networks.pdf.txtExtracted texttext/plain66070https://repositorio.uniandes.edu.co/bitstreams/e0ce7eb1-2a54-4d37-af39-a2d2f306dd5e/download04d6aa4eb14898f079e0fa609bc0689fMD55autorizacion tesis Santiago Pardo_signed.pdf.txtautorizacion tesis Santiago Pardo_signed.pdf.txtExtracted texttext/plain211https://repositorio.uniandes.edu.co/bitstreams/fdf15c68-d6db-48a5-bf09-436f52374498/download87715a8ae21329cf07492c9e03b022cbMD57THUMBNAILGraph Neural Networks.pdf.jpgGraph Neural Networks.pdf.jpgGenerated Thumbnailimage/jpeg9561https://repositorio.uniandes.edu.co/bitstreams/c575778b-300e-41bd-93ec-9a15fe838a2c/download6e46c0cf5d5f15c290ab54803812975bMD56autorizacion tesis Santiago Pardo_signed.pdf.jpgautorizacion tesis Santiago Pardo_signed.pdf.jpgGenerated Thumbnailimage/jpeg11479https://repositorio.uniandes.edu.co/bitstreams/4ddade77-171f-4448-900a-7b619ca5ef0a/download5a91874d66f5367accc98295c72822b6MD581992/73627oai:repositorio.uniandes.edu.co:1992/736272024-02-16 15:06:00.51http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K