Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe

Los contadores de fotones semiconductores pixelados son un tipo de detector de partículas ampliamente usados en campos como la física, la ingeniería y la medicina. En específico, el detector Timepix3 de la familia de detectores MEDIPIX de tercera generación, es un contador de fotones semiconductor p...

Full description

Autores:
Morelli Moreno, Sebastián Mauricio
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/60701
Acceso en línea:
http://hdl.handle.net/1992/60701
Palabra clave:
Charge Sharing
CdTe
Conteo de fotones
Detetores de rediación
CNR
Imágenes de Rayos X
Compartimiento de carga
Física
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_0fda216a2fa4ee837d6c0aa7ee2b954d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/60701
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
title Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
spellingShingle Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
Charge Sharing
CdTe
Conteo de fotones
Detetores de rediación
CNR
Imágenes de Rayos X
Compartimiento de carga
Física
title_short Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
title_full Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
title_fullStr Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
title_full_unstemmed Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
title_sort Estudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTe
dc.creator.fl_str_mv Morelli Moreno, Sebastián Mauricio
dc.contributor.advisor.none.fl_str_mv Avila Bernal, Carlos Arturo
dc.contributor.author.none.fl_str_mv Morelli Moreno, Sebastián Mauricio
dc.contributor.jury.none.fl_str_mv Valencia González, Alejandra Catalina
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de Física de Altas Energías
dc.subject.keyword.none.fl_str_mv Charge Sharing
CdTe
Conteo de fotones
Detetores de rediación
CNR
Imágenes de Rayos X
Compartimiento de carga
topic Charge Sharing
CdTe
Conteo de fotones
Detetores de rediación
CNR
Imágenes de Rayos X
Compartimiento de carga
Física
dc.subject.themes.es_CO.fl_str_mv Física
description Los contadores de fotones semiconductores pixelados son un tipo de detector de partículas ampliamente usados en campos como la física, la ingeniería y la medicina. En específico, el detector Timepix3 de la familia de detectores MEDIPIX de tercera generación, es un contador de fotones semiconductor pixelado que tiene un área sensible de 256 × 256 pixeles con un área de 55 × 55 mu m2 cada uno. En este detector se produce un efecto conocido como compartimiento de carga, el cual genera que un fotón que golpea una zona puntual del detector genere una nube de carga que se propaga siendo percibida en una zona mucho más amplia que la inicial, por lo que termina siendo detectada en más de un pixel al mismo tiempo, generando una pérdida de precisión espacial en el conteo de fotones y en la estimación de su energía. Este efecto en el detector Timepix3 se ve agravado por el pequeño tamaño del pixel, en donde la nube de carga puede abarcar demasiados pixeles y la información de su posición de incidencia se pierde. Adicionalmente, existen otros factores que generan un aumento en dicho efecto, como lo son la diferencia de potencial aplicada en el detector, el grosor y la temperatura del mismo, los cuales también deben ser tenidos en cuenta. Con todo lo anterior en mente, este proyecto tiene como objetivo desarrollar un código computacional de tratamiento de los datos producidos por el detector, que corrija los efectos del compartimiento de carga y permita obtener con precisión los datos espaciales, energéticos y temporales de los fotones incidentes. Para lo anterior, se hizo una simulación computacional que modele correctamente la propagación de la nube de carga, para después plantear distintas correcciones que obtengan la posición real de incidencia y el conteo total de la energía del fotón y finalmente se tomaron datos experimentales en los cuales se probara su funcionalidad. Se utilizaron cuatro tipos de correcciones diferentes de las cuales tres fueron obtenidas de literatura ya existente y otra a partir de la mezcla de dos de las anteriores, en donde a través de las pruebas en los datos experimentales se eligió la más adecuada para realizar correcciones en imágenes de rayos X de una muestra de baja y otra de alta atenuación.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-19T12:51:26Z
dc.date.available.none.fl_str_mv 2022-09-19T12:51:26Z
dc.date.issued.none.fl_str_mv 2022-01-31
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/60701
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/60701
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv [1] Carlos Avila. Impact of photon counting detectors in biomedical imaging, 2021. url: https://documentcloud.adobe.com/link/track?uri=urn:aaid:scds:US:7b03833e-4a33-4116-bf8ca88660cacb47pageNum= 1, Accedido: Jun: 1, 2021.
[2] Jan Jakubek. Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 633:S262{S266, 2011. 11th International Workshop on Radiation Imaging Detectors (IWORID).
[3] ADVACAM. ADVAPIX / MINIPIX TPX3 User manual, 2017. Imaging the Unseen.
[4] CERN. Medipix, 2021. url: https://medipix.web.cern.ch/home, Accedido: May: 21, 2021.
[5] Rafael Ballabriga, Michael Campbell, and Xavier Llopart. Asic developments for radiation imaging applications: The medipix and timepix family. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878:10{23, 2018. Radiation Imaging Techniques and Applications.
[6] T Poikela, J Plosila, T Westerlund, M Campbell, M De Gaspari, X Llopart, V Gromov, R Kluit, M van Beuzekom, F Zappon, V Zivkovic, C Brezina, K Desch, Y Fu, and A Kruth. Timepix3: a 65k channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of Instrumentation, 9(05):C05013{C05013, may 2014.
[7] CERN. Medipix3, 2021. url: https://kt.cern/technologies/medipix3, Accedido: May: 21, 2021.
[8] S.L. Bugby, K.A. Koch-Mehrin, M.C. Veale, M.D. Wilson, and J.E. Lees. Energy-loss correction in charge sharing events for improved performance of pixellated compound semiconductors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940:142{151, 2019.
[9] C. Xu, M. Danielsson, and H. Bornefalk. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Transactions on Nuclear Science, 58(3):614{625, 2011.
[10] Katsuyuki Taguchi. Energy-sensitive photon counting detector-based x-ray computed tomography. Radiological Physics and Technology, 10, 01 2017.
[11] A. Meuris, O. Limousin, and C. Blondel. Charge sharing in cdte pixilated detectors. Nuclear Instruments Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 610:294{297, 2009.
[12] Daniel Turecek, Jan Jakubek, Eliska Trojanova, Ludek Sefc, and V era Milotov a. Application of timepix3 based cdte spectral sensitive photon counting detector for pet imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 895, 04 2018.
[13] G. Kim, K. Park, K. T. Lim, J. Kim, and G. Cho. Improving spatial resolution by predicting the initial position of charge-sharing e ect in photon-counting detectors. Journal of Instrumentation, 15(1):C01034, January 2020.
[14] Mokhtar Chmeissani and Bettina Mikulec. Performance limits of a single photon counting pixel system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 460:81{90, 03 2001.
[15] Gerardo Roque, Carlos Avila, Maria L. P erez-Lara, Luis Mendoza, and Simon Procz. Study of Contrast-to-Noise Ratio performance of a Medipix3RX CdTe detector for low dose mammography imaging. Nuclear Instruments and Methods in Physics Research A, 992:165000, March 2021.
[16] R. Ballabriga, J. Alozy, M. Campbell, E. Frojdh, E.H.M. Heijne, T. Koenig, X. Llopart, J. Marchal, D. Pennicard, T. Poikela, L. Tlustos, P. Valerio, W. Wong, and M. Zuber. Review of hybrid pixel detector readout ASICs for spectroscopic x-ray imaging. Journal of Instrumenta- tion, 11(01):P01007{P01007, jan 2016.
[17] M. L. Lara. An alternative energy calibration method for timepix3. 2019.
[18] D. Turecek, J. Jakubek, M. Kroupa, and P. Soukup. Energy calibration of pixel detector working in time-over-threshold mode using test pulses. In 2011 IEEE Nuclear Science Symposium Conference Record, pages 1722{1725, 2011.
[19] Eliska Trojanova. How to measure the maximum hit rate per second of ADVAPIX Timepix3. ADVACAM, 2019. Imaging the Unseen.
[20] Gabriel Blaj. Dead-time correction for spectroscopic photon-counting pixel detectors. Journal of Synchrotron Radiation, 26(5):1621{1630, Aug 2019.
[21] Daniel Turecek, Jan Jakubek, and P. Soukup. Usb 3.0 readout and time-walk correction method for timepix3 detector. Journal of Instrumentation, 11:C12065{C12065, 12 2016.
[22] E. J. Schioppa, J. Idarraga, M. van Beuzekom, J. Visser, E. Ko eman, E. Heijne, K. J. Engel, and J. Uher. Study of charge di usion in a silicon detector using an energy sensitive pixel readout chip. IEEE Transactions on Nuclear Science, 62(5):2349{2359, 2015.
[23] Diego Laramore, Sanchit Sharma, Kaitlyn C. Smallfoot, Steven L. Bellinger, Luke C. Henson, Taylor R. Ochs, Douglas S. McGregor, Amir A. Bahadori, and Walter J. McNeil. Simulation of charge drift in surface doped, pixelated micro-structured semiconductor neutron detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 978:164351, 2020.
[24] Gerard Ari~no-Estrada, Mokhtar Chmeissani, Gianluca de lorenzo, Machiel Kolstein, Carles Puigdengoles, Jorge Garcia, and Enric Cabruja. Measurement of mobility and lifetime of electrons and holes in a schottky cdte diode. JINST, 9, 12 2014.
[25] Qi Long, Steluta A. Dinca, E. A. Schi , Ming Yu, and Jeremy Theil. Electron and hole drift mobility measurements on thin lm cdte solar cells. Applied Physics Letters, 105(4):042106, 2014.
[26] R Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29(1):255{284, jan 1966.
[27] Md Asaduzzaman, Ali Newaz Bahar, Mohammad Bhuiyan, and Md. Ahsan Habib. Impacts of temperature on the performance of cdte based thin- lm solar cell. IOP Conference Series Materials Science and Engineering, 225, 01 2017.
[28] OpenGate. Gate, getting started. https://opengate.readthedocs.io/en/latest/general.html, Accedido: Jan: 14, 2022.
[29] Natalia Copete David Jurado. Manual GATE para simulaci on de mamograf a. Universidad de Los Andes, 2021.
[30] OpenGate. Gate, setting up the physics. https://opengate.readthedocs.io/en/latest/setting-upthe-physics.html, Accedido: Jan: 14, 2022.
[31] HAMAMATSU. 130 kV MICROFOCUS X-RAY SOURCE L6622-01, 2002.
[32] C. Teyssier, P. Allard Gu erin, G. Bergeron, F. Dallaire, C. Leroy, S. Pospisil, and Y. B. Trudeau. Exploitation of the charge sharing e ect in Timepix device to achieve sub-pixel resolution in imaging applications with alpha particles. In Astroparticle, pages 681{687, August 2012.
[33] A._zanowska@ Krzy_zanowska, A. Niedzielska, and R. l@. Charge sharing simulations for new digital algorithms achieving subpixel resolution in hybrid pixel detectors. Journal of Instrumentation, 15(2):C02047, February 2020.
[34] Mohamad Khalil, Erik Dreier, Jan Kehres, Jan Jakubek, and Ulrik Olsen. Subpixel resolution in cdte timepix3 pixel detectors. Journal of Synchrotron Radiation, 25, 11 2018.
[35] Daniel Prieto, Miguel Chiva, Ana Martínez, Miguel Cámara, Felipe Orozco, Juan Andrés, Maria Bejar, Ana Capuz, Rafa Colmenares, David Sevillano, Rafael Moris, Juan David Fuentes, and Feliciano García. Dosimetric and contrast noise ratio comparison of three different digital imaging technologies in mammography. Journal of Medical Imaging and Radiation Sciences, 51, 01 2020.
[36] Harun Ahmad Zaky, Raizulnasuha Ab Rashid, Ab Razak, Moshi Geso, Wan Nordiana, and Wan Rahman. Evaluation of contrast-noise ratio (cnr) in contrast enhanced ct images using di erent sizes of gold nanoparticles. Materials today: proceedings, 16:1757{1765, 08 2019.
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 57 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/bfcfafee-2fb8-4bac-9015-8d6239551c94/download
https://repositorio.uniandes.edu.co/bitstreams/a7eb2390-b9a5-41c6-9eb0-b3aed9f089cb/download
https://repositorio.uniandes.edu.co/bitstreams/e8df739c-587d-4883-b2aa-d2dd94b451a0/download
https://repositorio.uniandes.edu.co/bitstreams/713302a2-b360-44a1-8bc9-f19ce4bfdff9/download
https://repositorio.uniandes.edu.co/bitstreams/7c13360b-1a4c-4009-a834-34e27a25018f/download
https://repositorio.uniandes.edu.co/bitstreams/403e1ad6-47cd-40a3-bb03-da66e0097fd2/download
https://repositorio.uniandes.edu.co/bitstreams/6aac004e-aee3-4c4e-999f-f79808d848cd/download
https://repositorio.uniandes.edu.co/bitstreams/549ef638-920a-4b05-8de2-c90f79bd16db/download
bitstream.checksum.fl_str_mv 17c54505bb0b6dd0d62a4c661f384ec2
173959c8403f740719ba0d414cc638c0
abf38cdbec4b8894ba4c2622e1a0fb50
e39eb518fdc4074da3dae049b49e48b9
0a6442e31527f21c27d351c394c13910
4491fe1afb58beaaef41a73cf7ff2e27
f7d494f61e544413a13e6ba1da2089cd
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133910306357248
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Avila Bernal, Carlos ArturoMorelli Moreno, Sebastián Mauricio09b78a0f-599b-4dd8-9a63-7f3ec0b151ba600Valencia González, Alejandra CatalinaGrupo de Física de Altas Energías2022-09-19T12:51:26Z2022-09-19T12:51:26Z2022-01-31http://hdl.handle.net/1992/60701instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Los contadores de fotones semiconductores pixelados son un tipo de detector de partículas ampliamente usados en campos como la física, la ingeniería y la medicina. En específico, el detector Timepix3 de la familia de detectores MEDIPIX de tercera generación, es un contador de fotones semiconductor pixelado que tiene un área sensible de 256 × 256 pixeles con un área de 55 × 55 mu m2 cada uno. En este detector se produce un efecto conocido como compartimiento de carga, el cual genera que un fotón que golpea una zona puntual del detector genere una nube de carga que se propaga siendo percibida en una zona mucho más amplia que la inicial, por lo que termina siendo detectada en más de un pixel al mismo tiempo, generando una pérdida de precisión espacial en el conteo de fotones y en la estimación de su energía. Este efecto en el detector Timepix3 se ve agravado por el pequeño tamaño del pixel, en donde la nube de carga puede abarcar demasiados pixeles y la información de su posición de incidencia se pierde. Adicionalmente, existen otros factores que generan un aumento en dicho efecto, como lo son la diferencia de potencial aplicada en el detector, el grosor y la temperatura del mismo, los cuales también deben ser tenidos en cuenta. Con todo lo anterior en mente, este proyecto tiene como objetivo desarrollar un código computacional de tratamiento de los datos producidos por el detector, que corrija los efectos del compartimiento de carga y permita obtener con precisión los datos espaciales, energéticos y temporales de los fotones incidentes. Para lo anterior, se hizo una simulación computacional que modele correctamente la propagación de la nube de carga, para después plantear distintas correcciones que obtengan la posición real de incidencia y el conteo total de la energía del fotón y finalmente se tomaron datos experimentales en los cuales se probara su funcionalidad. Se utilizaron cuatro tipos de correcciones diferentes de las cuales tres fueron obtenidas de literatura ya existente y otra a partir de la mezcla de dos de las anteriores, en donde a través de las pruebas en los datos experimentales se eligió la más adecuada para realizar correcciones en imágenes de rayos X de una muestra de baja y otra de alta atenuación.Pixelated semiconductor photon counters are a type of particle detector widely used in elds such as physics, engineering, and medicine. In speci c, the Timepix3 detector from the MEDIPIX third generation family, is a pixelated semiconductor photon counter that has a sensible area of 256 x 256 pixels with an area of 55 x 55 mu m2 each. An effect known as Charge Sharing is produced in this detector, which causes the photon that hits a punctual region of the detector generates a charge cloud that spreads being perceived in a zone a lot wider than the initial. For this reason, the photon ends up being detected in more than one pixel at the same time, producing a loss in the spatial precision in the photon counting and the estimate of its energy. This effect in the Timepix3 detector is aggravated by the small size of the pixel, in which the charge cloud can comprise too many pixels and the information of its incidence position gets lost. Additionally, other factors generate an increase in said effect, such as the voltage applied to the detector, as well as the thickness and its temperature, which also need to be taken into consideration. With all of this in mind, this project has the objective to develop a computational code of treatment of the data produced by the detector, that xes the Charge Sharing effects and that allows us to accurately obtain the space, energy, and time data of the incident photons. To achieve this, a computational simulation that accurately models the propagation of the charge cloud was made, and then different corrections that can obtain the actual incidence position and the total count of the photon's energy were proposed, and finally, experimental data was taken to test the corrections functionality. Four types of correction methods were tested, where three of them were acquired from the literature and the fourth was a combination of two of the previous, where through the test in the experimental data the most accurate method was chosen to be applied in the correction of x-ray images using low and high attenuation samples.FísicoPregradoDetectores de Radiación57 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaEstudio de compartimiento de carga en detectores pixelados Timepix3 con sensores CdTeTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCharge SharingCdTeConteo de fotonesDetetores de rediaciónCNRImágenes de Rayos XCompartimiento de cargaFísica[1] Carlos Avila. Impact of photon counting detectors in biomedical imaging, 2021. url: https://documentcloud.adobe.com/link/track?uri=urn:aaid:scds:US:7b03833e-4a33-4116-bf8ca88660cacb47pageNum= 1, Accedido: Jun: 1, 2021.[2] Jan Jakubek. Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 633:S262{S266, 2011. 11th International Workshop on Radiation Imaging Detectors (IWORID).[3] ADVACAM. ADVAPIX / MINIPIX TPX3 User manual, 2017. Imaging the Unseen.[4] CERN. Medipix, 2021. url: https://medipix.web.cern.ch/home, Accedido: May: 21, 2021.[5] Rafael Ballabriga, Michael Campbell, and Xavier Llopart. Asic developments for radiation imaging applications: The medipix and timepix family. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878:10{23, 2018. Radiation Imaging Techniques and Applications.[6] T Poikela, J Plosila, T Westerlund, M Campbell, M De Gaspari, X Llopart, V Gromov, R Kluit, M van Beuzekom, F Zappon, V Zivkovic, C Brezina, K Desch, Y Fu, and A Kruth. Timepix3: a 65k channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of Instrumentation, 9(05):C05013{C05013, may 2014.[7] CERN. Medipix3, 2021. url: https://kt.cern/technologies/medipix3, Accedido: May: 21, 2021.[8] S.L. Bugby, K.A. Koch-Mehrin, M.C. Veale, M.D. Wilson, and J.E. Lees. Energy-loss correction in charge sharing events for improved performance of pixellated compound semiconductors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940:142{151, 2019.[9] C. Xu, M. Danielsson, and H. Bornefalk. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Transactions on Nuclear Science, 58(3):614{625, 2011.[10] Katsuyuki Taguchi. Energy-sensitive photon counting detector-based x-ray computed tomography. Radiological Physics and Technology, 10, 01 2017.[11] A. Meuris, O. Limousin, and C. Blondel. Charge sharing in cdte pixilated detectors. Nuclear Instruments Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 610:294{297, 2009.[12] Daniel Turecek, Jan Jakubek, Eliska Trojanova, Ludek Sefc, and V era Milotov a. Application of timepix3 based cdte spectral sensitive photon counting detector for pet imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 895, 04 2018.[13] G. Kim, K. Park, K. T. Lim, J. Kim, and G. Cho. Improving spatial resolution by predicting the initial position of charge-sharing e ect in photon-counting detectors. Journal of Instrumentation, 15(1):C01034, January 2020.[14] Mokhtar Chmeissani and Bettina Mikulec. Performance limits of a single photon counting pixel system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 460:81{90, 03 2001.[15] Gerardo Roque, Carlos Avila, Maria L. P erez-Lara, Luis Mendoza, and Simon Procz. Study of Contrast-to-Noise Ratio performance of a Medipix3RX CdTe detector for low dose mammography imaging. Nuclear Instruments and Methods in Physics Research A, 992:165000, March 2021.[16] R. Ballabriga, J. Alozy, M. Campbell, E. Frojdh, E.H.M. Heijne, T. Koenig, X. Llopart, J. Marchal, D. Pennicard, T. Poikela, L. Tlustos, P. Valerio, W. Wong, and M. Zuber. Review of hybrid pixel detector readout ASICs for spectroscopic x-ray imaging. Journal of Instrumenta- tion, 11(01):P01007{P01007, jan 2016.[17] M. L. Lara. An alternative energy calibration method for timepix3. 2019.[18] D. Turecek, J. Jakubek, M. Kroupa, and P. Soukup. Energy calibration of pixel detector working in time-over-threshold mode using test pulses. In 2011 IEEE Nuclear Science Symposium Conference Record, pages 1722{1725, 2011.[19] Eliska Trojanova. How to measure the maximum hit rate per second of ADVAPIX Timepix3. ADVACAM, 2019. Imaging the Unseen.[20] Gabriel Blaj. Dead-time correction for spectroscopic photon-counting pixel detectors. Journal of Synchrotron Radiation, 26(5):1621{1630, Aug 2019.[21] Daniel Turecek, Jan Jakubek, and P. Soukup. Usb 3.0 readout and time-walk correction method for timepix3 detector. Journal of Instrumentation, 11:C12065{C12065, 12 2016.[22] E. J. Schioppa, J. Idarraga, M. van Beuzekom, J. Visser, E. Ko eman, E. Heijne, K. J. Engel, and J. Uher. Study of charge di usion in a silicon detector using an energy sensitive pixel readout chip. IEEE Transactions on Nuclear Science, 62(5):2349{2359, 2015.[23] Diego Laramore, Sanchit Sharma, Kaitlyn C. Smallfoot, Steven L. Bellinger, Luke C. Henson, Taylor R. Ochs, Douglas S. McGregor, Amir A. Bahadori, and Walter J. McNeil. Simulation of charge drift in surface doped, pixelated micro-structured semiconductor neutron detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 978:164351, 2020.[24] Gerard Ari~no-Estrada, Mokhtar Chmeissani, Gianluca de lorenzo, Machiel Kolstein, Carles Puigdengoles, Jorge Garcia, and Enric Cabruja. Measurement of mobility and lifetime of electrons and holes in a schottky cdte diode. JINST, 9, 12 2014.[25] Qi Long, Steluta A. Dinca, E. A. Schi , Ming Yu, and Jeremy Theil. Electron and hole drift mobility measurements on thin lm cdte solar cells. Applied Physics Letters, 105(4):042106, 2014.[26] R Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29(1):255{284, jan 1966.[27] Md Asaduzzaman, Ali Newaz Bahar, Mohammad Bhuiyan, and Md. Ahsan Habib. Impacts of temperature on the performance of cdte based thin- lm solar cell. IOP Conference Series Materials Science and Engineering, 225, 01 2017.[28] OpenGate. Gate, getting started. https://opengate.readthedocs.io/en/latest/general.html, Accedido: Jan: 14, 2022.[29] Natalia Copete David Jurado. Manual GATE para simulaci on de mamograf a. Universidad de Los Andes, 2021.[30] OpenGate. Gate, setting up the physics. https://opengate.readthedocs.io/en/latest/setting-upthe-physics.html, Accedido: Jan: 14, 2022.[31] HAMAMATSU. 130 kV MICROFOCUS X-RAY SOURCE L6622-01, 2002.[32] C. Teyssier, P. Allard Gu erin, G. Bergeron, F. Dallaire, C. Leroy, S. Pospisil, and Y. B. Trudeau. Exploitation of the charge sharing e ect in Timepix device to achieve sub-pixel resolution in imaging applications with alpha particles. In Astroparticle, pages 681{687, August 2012.[33] A._zanowska@ Krzy_zanowska, A. Niedzielska, and R. l@. Charge sharing simulations for new digital algorithms achieving subpixel resolution in hybrid pixel detectors. Journal of Instrumentation, 15(2):C02047, February 2020.[34] Mohamad Khalil, Erik Dreier, Jan Kehres, Jan Jakubek, and Ulrik Olsen. Subpixel resolution in cdte timepix3 pixel detectors. Journal of Synchrotron Radiation, 25, 11 2018.[35] Daniel Prieto, Miguel Chiva, Ana Martínez, Miguel Cámara, Felipe Orozco, Juan Andrés, Maria Bejar, Ana Capuz, Rafa Colmenares, David Sevillano, Rafael Moris, Juan David Fuentes, and Feliciano García. Dosimetric and contrast noise ratio comparison of three different digital imaging technologies in mammography. Journal of Medical Imaging and Radiation Sciences, 51, 01 2020.[36] Harun Ahmad Zaky, Raizulnasuha Ab Rashid, Ab Razak, Moshi Geso, Wan Nordiana, and Wan Rahman. Evaluation of contrast-noise ratio (cnr) in contrast enhanced ct images using di erent sizes of gold nanoparticles. Materials today: proceedings, 16:1757{1765, 08 2019.201713926PublicationTHUMBNAILDocumento Final Monografía Sebastian Morelli.pdf.jpgDocumento Final Monografía Sebastian Morelli.pdf.jpgIM Thumbnailimage/jpeg9358https://repositorio.uniandes.edu.co/bitstreams/bfcfafee-2fb8-4bac-9015-8d6239551c94/download17c54505bb0b6dd0d62a4c661f384ec2MD56Formato Autoruzación y Entrega Tesis Diligenciado (1).pdf.jpgFormato Autoruzación y Entrega Tesis Diligenciado (1).pdf.jpgIM Thumbnailimage/jpeg15780https://repositorio.uniandes.edu.co/bitstreams/a7eb2390-b9a5-41c6-9eb0-b3aed9f089cb/download173959c8403f740719ba0d414cc638c0MD58ORIGINALDocumento Final Monografía Sebastian Morelli.pdfDocumento Final Monografía Sebastian Morelli.pdfTrabajo de gradoapplication/pdf2967391https://repositorio.uniandes.edu.co/bitstreams/e8df739c-587d-4883-b2aa-d2dd94b451a0/downloadabf38cdbec4b8894ba4c2622e1a0fb50MD54Formato Autoruzación y Entrega Tesis Diligenciado (1).pdfFormato Autoruzación y Entrega Tesis Diligenciado (1).pdfHIDEapplication/pdf199398https://repositorio.uniandes.edu.co/bitstreams/713302a2-b360-44a1-8bc9-f19ce4bfdff9/downloade39eb518fdc4074da3dae049b49e48b9MD53TEXTDocumento Final Monografía Sebastian Morelli.pdf.txtDocumento Final Monografía Sebastian Morelli.pdf.txtExtracted texttext/plain164545https://repositorio.uniandes.edu.co/bitstreams/7c13360b-1a4c-4009-a834-34e27a25018f/download0a6442e31527f21c27d351c394c13910MD55Formato Autoruzación y Entrega Tesis Diligenciado (1).pdf.txtFormato Autoruzación y Entrega Tesis Diligenciado (1).pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/403e1ad6-47cd-40a3-bb03-da66e0097fd2/download4491fe1afb58beaaef41a73cf7ff2e27MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/6aac004e-aee3-4c4e-999f-f79808d848cd/downloadf7d494f61e544413a13e6ba1da2089cdMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/549ef638-920a-4b05-8de2-c90f79bd16db/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/60701oai:repositorio.uniandes.edu.co:1992/607012023-12-11 13:15:07.51http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==