Microheater for microfluidic systems

Microfluidics devices have been a tool to develop low-cost alternatives for research in pharmaceutical, medical, and biomedical fields. This is because they allow miniaturizing the process and thus reduce the volumes of reagents needed. However, one of the most challenging variables to control withi...

Full description

Autores:
Fuentes Melo, Luisa Fernanda
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64172
Acceso en línea:
http://hdl.handle.net/1992/64172
Palabra clave:
Microheater
Microfluidic systems
Heat control
Thermal characterization
Electrothermal system
Control system
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_0fbfc25672e178527011f6a7c83c4d67
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64172
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Microheater for microfluidic systems
title Microheater for microfluidic systems
spellingShingle Microheater for microfluidic systems
Microheater
Microfluidic systems
Heat control
Thermal characterization
Electrothermal system
Control system
Ingeniería
title_short Microheater for microfluidic systems
title_full Microheater for microfluidic systems
title_fullStr Microheater for microfluidic systems
title_full_unstemmed Microheater for microfluidic systems
title_sort Microheater for microfluidic systems
dc.creator.fl_str_mv Fuentes Melo, Luisa Fernanda
dc.contributor.advisor.none.fl_str_mv Rodríguez, Cristian F.
Santiago, Tovar
Osma Cruz, Johann Faccelo
dc.contributor.author.none.fl_str_mv Fuentes Melo, Luisa Fernanda
dc.contributor.jury.none.fl_str_mv Sotelo Briceño, Diana Camila
dc.contributor.researchgroup.es_CO.fl_str_mv Biomicrosystems
dc.subject.keyword.none.fl_str_mv Microheater
Microfluidic systems
Heat control
Thermal characterization
Electrothermal system
Control system
topic Microheater
Microfluidic systems
Heat control
Thermal characterization
Electrothermal system
Control system
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description Microfluidics devices have been a tool to develop low-cost alternatives for research in pharmaceutical, medical, and biomedical fields. This is because they allow miniaturizing the process and thus reduce the volumes of reagents needed. However, one of the most challenging variables to control within low-cost microfluidic devices is temperature due to the high costs of microheaters for microfluidic devices since they are manufactured in a clean room. This is why the need arises to simulate, design, and test a low-cost microheater that can be coupled to microfluidic devices. Electro-Thermal-Mechanical mathematical model was proposed in the COMSOL Multiphysics 6.0® software (COMSOL Inc., Stockholm, Sweden), which allowed an extensive study of different geometries for the microheater, allowing for varying both the number of turns of the microheater (m and n) and the distance between turns (w). After determining the optimal geometry with in silico studies, the micro heater was manufactured and characterized using an infrared thermometer and a thermal camera. The characterization determined an operational range for the microheater between 1v to 12v to reach temperatures between 25°C to 120°C. The simulations presented an error concerning the experimental results of 10.99955% with the Infrared Thermometer and 14.75182% with the Thermal Camera.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-13
dc.date.accessioned.none.fl_str_mv 2023-01-25T19:11:59Z
dc.date.available.none.fl_str_mv 2023-01-25T19:11:59Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64172
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64172
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv F. Bragheri, R. Osellame, and R. Martinez Vazquez, Microfluidics Three-Dimensional Microfabrication Using Twophoton Polymerization. 2016.
B. E. Rapp, "Introduction," in Microfluidics: Modelling, Mechanics and Mathematics, Elsevier, 2017, pp. 3-7. doi: 10.1016/B978-1-4557-3141-1.50001-0.
Z. E. Jeroish, K. S. Bhuvaneshwari, F. Samsuri, and V. Narayanamurthy, "Microheater: material, design, fabrication, temperature control, and applications-a role in COVID-19," Biomed Microdevices, vol. 24, no. 1, p. 3, Mar. 2022, doi: 10.1007/s10544-021-00595-8.
J. P. Joule, "XXXVIII. On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 19, no. 124, pp. 260-277, Oct. 1841, doi: 10.1080/14786444108650416.
R. G. Spruit, J. T. van Omme, M. K. Ghatkesar, and H. H. P. Garza, "A Review on Development and Optimization of Microheaters for High-Temperature <italic>In Situ</italic> Studies," Journal of Microelectromechanical Systems, vol. 26, no. 6, pp. 1165-1182, Dec. 2017, doi: 10.1109/JMEMS.2017.2757402.
A. VanHorn and W. Zhou, "Design and optimization of a high temperature microheater for inkjet deposition," The International Journal of Advanced Manufacturing Technology, vol. 86, no. 9-12, pp. 3101-3111, Oct. 2016, doi:10.1007/s00170-016-8440-8.
Z. Wang et al., "Robust ultrathin and transparent AZO/Ag-SnO /AZO on polyimide substrate for flexible thin film heater with temperature over 400°C," J Mater Sci Technol, vol. 48, pp. 156-162, Jul. 2020, doi: 10.1016/j.jmst.2020.01.058.
A. Abdeslam, K. Fouad, and A. Khalifa, "Design and optimization of platinium heaters for gas sensor applications," Dig J Nanomater Biostruct, vol. 15, pp. 133-141, 2020.
A. Roy, M. Azadmehr, B. Q. Ta, P. Häfliger, and K. E. Aasmundtveit, "Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing," Sensors, vol. 19, no. 19, p. 4340, Oct. 2019, doi: 10.3390/s19194340.
G. Velmathi, N. Ramshanker, and S. Mohan, "Design, Electro-Thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing," in IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Nov. 2010, pp. 1258-1262. doi: 10.1109/IECON.2010.5675550.
C. Zheng, G. P. S. Balasubramanian, Y. Tan, A. M. Maniatty, R. Hull, and J. T. Wen, "Simulation, Microfabrication, and Control of a Microheater Array," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1914-1919, Aug. 2017, doi: 10.1109/TMECH.2017.2650682.
Y. Zhu, A. Bui, H. Jin, S. Nahavandi, E. C. Harvey, and I. D. Sutalo, "Thermal modeling of a microheater in a microchannel chip," Dec. 2005, p. 60361Y. doi: 10.1117/12.660972.
S. Yu, S. Wang, M. Lu, and L. Zuo, "A novel polyimide based micro heater with high temperature uniformity," Sens Actuators A Phys, vol. 257, pp. 58-64, Apr. 2017, doi: 10.1016/j.sna.2017.02.006.
J.-L. Lin, S.-S. Wang, M.-H. Wu, and C.-C. Oh-Yang, "Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells," Sensors, vol. 11, no. 9, pp. 8395-8411, Aug. 2011, doi: 10.3390/s110908395.
J. M. Son, J. H. Lee, J. Kim, and Y. H. Cho, "Temperature distribution measurement of Au micro-heater in microfluidic channel using IR microscope," International Journal of Precision Engineering and Manufacturing, vol. 16, no. 2, pp. 367-372, Feb. 2015, doi: 10.1007/s12541-015-0048-7.
J.-W. Han and M. Meyyappan, "A Built-In Temperature Sensor in an Integrated Microheater," IEEE Sens J, vol.16, no. 14, pp. 5543-5547, Jul. 2016, doi: 10.1109/JSEN.2016.2569445.
J. Kang et al., "Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor," Micro and Nano Systems Letters, vol. 5, no. 1, p. 26, Dec. 2017, doi: 10.1186/s40486-017-0060-z.
T. Guan and R. Puers, "Thermal analysis of a Ag/Ti based microheater," Procedia Eng, vol. 5, pp. 1356-1359, 2010, doi: 10.1016/j.proeng.2010.09.366.
C. Offenzeller, M. Knoll, T. Voglhuber-Brunnmaier, M. A. Hintermuller, B. Jakoby, and W. Hilber, "Fully Screen Printed Thermocouple and Microheater Applied for Time-of-Flight Sensing in Microchannels," IEEE Sens J, vol. 18, no. 21, pp. 8685-8692, Nov. 2018, doi: 10.1109/JSEN.2018.2868161.
G. Petrucci et al., "Thermal characterization of thin film heater for lab-on-chip application," in 2015 XVIII AISEM Annual Conference, Feb. 2015, pp. 1-4. doi: 10.1109/AISEM.2015.7066835.
S. K. Tiwari, S. Bhat, and K. K. Mahato, "Design and fabrication of screen printed microheater," Microsystem Technologies, vol. 24, no. 8, pp. 3273-3281, Aug. 2018, doi: 10.1007/s00542-018-3821-6.
J. Nie, Y. Zhao, and N. Peng, "Multichannel oscillatory-flow PCR micro-fluidic chip with controllable temperature gradient," Microsystem Technologies, vol. 21, no. 1, pp. 41-48, Jan. 2015, doi: 10.1007/s00542-014-2077-z.
S. Jeong et al., "Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip," Biomed Microdevices, vol. 20, no. 1, p. 14, Mar. 2018, doi: 10.1007/s10544-018-0257-9.
M. Megayanti, C. Panatarani, and I. M. Joni, "Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method," 2016, p. 030046. doi: 10.1063/1.4943741.
J. Wu, W. Cao, W. Wen, D. C. Chang, and P. Sheng, "Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor," Biomicrofluidics, vol. 3, no. 1, p. 012005, Mar. 2009, doi: 10.1063/1.3058587.
R. Phatthanakun, P. Deekla, W. Pummara, C. Sriphung, C. Pantong, and N. Chomnawang, "Design and fabrication of thin-film aluminum microheater and nickel temperature sensor," in 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Mar. 2012, pp. 112-115. doi: 10.1109/NEMS.2012.6196735.
S. Singh, D. K. Sharma, K. Kishore, B. A. Botre, and S. A. Akbar, "Modeling, Simulation, and Implementation of Fast Settling Switched PI Controller for MOX Integrated Pt Microheater," IEEE Sens J, vol. 18, no. 20, pp. 8549-8557, Oct. 2018, doi: 10.1109/JSEN.2018.2867233.
M. N. H. Zainal Alam, A. A. A. Moghadam, and A. Kouzani, "Establishment of temperature control scheme for microbioreactor operation using integrated microheater," Microsystem Technologies, vol. 21, no. 2, pp. 415-428, Feb. 2015, doi: 10.1007/s00542-014-2088-9.
N. Lovecchio et al., "Thermal control system based on thin film heaters and amorphous silicon diodes," in 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Jun. 2015, pp. 277-282. doi: 10.1109/IWASI.2015.7184977.
M. Mirasoli et al., "On-chip LAMP-BART reaction for viral DNA real-time bioluminescence detection," Sens Actuators B Chem, vol. 262, pp. 1024-1033, Jun. 2018, doi: 10.1016/j.snb.2018.02.086.
D. Moschou et al., "All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification," Sens Actuators B Chem, vol. 199, pp. 470-478, Aug. 2014, doi: 10.1016/j.snb.2014.04.007.
J.-S. Hwang, S.-Y. Kim, Y.-S. Kim, H.-J. Song, C.-Y. Park, and J.-D. Kim, "Implementation of PCB-Based PCR Chip Using Double-Sided Tape," International Journal of Control and Automation, vol. 8, no. 2, pp. 117-124, Feb. 2015, doi: 10.14257/ijca.2015.8.2.12.
N. Holt, L. G. Marques, A. van Horn, M. Montazeri, and W. Zhou, "Fabrication and control of a microheater array for Microheater Array Powder Sintering," The International Journal of Advanced Manufacturing Technology, vol. 95, no. 1-4, pp. 1369-1376, Mar. 2018, doi: 10.1007/s00170-017-1316-8.
F. Cui et al., "Design and experiment of a PDMS-based PCR chip with reusable heater of optimized electrode," Microsystem Technologies, vol. 23, no. 8, pp. 3069-3079, Aug. 2017, doi: 10.1007/s00542-016-3064-3.
T. Pardy, I. Tulp, C. Kremer, T. Rang, and R. Stewart, "Integrated self-regulating resistive heating for isothermal nucleic acid amplification tests (NAAT) in Lab-on-a-Chip (LoC) devices," PLoS One, vol. 12, no. 12, p. e0189968, Dec. 2017, doi: 10.1371/journal.pone.0189968.
M. Horade, M. Kojima, K. Kamiyama, Y. Mae, and T. Arai, "Development of a Novel 2-Dimensional Micro-Heater Array Device with Regional Selective Heating," Mechanical Engineering Research, vol. 6, no. 1, p. 66, Apr. 2016, doi: 10.5539/mer.v6n1p66.
S. Tovar, C. A. Hernández, and J. F. Osma, "Design, Simulation, and Fabrication of a Copper-Chrome-Based Glass Heater Integrated into a PMMA Microfluidic System," Micromachines (Basel), vol. 12, no. 9, p. 1067, Sep. 2021, doi: 10.3390/mi12091067.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 22 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/2dbb4850-b254-4ea1-9dee-abec2cca089c/download
https://repositorio.uniandes.edu.co/bitstreams/9561c2f9-42ba-41bb-b380-3e28672575d1/download
https://repositorio.uniandes.edu.co/bitstreams/626cca9d-8a22-4a2e-b034-0456c88247d5/download
https://repositorio.uniandes.edu.co/bitstreams/b9179f72-9da1-4c89-b200-59abbd0d0dcd/download
https://repositorio.uniandes.edu.co/bitstreams/f7f92039-f8ac-459e-aa21-d7a31e93de49/download
https://repositorio.uniandes.edu.co/bitstreams/756f56ca-86bd-4ad8-9f19-1d2b8509ff5a/download
https://repositorio.uniandes.edu.co/bitstreams/0cb91553-9e3a-40f5-8482-622dff2c7123/download
https://repositorio.uniandes.edu.co/bitstreams/2d32c1eb-bb15-45f8-a5ef-9161b78163a8/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
43096290476b31be29ba2835e09efe5c
c8ddc9b8779d5e43cbcecb77ffa091d8
5aa5c691a1ffe97abd12c2966efcb8d6
8a0f33956ad02593a142b55bc0a70538
20a0214db3a2499113080cfad00c0db6
5e8b8bf74597c84e6b51c55fff3c8ca3
121ec52b1151b6d0cf5396952ed55710
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133913173164032
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez, Cristian F.8b665576-87ac-4806-9628-8986faf6630c600Santiago, Tovaraaf362d4-8df5-49d0-a873-3b1d37af6dc3600Osma Cruz, Johann Faccelovirtual::7258-1Fuentes Melo, Luisa Fernanda7363a220-b087-4687-8e82-c9d8c31a04b1600Sotelo Briceño, Diana CamilaBiomicrosystems2023-01-25T19:11:59Z2023-01-25T19:11:59Z2022-12-13http://hdl.handle.net/1992/64172instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Microfluidics devices have been a tool to develop low-cost alternatives for research in pharmaceutical, medical, and biomedical fields. This is because they allow miniaturizing the process and thus reduce the volumes of reagents needed. However, one of the most challenging variables to control within low-cost microfluidic devices is temperature due to the high costs of microheaters for microfluidic devices since they are manufactured in a clean room. This is why the need arises to simulate, design, and test a low-cost microheater that can be coupled to microfluidic devices. Electro-Thermal-Mechanical mathematical model was proposed in the COMSOL Multiphysics 6.0® software (COMSOL Inc., Stockholm, Sweden), which allowed an extensive study of different geometries for the microheater, allowing for varying both the number of turns of the microheater (m and n) and the distance between turns (w). After determining the optimal geometry with in silico studies, the micro heater was manufactured and characterized using an infrared thermometer and a thermal camera. The characterization determined an operational range for the microheater between 1v to 12v to reach temperatures between 25°C to 120°C. The simulations presented an error concerning the experimental results of 10.99955% with the Infrared Thermometer and 14.75182% with the Thermal Camera.Ingeniero ElectrónicoPregrado22 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaMicroheater for microfluidic systemsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMicroheaterMicrofluidic systemsHeat controlThermal characterizationElectrothermal systemControl systemIngenieríaF. Bragheri, R. Osellame, and R. Martinez Vazquez, Microfluidics Three-Dimensional Microfabrication Using Twophoton Polymerization. 2016.B. E. Rapp, "Introduction," in Microfluidics: Modelling, Mechanics and Mathematics, Elsevier, 2017, pp. 3-7. doi: 10.1016/B978-1-4557-3141-1.50001-0.Z. E. Jeroish, K. S. Bhuvaneshwari, F. Samsuri, and V. Narayanamurthy, "Microheater: material, design, fabrication, temperature control, and applications-a role in COVID-19," Biomed Microdevices, vol. 24, no. 1, p. 3, Mar. 2022, doi: 10.1007/s10544-021-00595-8.J. P. Joule, "XXXVIII. On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 19, no. 124, pp. 260-277, Oct. 1841, doi: 10.1080/14786444108650416.R. G. Spruit, J. T. van Omme, M. K. Ghatkesar, and H. H. P. Garza, "A Review on Development and Optimization of Microheaters for High-Temperature <italic>In Situ</italic> Studies," Journal of Microelectromechanical Systems, vol. 26, no. 6, pp. 1165-1182, Dec. 2017, doi: 10.1109/JMEMS.2017.2757402.A. VanHorn and W. Zhou, "Design and optimization of a high temperature microheater for inkjet deposition," The International Journal of Advanced Manufacturing Technology, vol. 86, no. 9-12, pp. 3101-3111, Oct. 2016, doi:10.1007/s00170-016-8440-8.Z. Wang et al., "Robust ultrathin and transparent AZO/Ag-SnO /AZO on polyimide substrate for flexible thin film heater with temperature over 400°C," J Mater Sci Technol, vol. 48, pp. 156-162, Jul. 2020, doi: 10.1016/j.jmst.2020.01.058.A. Abdeslam, K. Fouad, and A. Khalifa, "Design and optimization of platinium heaters for gas sensor applications," Dig J Nanomater Biostruct, vol. 15, pp. 133-141, 2020.A. Roy, M. Azadmehr, B. Q. Ta, P. Häfliger, and K. E. Aasmundtveit, "Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing," Sensors, vol. 19, no. 19, p. 4340, Oct. 2019, doi: 10.3390/s19194340.G. Velmathi, N. Ramshanker, and S. Mohan, "Design, Electro-Thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing," in IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Nov. 2010, pp. 1258-1262. doi: 10.1109/IECON.2010.5675550.C. Zheng, G. P. S. Balasubramanian, Y. Tan, A. M. Maniatty, R. Hull, and J. T. Wen, "Simulation, Microfabrication, and Control of a Microheater Array," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1914-1919, Aug. 2017, doi: 10.1109/TMECH.2017.2650682.Y. Zhu, A. Bui, H. Jin, S. Nahavandi, E. C. Harvey, and I. D. Sutalo, "Thermal modeling of a microheater in a microchannel chip," Dec. 2005, p. 60361Y. doi: 10.1117/12.660972.S. Yu, S. Wang, M. Lu, and L. Zuo, "A novel polyimide based micro heater with high temperature uniformity," Sens Actuators A Phys, vol. 257, pp. 58-64, Apr. 2017, doi: 10.1016/j.sna.2017.02.006.J.-L. Lin, S.-S. Wang, M.-H. Wu, and C.-C. Oh-Yang, "Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells," Sensors, vol. 11, no. 9, pp. 8395-8411, Aug. 2011, doi: 10.3390/s110908395.J. M. Son, J. H. Lee, J. Kim, and Y. H. Cho, "Temperature distribution measurement of Au micro-heater in microfluidic channel using IR microscope," International Journal of Precision Engineering and Manufacturing, vol. 16, no. 2, pp. 367-372, Feb. 2015, doi: 10.1007/s12541-015-0048-7.J.-W. Han and M. Meyyappan, "A Built-In Temperature Sensor in an Integrated Microheater," IEEE Sens J, vol.16, no. 14, pp. 5543-5547, Jul. 2016, doi: 10.1109/JSEN.2016.2569445.J. Kang et al., "Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor," Micro and Nano Systems Letters, vol. 5, no. 1, p. 26, Dec. 2017, doi: 10.1186/s40486-017-0060-z.T. Guan and R. Puers, "Thermal analysis of a Ag/Ti based microheater," Procedia Eng, vol. 5, pp. 1356-1359, 2010, doi: 10.1016/j.proeng.2010.09.366.C. Offenzeller, M. Knoll, T. Voglhuber-Brunnmaier, M. A. Hintermuller, B. Jakoby, and W. Hilber, "Fully Screen Printed Thermocouple and Microheater Applied for Time-of-Flight Sensing in Microchannels," IEEE Sens J, vol. 18, no. 21, pp. 8685-8692, Nov. 2018, doi: 10.1109/JSEN.2018.2868161.G. Petrucci et al., "Thermal characterization of thin film heater for lab-on-chip application," in 2015 XVIII AISEM Annual Conference, Feb. 2015, pp. 1-4. doi: 10.1109/AISEM.2015.7066835.S. K. Tiwari, S. Bhat, and K. K. Mahato, "Design and fabrication of screen printed microheater," Microsystem Technologies, vol. 24, no. 8, pp. 3273-3281, Aug. 2018, doi: 10.1007/s00542-018-3821-6.J. Nie, Y. Zhao, and N. Peng, "Multichannel oscillatory-flow PCR micro-fluidic chip with controllable temperature gradient," Microsystem Technologies, vol. 21, no. 1, pp. 41-48, Jan. 2015, doi: 10.1007/s00542-014-2077-z.S. Jeong et al., "Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip," Biomed Microdevices, vol. 20, no. 1, p. 14, Mar. 2018, doi: 10.1007/s10544-018-0257-9.M. Megayanti, C. Panatarani, and I. M. Joni, "Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method," 2016, p. 030046. doi: 10.1063/1.4943741.J. Wu, W. Cao, W. Wen, D. C. Chang, and P. Sheng, "Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor," Biomicrofluidics, vol. 3, no. 1, p. 012005, Mar. 2009, doi: 10.1063/1.3058587.R. Phatthanakun, P. Deekla, W. Pummara, C. Sriphung, C. Pantong, and N. Chomnawang, "Design and fabrication of thin-film aluminum microheater and nickel temperature sensor," in 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Mar. 2012, pp. 112-115. doi: 10.1109/NEMS.2012.6196735.S. Singh, D. K. Sharma, K. Kishore, B. A. Botre, and S. A. Akbar, "Modeling, Simulation, and Implementation of Fast Settling Switched PI Controller for MOX Integrated Pt Microheater," IEEE Sens J, vol. 18, no. 20, pp. 8549-8557, Oct. 2018, doi: 10.1109/JSEN.2018.2867233.M. N. H. Zainal Alam, A. A. A. Moghadam, and A. Kouzani, "Establishment of temperature control scheme for microbioreactor operation using integrated microheater," Microsystem Technologies, vol. 21, no. 2, pp. 415-428, Feb. 2015, doi: 10.1007/s00542-014-2088-9.N. Lovecchio et al., "Thermal control system based on thin film heaters and amorphous silicon diodes," in 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Jun. 2015, pp. 277-282. doi: 10.1109/IWASI.2015.7184977.M. Mirasoli et al., "On-chip LAMP-BART reaction for viral DNA real-time bioluminescence detection," Sens Actuators B Chem, vol. 262, pp. 1024-1033, Jun. 2018, doi: 10.1016/j.snb.2018.02.086.D. Moschou et al., "All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification," Sens Actuators B Chem, vol. 199, pp. 470-478, Aug. 2014, doi: 10.1016/j.snb.2014.04.007.J.-S. Hwang, S.-Y. Kim, Y.-S. Kim, H.-J. Song, C.-Y. Park, and J.-D. Kim, "Implementation of PCB-Based PCR Chip Using Double-Sided Tape," International Journal of Control and Automation, vol. 8, no. 2, pp. 117-124, Feb. 2015, doi: 10.14257/ijca.2015.8.2.12.N. Holt, L. G. Marques, A. van Horn, M. Montazeri, and W. Zhou, "Fabrication and control of a microheater array for Microheater Array Powder Sintering," The International Journal of Advanced Manufacturing Technology, vol. 95, no. 1-4, pp. 1369-1376, Mar. 2018, doi: 10.1007/s00170-017-1316-8.F. Cui et al., "Design and experiment of a PDMS-based PCR chip with reusable heater of optimized electrode," Microsystem Technologies, vol. 23, no. 8, pp. 3069-3079, Aug. 2017, doi: 10.1007/s00542-016-3064-3.T. Pardy, I. Tulp, C. Kremer, T. Rang, and R. Stewart, "Integrated self-regulating resistive heating for isothermal nucleic acid amplification tests (NAAT) in Lab-on-a-Chip (LoC) devices," PLoS One, vol. 12, no. 12, p. e0189968, Dec. 2017, doi: 10.1371/journal.pone.0189968.M. Horade, M. Kojima, K. Kamiyama, Y. Mae, and T. Arai, "Development of a Novel 2-Dimensional Micro-Heater Array Device with Regional Selective Heating," Mechanical Engineering Research, vol. 6, no. 1, p. 66, Apr. 2016, doi: 10.5539/mer.v6n1p66.S. Tovar, C. A. Hernández, and J. F. Osma, "Design, Simulation, and Fabrication of a Copper-Chrome-Based Glass Heater Integrated into a PMMA Microfluidic System," Micromachines (Basel), vol. 12, no. 9, p. 1067, Sep. 2021, doi: 10.3390/mi12091067.201631093Publicationhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJvirtual::7258-10000-0003-2928-3406virtual::7258-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112virtual::7258-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::7258-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::7258-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/2dbb4850-b254-4ea1-9dee-abec2cca089c/download4460e5956bc1d1639be9ae6146a50347MD52TEXTMicroheater for microfluidic systems.pdf.txtMicroheater for microfluidic systems.pdf.txtExtracted texttext/plain63877https://repositorio.uniandes.edu.co/bitstreams/9561c2f9-42ba-41bb-b380-3e28672575d1/download43096290476b31be29ba2835e09efe5cMD55autorizacionEntregaLuisa.pdf.txtautorizacionEntregaLuisa.pdf.txtExtracted texttext/plain1032https://repositorio.uniandes.edu.co/bitstreams/626cca9d-8a22-4a2e-b034-0456c88247d5/downloadc8ddc9b8779d5e43cbcecb77ffa091d8MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/b9179f72-9da1-4c89-b200-59abbd0d0dcd/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILMicroheater for microfluidic systems.pdf.jpgMicroheater for microfluidic systems.pdf.jpgIM Thumbnailimage/jpeg12497https://repositorio.uniandes.edu.co/bitstreams/f7f92039-f8ac-459e-aa21-d7a31e93de49/download8a0f33956ad02593a142b55bc0a70538MD56autorizacionEntregaLuisa.pdf.jpgautorizacionEntregaLuisa.pdf.jpgIM Thumbnailimage/jpeg11992https://repositorio.uniandes.edu.co/bitstreams/756f56ca-86bd-4ad8-9f19-1d2b8509ff5a/download20a0214db3a2499113080cfad00c0db6MD58ORIGINALMicroheater for microfluidic systems.pdfMicroheater for microfluidic systems.pdfProyecto de Gradoapplication/pdf1724652https://repositorio.uniandes.edu.co/bitstreams/0cb91553-9e3a-40f5-8482-622dff2c7123/download5e8b8bf74597c84e6b51c55fff3c8ca3MD53autorizacionEntregaLuisa.pdfautorizacionEntregaLuisa.pdfHIDEapplication/pdf163474https://repositorio.uniandes.edu.co/bitstreams/2d32c1eb-bb15-45f8-a5ef-9161b78163a8/download121ec52b1151b6d0cf5396952ed55710MD541992/64172oai:repositorio.uniandes.edu.co:1992/641722024-03-13 13:23:23.334http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==