Influencia de la metalicidad en la Ley de Leavitt
Este trabajo estudia la universalidad de la relación Periodo-Luminosidad, también conocida como Ley de Leavitt, y la posible influencia de la metalicidad de una galaxia para cambiar los resultados de esta relación.
- Autores:
-
Reyes Usma, Sebastián Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64047
- Acceso en línea:
- http://hdl.handle.net/1992/64047
- Palabra clave:
- Ley de Leavitt
Cefeidas
Gran Nube de Magallanes
Proyecto Araucaria
Metalicidad
Física
- Rights
- openAccess
- License
- Attribution-NoDerivatives 4.0 Internacional
id |
UNIANDES2_0f8eb0a4edb3810525632620fd32e555 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64047 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Influencia de la metalicidad en la Ley de Leavitt |
title |
Influencia de la metalicidad en la Ley de Leavitt |
spellingShingle |
Influencia de la metalicidad en la Ley de Leavitt Ley de Leavitt Cefeidas Gran Nube de Magallanes Proyecto Araucaria Metalicidad Física |
title_short |
Influencia de la metalicidad en la Ley de Leavitt |
title_full |
Influencia de la metalicidad en la Ley de Leavitt |
title_fullStr |
Influencia de la metalicidad en la Ley de Leavitt |
title_full_unstemmed |
Influencia de la metalicidad en la Ley de Leavitt |
title_sort |
Influencia de la metalicidad en la Ley de Leavitt |
dc.creator.fl_str_mv |
Reyes Usma, Sebastián Alejandro |
dc.contributor.advisor.none.fl_str_mv |
García Varela, José Alejandro |
dc.contributor.author.none.fl_str_mv |
Reyes Usma, Sebastián Alejandro |
dc.contributor.jury.none.fl_str_mv |
Sabogal Martínez, Beatriz Eugenia |
dc.subject.keyword.none.fl_str_mv |
Ley de Leavitt Cefeidas Gran Nube de Magallanes Proyecto Araucaria Metalicidad |
topic |
Ley de Leavitt Cefeidas Gran Nube de Magallanes Proyecto Araucaria Metalicidad Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
Este trabajo estudia la universalidad de la relación Periodo-Luminosidad, también conocida como Ley de Leavitt, y la posible influencia de la metalicidad de una galaxia para cambiar los resultados de esta relación. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-01-20T16:13:45Z |
dc.date.available.none.fl_str_mv |
2023-01-20T16:13:45Z |
dc.date.issued.none.fl_str_mv |
2023-01-20 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64047 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64047 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Anand, G., Lee, J., Van Dyk, S., et al. (2021). Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 501(3):3621-3639. Bell, E. and de Jong, R. (2001). Stellar mass-to-light ratios and the Tully-Fisher relation. The Astrophysical Journal, 550(1):212. Bertulani, C. (2013). Nuclei in the Cosmos. World Scientific. Binder, B., Williams, B., Eracleous, M., et al. (2012). The Chandra local volume survey: The X-ray point-source catalog of NGC 300. The Astrophysical Journal, 758(1):15. Bothwell, M., Kennicutt, R., and Lee, J. (2009). On the interstellar medium and star formation demographics of galaxies in the local universe. Monthly Notices of the Royal Astronomical Society, 400(1):154-167. Capaccioli, M., Piotto, G., and Bresolin, F. (1992). On the Cepheid variables of the nearby irregular galaxy NGC 3109. The Astronomical Journal, 103:1151-1158. Cardelli, J., Clayton, G., and Mathis, J. (1989). The relationship between infrared, optical, and ultraviolet extinction. The Astrophysical Journal, 345:245-256. Cardona, J. (2020). Calibration of extragalactic distances on different metallicity environments. Tesis de pregrado en Física, Uniandes. Carignan, C., Frank, B., Hess, K., et al. (2013). KAT-7 science verification: using Hi observation of NGC 3109 to understand its kinematics and mass distribution. The Astronomical Journal, 146(3):48. Carroll, B. and Ostlie, D. (2017). An introduction to modern astrophysics. Cambridge University Press. Catelan, M. and Smith, H. (2015). Pulsating stars. John Wiley & Sons. Cubillos, A. (2021). Determinación de la cantidad mínima de puntos necesaria para la reconstrucción de curvas de luz de estrellas variables. Tesis de pregrado en Física, Uniandes. Demers, S., Battinelli, P., and Letarte, B. (2003). Carbon star survey in the Local Group-VII. NGC 3109 a galaxy without a stellar halo. Astronomy & Astrophysics, 410(3):795-801. Demers, S., Kunkel, W., and Irwin, M. (1985). Automated photometry of NGC 3109. The Astronomical Journal, 90:1967-1981. Eddington, A. S. (2013). 58. On the Pulsations of a Gaseous Star and the Problem of the Cepheid Variables, pages 401-409. Harvard University Press. Feast, M. and Catchpole, R. (1997). The Cepheid period-luminosity zero-point from Hipparcos trigonometrical parallaxes. Monthly Notices of the Royal Astronomical Society, 286(1): L1-L5. Fernie, J. (1969). The period-luminosity relation: a historical review. Publications of the Astronomical Society of the Pacific, 81(483):707-731. Freedman, W., Madore, B., Gibson, B., et al. (2001). Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal, 553(1):47. Gallart, C., Aparicio, A., Bertelli, G., et al. (1996). The Local Group dwarf irregular galaxy NGC 6822. II. The old and intermediate-age star formation history. The Astronomical Journal, 112:1950. Gieren, W., Pietrzynski, G., Bresolin, F., et al. (2005a). Measuring improved distances to nearby galaxies: the Araucaria project. The Messenger, 121:23-28. Gieren, W., Pietrzyski, G., Nalewajko, K., et al. (2006). The araucaria project: An accurate distance to the local group galaxy NGC 6822 from near-infrared photometry of cepheid variables. The Astrophysical Journal, 647(2):1056. Gieren, W., Pietrzyki, G., Soszyski, I., et al. (2005b). The araucaria project: Near-infrared photometry of cepheid variables in the Sculptor galaxy NGC 300. The Astrophysical Journal, 628(2):695. Gieren, W., Pietrzyski, G., Szewczyk, O., et al. (2008). The araucaria project: The distance to the local group galaxy WLM from near-infrared photometry of cepheid variables. The Astrophysical Journal, 683(2):611. Gieren, W., Pietrzyski, G., Walker, A., et al. (2004). The Araucaria Project: An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables. The Astronomical Journal, 128(3):1167. Gieren, W., Storm, J., Barnes III, T., et al. (2005c). Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance. The Astrophysical Journal, 627(1):224. Górski, M., Pietrzyski, G., and Gieren, W. (2011). The Araucaria Project. Infrared Tip of the Red Giant Branch Distances to Five Dwarf Galaxies in the Local Group. The Astronomical Journal, 141(6):194. Hawarden, T., Leggett, S., Letawsky, M., et al. (2001). JHK standard stars for large telescopes: the UKIRT fundamental and extended lists. Monthly Notices of the Royal Astronomical Society, 325(2):563-574. Helou, G., Roussel, H., Appleton, P., et al. (2004). The anatomy of star formation in NGC 300. The Astrophysical Journal Supplement Series, 154(1):253. Hertzsprung, E. (1913). Über die räumliche Verteilung der Veränderlichen vom delta Cephei-Typus. Astronomische Nachrichten, 196:201. Hodge, P. (1977). The structure and content of NGC 6822. The Astrophysical Journal Supplement Series, 33:69-82. Hodge, P. (1980). The recent evolutionary history of the galaxies NGC 6822 and IC 1613. The Astrophysical Journal, 241:125-131. Hubble, E. (1925a). Cepheids in spiral nebulae. Popular Astronomy, 33. Hubble, E. (1925b). NGC 6822: A Remote Stellar System. Number 304. Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the national academy of sciences, 15(3):168-173. Ianjamasimanana, R., Namumba, B., Ramaila, A., et al. (2020). MeerKAT-16 H i observation of the dIrr galaxy WLM. Monthly Notices of the Royal Astronomical Society, 497(4):4795-4813. Jerjen, H., Freeman, K., and Binggeli, B. (1998). Surface brightness fluctuation distances to dwarf elliptical galaxies in the Sculptor Group. The Astronomical Journal, 116(6):2873. Kacharov, N., Neumayer, N., Seth, A., et al. (2018). Stellar populations and star formation histories of the nuclear star clusters in six nearby galaxies. Monthly Notices of the Royal Astronomical Society, 480(2):1973-1998. Karachentsev, I., Grebel, E., Sharina, M., et al. (2003). Distances to nearby galaxies in Sculptor. Astronomy & Astrophysics, 404(1):93-111. Karachentsev, I. and Kaisina, E. (2013). Star formation properties in the local volume galaxies via H and far-ultraviolet fluxes. The Astronomical Journal, 146(3):46. Karttunen, H., Kröger, P., and Oja, H., e. a. (2007). Fundamental astronomy. Springer. Kayser, S. (1966). Photometry of the nearby irregular galaxy, NGC 6822. California Institute of Technology. Kepley, A., Wilcots, E., Hunter, D., et al. (2007). A high-resolution study of the HI content of local group dwarf irregular galaxy WLM. The Astronomical Journal, 133(5):2242. Khademi, M., Yang, Y., Hammer, F., and Nasiri, S. (2021). Kinematical asymmetry in the dwarf irregular galaxy WLM and a perturbed halo potential. Astronomy & Astrophysics, 654:A7. Lasue, J., Levasseur-Regourd, A., and Renard, J. (2020). Zodiacal light observations and its link with cosmic dust: A review. Planetary and Space Science, 190:104973. Leavitt, H. and Pickering, E. (1912). Periods of 25 Variable Stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173:1-3. Lee, M. (1993). The distance to nearby galaxy NGC 3109 based on the tip of the red giant branch. The Astrophysical Journal, 408:409-415. Lee, M., Freedman, W., and Madore, B. (1993). The tip of the red giant branch as a distance indicator for resolved galaxies. The Astrophysical Journal, 417:553. McAlary, C., Madore, B., McGonegal, R., et al. (1983). The distance to NGC 6822 from infrared photometry of Cepheids. The Astrophysical Journal, 273:539-543. McConnachie, A. (2012). The observed properties of dwarf galaxies in and around the Local Group. The Astronomical Journal, 144(1):4. Méndez, B., Davis, M., Moustakas, J., et al. (2002). Deviations from the local Hubble flow. I. The tip of the red giant branch as a distance indicator. The Astronomical Journal, 124(1):213. Minniti, D., Zijlstra, A., Alonso, M., et al. (1999). The stellar populations of NGC 3109: another dwarf irregular galaxy with a Population II stellar halo. The Astronomical Journal, 117(2):881. Mouhcine, M., Rich, R., Ferguson, H., et al. (2005). Halos of spiral galaxies. III. Metallicity distributions. The Astrophysical Journal, 633(2):828. Muschielok, B., Kudritzki, R., Appenzeller, I., et al. (1999). VLT FORS spectra of blue supergiants in the Local Group galaxy NGC 6822. Astronomy and Astrophysics, 352:L40-L44. Musella, I., Piotto, G., and Capaccioli, M. (1997). On the cepheid variables of nearby galaxies. III. NGC 3109. The Astronomical Journal, 114:976. Persson, S., Madore, B., Krzemiski, W., et al. (2004). New Cepheid period-luminosity relations for the Large Magellanic Cloud: 92 near-infrared light curves. The Astronomical Journal, 128(5):2239. Pietrzyski, G., Gieren, W., Hamuy, M., et al. (2010). The araucaria project: First cepheid distance to the sculptor group galaxy NGC 7793 from variables discovered in a wide-field maging survey. The Astronomical Journal, 140(5):1475. Pietrzyski, G., Gieren, W., Udalski, A., et al. (2004). The Araucaria Project: The Distance to the Local Group Galaxy NGC 6822 from Cepheid Variables Discovered in a Wide-Field Imaging Survey. The Astronomical Journal, 128(6):2815. Pietrzyski, G., Gieren, W., Udalski, A., et al. (2006). The araucaria project: A widefield photometric survey for cepheid variables in NGC 3109. The Astrophysical Journal, 648(1):366. Pietrzyski, G., Gieren, W., Udalski, A., et al. (2007). The Araucaria project: The distance to the local group galaxy WLM from Cepheid variables discovered in a wide-field imaging survey. The Astronomical Journal, 134(2):594. Pietrzyski, G., Graczyk, D., Gallenne, A., et al. (2019). A distance to the Large Magellanic Cloud that is precise to one per cent. Nature, 567(7747):200-203. Plummer, H. (1920). On the nature of short-period variables. Monthly Notices of the Royal Astronomical Society, 80:496. Read, J., Iorio, G., Agertz, O., et al. (2016). Understanding the shape and diversity of dwarf galaxy rotation curves in COM. Monthly Notices of the Royal Astronomical Society, 462(4):3628-3645. Rejkuba, M., Minniti, D., Gregg, M., et al. (2000). Deep Hubble Space Telescope STIS color-magnitude diagrams of the dwarf irregular galaxy WLM: Detection of the horizontal branch. The Astronomical Journal, 120(2):801. Ribas, I., Fitzpatrick, E., Maloney, F., et al. (2002). Fundamental properties and distances of Large Magellanic Cloud eclipsing binaries. III. EROS 1044. The Astrophysical Journal, 574(2):771. Rizzi, L., Bresolin, F., Kudritzki, R., et al. (2006). The Araucaria project: the distance to NGC 300 from the red giant branch tip using HST ACS imaging. The Astrophysical Journal, 638(2):766. Romaniello, M., Primas, F., Mottini, M., et al. (2009). The Dependency of the Cepheid Period-Luminosity Relation on Chemical Composition. In AIP Conference Proceedings, volume 1170, pages 99-101. American Institute of Physics. Russell, H. and Shapley, H. (1914). On the distribution of eclipsing variable stars in space. The Astrophysical Journal, 40. Sandage, A. and Carlson, G. (1988). The brightest stars in nearby galaxies. VIII-Cepheids and bright stars in NGC 3109. The Astronomical Journal, 96:1599-1613. Savage, B. and Mathis, J. (1979). Observed properties of interstellar dust. Annual review of astronomy and astrophysics, 17:73-111. Schlafly, E. and Finkbeiner, D. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. The Astrophysical Journal, 737(2):103. Schlegel, D., Finkbeiner, D., and Davis, M. (1998). Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. The Astrophysical Journal, 500(2):525. Shobbrook, R. and Robinson, B. (1967). 21 cm observations of NGC 300. Australian Journal of Physics, 20(2):131-146. Soszyski, I., Gieren, W., P. G., et al. (2006). The Araucaria Project: distance to the Local Group galaxy NGC 3109 from near-infrared photometry of Cepheids. The Astrophysical Journal, 648(1):375. Tammann, G., Sandage, A., and Reindl, B. (2003). New period-luminosity and period-color relations of classical Cepheids: I. Cepheids in the Galaxy. Astronomy & Astrophysics, 404(2):423-448. Tosi, M., Focardi, P., Greggio, L., et al. (1989). Star formation in dwarf irregular galaxies. The Messenger, 57:57-60. Tully, R., Rizzi, L., Dolphin, A., et al. (2006). Associations of dwarf galaxies. The Astronomical Journal, 132(2):729. Tully, R., Rizzi, L., Shaya, E., et al. (2009). The extragalactic distance database. The Astronomical Journal, 138(2):323 Udalski, A. (2000). The optical gravitational lensing experiment. Stellar distance indicators in the Magellanic Clouds and constraints on the Magellanic Cloud distance scale. arXiv preprint astro-ph/0010151. Van den Bergh, S. (1994). The outer fringes of the local group. The Astronomical Journal, 107:1328-1332. Venn, K., Lennon, D., Kaufer, A., et al. (2001). First stellar abundances in NGC 6822 from VLT-UVES and Keck-HIRES spectroscopy. The Astrophysical Journal, 547(2):765. Zgirski, B., Gieren, W., Pietrzyski, G., et al. (2017). The Araucaria Project. The distance to the Sculptor group galaxy NGC 7793 from near-infrared photometry of Cepheid variables. The Astrophysical Journal, 847(2):88. |
dc.rights.license.spa.fl_str_mv |
Attribution-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
72 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/6c1e36ee-8470-4377-8b89-f43626b081ac/download https://repositorio.uniandes.edu.co/bitstreams/e3a240de-4c6d-4541-8a9b-ac257a8f4aa2/download https://repositorio.uniandes.edu.co/bitstreams/8712efb5-1f50-4c28-a87d-d7012a3164a8/download https://repositorio.uniandes.edu.co/bitstreams/bd3cd626-fe38-44c1-94d5-8d822149b2c1/download https://repositorio.uniandes.edu.co/bitstreams/2721beb5-c4df-42d3-b4f1-7793d61c147b/download https://repositorio.uniandes.edu.co/bitstreams/4e61bfc1-26a4-4b08-8e13-fd4c64f269bf/download https://repositorio.uniandes.edu.co/bitstreams/8d400f9d-0aa4-49bd-a941-f7b766183881/download https://repositorio.uniandes.edu.co/bitstreams/9e2ab202-f69c-4580-9229-865de3102510/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 9c7d04277535a9ee11e601c8fe68eccd c343be47eb63a743f5eb598539ce38bb be3ef741ddbcd929e5591f849e0cbd21 4491fe1afb58beaaef41a73cf7ff2e27 f7d494f61e544413a13e6ba1da2089cd 181451c6164d2129c6a5f4ce6e73597a 98663e23589cac9b1e38e0da1755ed16 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133967733719040 |
spelling |
Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García Varela, José Alejandrodeebb2fd-a5d2-4279-99c0-13e7ac37f091600Reyes Usma, Sebastián Alejandrod37c3b19-d647-4030-b347-ba93e6fc301c600Sabogal Martínez, Beatriz Eugenia2023-01-20T16:13:45Z2023-01-20T16:13:45Z2023-01-20http://hdl.handle.net/1992/64047instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este trabajo estudia la universalidad de la relación Periodo-Luminosidad, también conocida como Ley de Leavitt, y la posible influencia de la metalicidad de una galaxia para cambiar los resultados de esta relación.En este trabajo se determinó la distancia y el exceso de color interno de las galaxias NGC 6822, NGC 7793, WLM, NGC 3109 y NGC 300 mediante la Ley de Leavitt (LL) en filtros VIJK. La relación lineal en un filtro dado de la magnitud aparente y el logaritmo del periodo, de las variables Cefeidas de una galaxia, de la que se deriva la LL, se considera universal en el sentido de que la pendiente de la relación es la misma para todas las galaxias. La galaxia a partir de la cual se calcula la pendiente de la LL es la Gran Nube de Magallanes (LMC), con una metalicidad de -0.5 dex. En este trabajo utilizamos los resultados de LL para la LMC de Udalski (2000) para VI y Persson et al. (2004) para JK. Para verificar la universalidad de LL, los cálculos de distancia y exceso de color se realizaron sin asumir universalidad, es decir, trabajamos con una pendiente libre. Además, se restó la extinción del medio intergaláctico de los conjuntos de datos de cada galaxia para estudiar el exceso de color interno de la galaxia. Las galaxias estudiadas tienen metalicidades en el rango de -0.5 a -1.86 dex, para estudiar si hay cambios de los resultados de LL en función de la metalicidad. La LL se calculó utilizando una regresión MM robusta, que trata adecuadamente los valores atípicos y los datos extremos. La comparación de los resultados obtenidos con los reportados en el proyecto Araucaria y la base de datos NED/IPAC llevó a tres conclusiones. En primer lugar, las pendientes de todas las galaxias difieren de la LMC, sin embargo, no se observaron diferencias de las pendientes con respecto a la LMC en función de la metalicidad. En segundo lugar, los excesos de color obtenidos muestran una gran discrepancia con los valores reportados en la literatura. Finalmente, con el análisis de las pendientes para los filtros VIJK de la LL, el módulo de distancia verdadero, la distancia y el exceso de color de las cinco galaxias estudiadas no fue posible concluir sobre la universalidad de la LL, además, tampoco se identificó cómo cambia la LL con la metalicidad.FísicoPregradoAstrofísica en escala de distancias.72 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaInfluencia de la metalicidad en la Ley de LeavittTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLey de LeavittCefeidasGran Nube de MagallanesProyecto AraucariaMetalicidadFísicaAnand, G., Lee, J., Van Dyk, S., et al. (2021). Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 501(3):3621-3639.Bell, E. and de Jong, R. (2001). Stellar mass-to-light ratios and the Tully-Fisher relation. The Astrophysical Journal, 550(1):212.Bertulani, C. (2013). Nuclei in the Cosmos. World Scientific.Binder, B., Williams, B., Eracleous, M., et al. (2012). The Chandra local volume survey: The X-ray point-source catalog of NGC 300. The Astrophysical Journal, 758(1):15.Bothwell, M., Kennicutt, R., and Lee, J. (2009). On the interstellar medium and star formation demographics of galaxies in the local universe. Monthly Notices of the Royal Astronomical Society, 400(1):154-167.Capaccioli, M., Piotto, G., and Bresolin, F. (1992). On the Cepheid variables of the nearby irregular galaxy NGC 3109. The Astronomical Journal, 103:1151-1158.Cardelli, J., Clayton, G., and Mathis, J. (1989). The relationship between infrared, optical, and ultraviolet extinction. The Astrophysical Journal, 345:245-256.Cardona, J. (2020). Calibration of extragalactic distances on different metallicity environments. Tesis de pregrado en Física, Uniandes.Carignan, C., Frank, B., Hess, K., et al. (2013). KAT-7 science verification: using Hi observation of NGC 3109 to understand its kinematics and mass distribution. The Astronomical Journal, 146(3):48.Carroll, B. and Ostlie, D. (2017). An introduction to modern astrophysics. Cambridge University Press.Catelan, M. and Smith, H. (2015). Pulsating stars. John Wiley & Sons.Cubillos, A. (2021). Determinación de la cantidad mínima de puntos necesaria para la reconstrucción de curvas de luz de estrellas variables. Tesis de pregrado en Física, Uniandes.Demers, S., Battinelli, P., and Letarte, B. (2003). Carbon star survey in the Local Group-VII. NGC 3109 a galaxy without a stellar halo. Astronomy & Astrophysics, 410(3):795-801.Demers, S., Kunkel, W., and Irwin, M. (1985). Automated photometry of NGC 3109. The Astronomical Journal, 90:1967-1981.Eddington, A. S. (2013). 58. On the Pulsations of a Gaseous Star and the Problem of the Cepheid Variables, pages 401-409. Harvard University Press.Feast, M. and Catchpole, R. (1997). The Cepheid period-luminosity zero-point from Hipparcos trigonometrical parallaxes. Monthly Notices of the Royal Astronomical Society, 286(1): L1-L5.Fernie, J. (1969). The period-luminosity relation: a historical review. Publications of the Astronomical Society of the Pacific, 81(483):707-731.Freedman, W., Madore, B., Gibson, B., et al. (2001). Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal, 553(1):47.Gallart, C., Aparicio, A., Bertelli, G., et al. (1996). The Local Group dwarf irregular galaxy NGC 6822. II. The old and intermediate-age star formation history. The Astronomical Journal, 112:1950.Gieren, W., Pietrzynski, G., Bresolin, F., et al. (2005a). Measuring improved distances to nearby galaxies: the Araucaria project. The Messenger, 121:23-28.Gieren, W., Pietrzyski, G., Nalewajko, K., et al. (2006). The araucaria project: An accurate distance to the local group galaxy NGC 6822 from near-infrared photometry of cepheid variables. The Astrophysical Journal, 647(2):1056.Gieren, W., Pietrzyki, G., Soszyski, I., et al. (2005b). The araucaria project: Near-infrared photometry of cepheid variables in the Sculptor galaxy NGC 300. The Astrophysical Journal, 628(2):695.Gieren, W., Pietrzyski, G., Szewczyk, O., et al. (2008). The araucaria project: The distance to the local group galaxy WLM from near-infrared photometry of cepheid variables. The Astrophysical Journal, 683(2):611.Gieren, W., Pietrzyski, G., Walker, A., et al. (2004). The Araucaria Project: An improved distance to the Sculptor spiral galaxy NGC 300 from its Cepheid variables. The Astronomical Journal, 128(3):1167.Gieren, W., Storm, J., Barnes III, T., et al. (2005c). Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance. The Astrophysical Journal, 627(1):224.Górski, M., Pietrzyski, G., and Gieren, W. (2011). The Araucaria Project. Infrared Tip of the Red Giant Branch Distances to Five Dwarf Galaxies in the Local Group. The Astronomical Journal, 141(6):194.Hawarden, T., Leggett, S., Letawsky, M., et al. (2001). JHK standard stars for large telescopes: the UKIRT fundamental and extended lists. Monthly Notices of the Royal Astronomical Society, 325(2):563-574.Helou, G., Roussel, H., Appleton, P., et al. (2004). The anatomy of star formation in NGC 300. The Astrophysical Journal Supplement Series, 154(1):253.Hertzsprung, E. (1913). Über die räumliche Verteilung der Veränderlichen vom delta Cephei-Typus. Astronomische Nachrichten, 196:201.Hodge, P. (1977). The structure and content of NGC 6822. The Astrophysical Journal Supplement Series, 33:69-82.Hodge, P. (1980). The recent evolutionary history of the galaxies NGC 6822 and IC 1613. The Astrophysical Journal, 241:125-131.Hubble, E. (1925a). Cepheids in spiral nebulae. Popular Astronomy, 33.Hubble, E. (1925b). NGC 6822: A Remote Stellar System. Number 304.Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the national academy of sciences, 15(3):168-173.Ianjamasimanana, R., Namumba, B., Ramaila, A., et al. (2020). MeerKAT-16 H i observation of the dIrr galaxy WLM. Monthly Notices of the Royal Astronomical Society, 497(4):4795-4813.Jerjen, H., Freeman, K., and Binggeli, B. (1998). Surface brightness fluctuation distances to dwarf elliptical galaxies in the Sculptor Group. The Astronomical Journal, 116(6):2873.Kacharov, N., Neumayer, N., Seth, A., et al. (2018). Stellar populations and star formation histories of the nuclear star clusters in six nearby galaxies. Monthly Notices of the Royal Astronomical Society, 480(2):1973-1998.Karachentsev, I., Grebel, E., Sharina, M., et al. (2003). Distances to nearby galaxies in Sculptor. Astronomy & Astrophysics, 404(1):93-111.Karachentsev, I. and Kaisina, E. (2013). Star formation properties in the local volume galaxies via H and far-ultraviolet fluxes. The Astronomical Journal, 146(3):46.Karttunen, H., Kröger, P., and Oja, H., e. a. (2007). Fundamental astronomy. Springer.Kayser, S. (1966). Photometry of the nearby irregular galaxy, NGC 6822. California Institute of Technology.Kepley, A., Wilcots, E., Hunter, D., et al. (2007). A high-resolution study of the HI content of local group dwarf irregular galaxy WLM. The Astronomical Journal, 133(5):2242.Khademi, M., Yang, Y., Hammer, F., and Nasiri, S. (2021). Kinematical asymmetry in the dwarf irregular galaxy WLM and a perturbed halo potential. Astronomy & Astrophysics, 654:A7.Lasue, J., Levasseur-Regourd, A., and Renard, J. (2020). Zodiacal light observations and its link with cosmic dust: A review. Planetary and Space Science, 190:104973.Leavitt, H. and Pickering, E. (1912). Periods of 25 Variable Stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173:1-3.Lee, M. (1993). The distance to nearby galaxy NGC 3109 based on the tip of the red giant branch. The Astrophysical Journal, 408:409-415.Lee, M., Freedman, W., and Madore, B. (1993). The tip of the red giant branch as a distance indicator for resolved galaxies. The Astrophysical Journal, 417:553.McAlary, C., Madore, B., McGonegal, R., et al. (1983). The distance to NGC 6822 from infrared photometry of Cepheids. The Astrophysical Journal, 273:539-543.McConnachie, A. (2012). The observed properties of dwarf galaxies in and around the Local Group. The Astronomical Journal, 144(1):4.Méndez, B., Davis, M., Moustakas, J., et al. (2002). Deviations from the local Hubble flow. I. The tip of the red giant branch as a distance indicator. The Astronomical Journal, 124(1):213.Minniti, D., Zijlstra, A., Alonso, M., et al. (1999). The stellar populations of NGC 3109: another dwarf irregular galaxy with a Population II stellar halo. The Astronomical Journal, 117(2):881.Mouhcine, M., Rich, R., Ferguson, H., et al. (2005). Halos of spiral galaxies. III. Metallicity distributions. The Astrophysical Journal, 633(2):828.Muschielok, B., Kudritzki, R., Appenzeller, I., et al. (1999). VLT FORS spectra of blue supergiants in the Local Group galaxy NGC 6822. Astronomy and Astrophysics, 352:L40-L44.Musella, I., Piotto, G., and Capaccioli, M. (1997). On the cepheid variables of nearby galaxies. III. NGC 3109. The Astronomical Journal, 114:976.Persson, S., Madore, B., Krzemiski, W., et al. (2004). New Cepheid period-luminosity relations for the Large Magellanic Cloud: 92 near-infrared light curves. The Astronomical Journal, 128(5):2239.Pietrzyski, G., Gieren, W., Hamuy, M., et al. (2010). The araucaria project: First cepheid distance to the sculptor group galaxy NGC 7793 from variables discovered in a wide-field maging survey. The Astronomical Journal, 140(5):1475.Pietrzyski, G., Gieren, W., Udalski, A., et al. (2004). The Araucaria Project: The Distance to the Local Group Galaxy NGC 6822 from Cepheid Variables Discovered in a Wide-Field Imaging Survey. The Astronomical Journal, 128(6):2815.Pietrzyski, G., Gieren, W., Udalski, A., et al. (2006). The araucaria project: A widefield photometric survey for cepheid variables in NGC 3109. The Astrophysical Journal, 648(1):366.Pietrzyski, G., Gieren, W., Udalski, A., et al. (2007). The Araucaria project: The distance to the local group galaxy WLM from Cepheid variables discovered in a wide-field imaging survey. The Astronomical Journal, 134(2):594.Pietrzyski, G., Graczyk, D., Gallenne, A., et al. (2019). A distance to the Large Magellanic Cloud that is precise to one per cent. Nature, 567(7747):200-203.Plummer, H. (1920). On the nature of short-period variables. Monthly Notices of the Royal Astronomical Society, 80:496.Read, J., Iorio, G., Agertz, O., et al. (2016). Understanding the shape and diversity of dwarf galaxy rotation curves in COM. Monthly Notices of the Royal Astronomical Society, 462(4):3628-3645.Rejkuba, M., Minniti, D., Gregg, M., et al. (2000). Deep Hubble Space Telescope STIS color-magnitude diagrams of the dwarf irregular galaxy WLM: Detection of the horizontal branch. The Astronomical Journal, 120(2):801.Ribas, I., Fitzpatrick, E., Maloney, F., et al. (2002). Fundamental properties and distances of Large Magellanic Cloud eclipsing binaries. III. EROS 1044. The Astrophysical Journal, 574(2):771.Rizzi, L., Bresolin, F., Kudritzki, R., et al. (2006). The Araucaria project: the distance to NGC 300 from the red giant branch tip using HST ACS imaging. The Astrophysical Journal, 638(2):766.Romaniello, M., Primas, F., Mottini, M., et al. (2009). The Dependency of the Cepheid Period-Luminosity Relation on Chemical Composition. In AIP Conference Proceedings, volume 1170, pages 99-101. American Institute of Physics.Russell, H. and Shapley, H. (1914). On the distribution of eclipsing variable stars in space. The Astrophysical Journal, 40.Sandage, A. and Carlson, G. (1988). The brightest stars in nearby galaxies. VIII-Cepheids and bright stars in NGC 3109. The Astronomical Journal, 96:1599-1613.Savage, B. and Mathis, J. (1979). Observed properties of interstellar dust. Annual review of astronomy and astrophysics, 17:73-111.Schlafly, E. and Finkbeiner, D. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. The Astrophysical Journal, 737(2):103.Schlegel, D., Finkbeiner, D., and Davis, M. (1998). Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. The Astrophysical Journal, 500(2):525.Shobbrook, R. and Robinson, B. (1967). 21 cm observations of NGC 300. Australian Journal of Physics, 20(2):131-146.Soszyski, I., Gieren, W., P. G., et al. (2006). The Araucaria Project: distance to the Local Group galaxy NGC 3109 from near-infrared photometry of Cepheids. The Astrophysical Journal, 648(1):375.Tammann, G., Sandage, A., and Reindl, B. (2003). New period-luminosity and period-color relations of classical Cepheids: I. Cepheids in the Galaxy. Astronomy & Astrophysics, 404(2):423-448.Tosi, M., Focardi, P., Greggio, L., et al. (1989). Star formation in dwarf irregular galaxies. The Messenger, 57:57-60.Tully, R., Rizzi, L., Dolphin, A., et al. (2006). Associations of dwarf galaxies. The Astronomical Journal, 132(2):729.Tully, R., Rizzi, L., Shaya, E., et al. (2009). The extragalactic distance database. The Astronomical Journal, 138(2):323Udalski, A. (2000). The optical gravitational lensing experiment. Stellar distance indicators in the Magellanic Clouds and constraints on the Magellanic Cloud distance scale. arXiv preprint astro-ph/0010151.Van den Bergh, S. (1994). The outer fringes of the local group. The Astronomical Journal, 107:1328-1332.Venn, K., Lennon, D., Kaufer, A., et al. (2001). First stellar abundances in NGC 6822 from VLT-UVES and Keck-HIRES spectroscopy. The Astrophysical Journal, 547(2):765.Zgirski, B., Gieren, W., Pietrzyski, G., et al. (2017). The Araucaria Project. The distance to the Sculptor group galaxy NGC 7793 from near-infrared photometry of Cepheid variables. The Astrophysical Journal, 847(2):88.201914097PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/6c1e36ee-8470-4377-8b89-f43626b081ac/download5aa5c691a1ffe97abd12c2966efcb8d6MD59THUMBNAILTesis_201914097.pdf.jpgTesis_201914097.pdf.jpgIM Thumbnailimage/jpeg7649https://repositorio.uniandes.edu.co/bitstreams/e3a240de-4c6d-4541-8a9b-ac257a8f4aa2/download9c7d04277535a9ee11e601c8fe68eccdMD512formato_autorizacion.pdf.jpgformato_autorizacion.pdf.jpgIM Thumbnailimage/jpeg16051https://repositorio.uniandes.edu.co/bitstreams/8712efb5-1f50-4c28-a87d-d7012a3164a8/downloadc343be47eb63a743f5eb598539ce38bbMD514TEXTTesis_201914097.pdf.txtTesis_201914097.pdf.txtExtracted texttext/plain113224https://repositorio.uniandes.edu.co/bitstreams/bd3cd626-fe38-44c1-94d5-8d822149b2c1/downloadbe3ef741ddbcd929e5591f849e0cbd21MD511formato_autorizacion.pdf.txtformato_autorizacion.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/2721beb5-c4df-42d3-b4f1-7793d61c147b/download4491fe1afb58beaaef41a73cf7ff2e27MD513CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/4e61bfc1-26a4-4b08-8e13-fd4c64f269bf/downloadf7d494f61e544413a13e6ba1da2089cdMD54ORIGINALTesis_201914097.pdfTesis_201914097.pdfTrabajo de gradoapplication/pdf4033505https://repositorio.uniandes.edu.co/bitstreams/8d400f9d-0aa4-49bd-a941-f7b766183881/download181451c6164d2129c6a5f4ce6e73597aMD510formato_autorizacion.pdfformato_autorizacion.pdfHIDEapplication/pdf224328https://repositorio.uniandes.edu.co/bitstreams/9e2ab202-f69c-4580-9229-865de3102510/download98663e23589cac9b1e38e0da1755ed16MD581992/64047oai:repositorio.uniandes.edu.co:1992/640472023-10-10 17:59:07.089http://creativecommons.org/licenses/by-nd/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |