Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
X-ray Phase-Contrast Imaging (PCI) has revolutionized imaging in biomedical and materials science by enhancing contrast for soft tissues and subtle structural details that are challenging to detect with conventional absorption-based methods. Speckle-Based Imaging (SBI), a subset of PCI, leverages sp...
- Autores:
-
Naranjo Barros, Sofía
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75726
- Acceso en línea:
- https://hdl.handle.net/1992/75726
- Palabra clave:
- Speckle-based imaging
Mammography
X-ray phase contrast
Single-exposure
Phase retrieval
Convolutional neural networks
Dose efficiency
Física
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_0eff6dc568c306b47bf3243cbf294f33 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75726 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
title |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
spellingShingle |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications Speckle-based imaging Mammography X-ray phase contrast Single-exposure Phase retrieval Convolutional neural networks Dose efficiency Física |
title_short |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
title_full |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
title_fullStr |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
title_full_unstemmed |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
title_sort |
Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications |
dc.creator.fl_str_mv |
Naranjo Barros, Sofía |
dc.contributor.advisor.none.fl_str_mv |
Ávila Bernal, Carlos Arturo |
dc.contributor.author.none.fl_str_mv |
Naranjo Barros, Sofía |
dc.contributor.jury.none.fl_str_mv |
García Varela, José Alejandro |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.eng.fl_str_mv |
Speckle-based imaging Mammography X-ray phase contrast Single-exposure Phase retrieval Convolutional neural networks Dose efficiency |
topic |
Speckle-based imaging Mammography X-ray phase contrast Single-exposure Phase retrieval Convolutional neural networks Dose efficiency Física |
dc.subject.themes.spa.fl_str_mv |
Física |
description |
X-ray Phase-Contrast Imaging (PCI) has revolutionized imaging in biomedical and materials science by enhancing contrast for soft tissues and subtle structural details that are challenging to detect with conventional absorption-based methods. Speckle-Based Imaging (SBI), a subset of PCI, leverages speckle patterns created by random diffusers to retrieve phase information, offering improved soft tissue visualization without relying on highly coherent X-ray sources. This makes SBI particularly promising for mammography, where early detection of breast cancer is often limited by the low contrast between healthy and pathological tissues in traditional imaging techniques. Despite its advantages, SBI's reliance on multiple exposures for phase retrieval can increase radiation dose, posing a safety concern. This study seeks to optimize SBI for mammographic applications by integrating convolutional neural networks (CNNs) to enable single-exposure phase retrieval, significantly reducing radiation dose while maintaining high image quality. By adapting the CNN-based StrainNet-f model, the research explores the feasibility of applying CNNs in SBI for mammography. The optimized technique was validated computationally and experimentally by comparing retrieved images with theoretical benchmarks. The results provide a proof of principle for the application of CNNs in SBI, laying the groundwork for further research into developing safer and more efficient imaging techniques for breast cancer diagnostics. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-28T16:11:52Z |
dc.date.available.none.fl_str_mv |
2025-01-28T16:11:52Z |
dc.date.issued.none.fl_str_mv |
2025-01-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75726 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75726 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
82 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0f7533c7-b1cf-42a1-9b55-61754b2904d6/download https://repositorio.uniandes.edu.co/bitstreams/794d6d40-d550-4f9f-99b1-601132a039cd/download https://repositorio.uniandes.edu.co/bitstreams/d015e78e-08e9-4466-a80b-1645d236fad0/download https://repositorio.uniandes.edu.co/bitstreams/dc0998c3-88a8-424b-baf8-bb01daea69c1/download https://repositorio.uniandes.edu.co/bitstreams/4face556-56c3-451d-97a1-0da1612542b1/download https://repositorio.uniandes.edu.co/bitstreams/1ed4c9fb-4979-469a-89a0-feb6515ce2f7/download https://repositorio.uniandes.edu.co/bitstreams/9819840a-28bb-452d-95df-55ed6e77d49b/download https://repositorio.uniandes.edu.co/bitstreams/0a2e2680-332d-457c-a42a-e9c2b0edf08a/download |
bitstream.checksum.fl_str_mv |
25f647610d866654dacf315b7c98a5f1 ca5d913a612e89bdef55140fff3747f2 0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f cbf5cb088c464dbf3be059777ef158a2 0ea5e36fed7630b571ffb3ae525bce8f da22ce3c726424e6afd8391dc4b8331e 0dc1dbe329f604adf5a639a6154b2028 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159208114094080 |
spelling |
Ávila Bernal, Carlos Arturovirtual::22687-1Naranjo Barros, SofíaGarcía Varela, José AlejandroFacultad de Ciencias2025-01-28T16:11:52Z2025-01-28T16:11:52Z2025-01-15https://hdl.handle.net/1992/75726instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/X-ray Phase-Contrast Imaging (PCI) has revolutionized imaging in biomedical and materials science by enhancing contrast for soft tissues and subtle structural details that are challenging to detect with conventional absorption-based methods. Speckle-Based Imaging (SBI), a subset of PCI, leverages speckle patterns created by random diffusers to retrieve phase information, offering improved soft tissue visualization without relying on highly coherent X-ray sources. This makes SBI particularly promising for mammography, where early detection of breast cancer is often limited by the low contrast between healthy and pathological tissues in traditional imaging techniques. Despite its advantages, SBI's reliance on multiple exposures for phase retrieval can increase radiation dose, posing a safety concern. This study seeks to optimize SBI for mammographic applications by integrating convolutional neural networks (CNNs) to enable single-exposure phase retrieval, significantly reducing radiation dose while maintaining high image quality. By adapting the CNN-based StrainNet-f model, the research explores the feasibility of applying CNNs in SBI for mammography. The optimized technique was validated computationally and experimentally by comparing retrieved images with theoretical benchmarks. The results provide a proof of principle for the application of CNNs in SBI, laying the groundwork for further research into developing safer and more efficient imaging techniques for breast cancer diagnostics.Pregrado82 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applicationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSpeckle-based imagingMammographyX-ray phase contrastSingle-exposurePhase retrievalConvolutional neural networksDose efficiencyFísica202012834Publicationhttps://scholar.google.es/citations?user=jitNa1QAAAAJvirtual::22687-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000008370virtual::22687-1279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22687-1279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22687-1ORIGINALAutorización entrega de tesis al sistema de bibliotecas (1).pdfAutorización entrega de tesis al sistema de bibliotecas (1).pdfHIDEapplication/pdf270837https://repositorio.uniandes.edu.co/bitstreams/0f7533c7-b1cf-42a1-9b55-61754b2904d6/download25f647610d866654dacf315b7c98a5f1MD51Neural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdfNeural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdfapplication/pdf4840447https://repositorio.uniandes.edu.co/bitstreams/794d6d40-d550-4f9f-99b1-601132a039cd/downloadca5d913a612e89bdef55140fff3747f2MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/d015e78e-08e9-4466-a80b-1645d236fad0/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/dc0998c3-88a8-424b-baf8-bb01daea69c1/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorización entrega de tesis al sistema de bibliotecas (1).pdf.txtAutorización entrega de tesis al sistema de bibliotecas (1).pdf.txtExtracted texttext/plain1994https://repositorio.uniandes.edu.co/bitstreams/4face556-56c3-451d-97a1-0da1612542b1/downloadcbf5cb088c464dbf3be059777ef158a2MD55Neural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.txtNeural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.txtExtracted texttext/plain100881https://repositorio.uniandes.edu.co/bitstreams/1ed4c9fb-4979-469a-89a0-feb6515ce2f7/download0ea5e36fed7630b571ffb3ae525bce8fMD57THUMBNAILAutorización entrega de tesis al sistema de bibliotecas (1).pdf.jpgAutorización entrega de tesis al sistema de bibliotecas (1).pdf.jpgGenerated Thumbnailimage/jpeg10831https://repositorio.uniandes.edu.co/bitstreams/9819840a-28bb-452d-95df-55ed6e77d49b/downloadda22ce3c726424e6afd8391dc4b8331eMD56Neural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.jpgNeural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.jpgGenerated Thumbnailimage/jpeg7119https://repositorio.uniandes.edu.co/bitstreams/0a2e2680-332d-457c-a42a-e9c2b0edf08a/download0dc1dbe329f604adf5a639a6154b2028MD581992/75726oai:repositorio.uniandes.edu.co:1992/757262025-03-05 09:39:27.112http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |