Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications

X-ray Phase-Contrast Imaging (PCI) has revolutionized imaging in biomedical and materials science by enhancing contrast for soft tissues and subtle structural details that are challenging to detect with conventional absorption-based methods. Speckle-Based Imaging (SBI), a subset of PCI, leverages sp...

Full description

Autores:
Naranjo Barros, Sofía
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75726
Acceso en línea:
https://hdl.handle.net/1992/75726
Palabra clave:
Speckle-based imaging
Mammography
X-ray phase contrast
Single-exposure
Phase retrieval
Convolutional neural networks
Dose efficiency
Física
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_0eff6dc568c306b47bf3243cbf294f33
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75726
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
title Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
spellingShingle Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
Speckle-based imaging
Mammography
X-ray phase contrast
Single-exposure
Phase retrieval
Convolutional neural networks
Dose efficiency
Física
title_short Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
title_full Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
title_fullStr Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
title_full_unstemmed Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
title_sort Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applications
dc.creator.fl_str_mv Naranjo Barros, Sofía
dc.contributor.advisor.none.fl_str_mv Ávila Bernal, Carlos Arturo
dc.contributor.author.none.fl_str_mv Naranjo Barros, Sofía
dc.contributor.jury.none.fl_str_mv García Varela, José Alejandro
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.eng.fl_str_mv Speckle-based imaging
Mammography
X-ray phase contrast
Single-exposure
Phase retrieval
Convolutional neural networks
Dose efficiency
topic Speckle-based imaging
Mammography
X-ray phase contrast
Single-exposure
Phase retrieval
Convolutional neural networks
Dose efficiency
Física
dc.subject.themes.spa.fl_str_mv Física
description X-ray Phase-Contrast Imaging (PCI) has revolutionized imaging in biomedical and materials science by enhancing contrast for soft tissues and subtle structural details that are challenging to detect with conventional absorption-based methods. Speckle-Based Imaging (SBI), a subset of PCI, leverages speckle patterns created by random diffusers to retrieve phase information, offering improved soft tissue visualization without relying on highly coherent X-ray sources. This makes SBI particularly promising for mammography, where early detection of breast cancer is often limited by the low contrast between healthy and pathological tissues in traditional imaging techniques. Despite its advantages, SBI's reliance on multiple exposures for phase retrieval can increase radiation dose, posing a safety concern. This study seeks to optimize SBI for mammographic applications by integrating convolutional neural networks (CNNs) to enable single-exposure phase retrieval, significantly reducing radiation dose while maintaining high image quality. By adapting the CNN-based StrainNet-f model, the research explores the feasibility of applying CNNs in SBI for mammography. The optimized technique was validated computationally and experimentally by comparing retrieved images with theoretical benchmarks. The results provide a proof of principle for the application of CNNs in SBI, laying the groundwork for further research into developing safer and more efficient imaging techniques for breast cancer diagnostics.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-28T16:11:52Z
dc.date.available.none.fl_str_mv 2025-01-28T16:11:52Z
dc.date.issued.none.fl_str_mv 2025-01-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75726
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75726
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 82 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0f7533c7-b1cf-42a1-9b55-61754b2904d6/download
https://repositorio.uniandes.edu.co/bitstreams/794d6d40-d550-4f9f-99b1-601132a039cd/download
https://repositorio.uniandes.edu.co/bitstreams/d015e78e-08e9-4466-a80b-1645d236fad0/download
https://repositorio.uniandes.edu.co/bitstreams/dc0998c3-88a8-424b-baf8-bb01daea69c1/download
https://repositorio.uniandes.edu.co/bitstreams/4face556-56c3-451d-97a1-0da1612542b1/download
https://repositorio.uniandes.edu.co/bitstreams/1ed4c9fb-4979-469a-89a0-feb6515ce2f7/download
https://repositorio.uniandes.edu.co/bitstreams/9819840a-28bb-452d-95df-55ed6e77d49b/download
https://repositorio.uniandes.edu.co/bitstreams/0a2e2680-332d-457c-a42a-e9c2b0edf08a/download
bitstream.checksum.fl_str_mv 25f647610d866654dacf315b7c98a5f1
ca5d913a612e89bdef55140fff3747f2
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
cbf5cb088c464dbf3be059777ef158a2
0ea5e36fed7630b571ffb3ae525bce8f
da22ce3c726424e6afd8391dc4b8331e
0dc1dbe329f604adf5a639a6154b2028
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159208114094080
spelling Ávila Bernal, Carlos Arturovirtual::22687-1Naranjo Barros, SofíaGarcía Varela, José AlejandroFacultad de Ciencias2025-01-28T16:11:52Z2025-01-28T16:11:52Z2025-01-15https://hdl.handle.net/1992/75726instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/X-ray Phase-Contrast Imaging (PCI) has revolutionized imaging in biomedical and materials science by enhancing contrast for soft tissues and subtle structural details that are challenging to detect with conventional absorption-based methods. Speckle-Based Imaging (SBI), a subset of PCI, leverages speckle patterns created by random diffusers to retrieve phase information, offering improved soft tissue visualization without relying on highly coherent X-ray sources. This makes SBI particularly promising for mammography, where early detection of breast cancer is often limited by the low contrast between healthy and pathological tissues in traditional imaging techniques. Despite its advantages, SBI's reliance on multiple exposures for phase retrieval can increase radiation dose, posing a safety concern. This study seeks to optimize SBI for mammographic applications by integrating convolutional neural networks (CNNs) to enable single-exposure phase retrieval, significantly reducing radiation dose while maintaining high image quality. By adapting the CNN-based StrainNet-f model, the research explores the feasibility of applying CNNs in SBI for mammography. The optimized technique was validated computationally and experimentally by comparing retrieved images with theoretical benchmarks. The results provide a proof of principle for the application of CNNs in SBI, laying the groundwork for further research into developing safer and more efficient imaging techniques for breast cancer diagnostics.Pregrado82 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Neural network optimization of Speckle-based phase-contrast X-ray imaging for mammography applicationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSpeckle-based imagingMammographyX-ray phase contrastSingle-exposurePhase retrievalConvolutional neural networksDose efficiencyFísica202012834Publicationhttps://scholar.google.es/citations?user=jitNa1QAAAAJvirtual::22687-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000008370virtual::22687-1279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22687-1279f6f35-f4cc-429c-8e15-3e6dc77d8289virtual::22687-1ORIGINALAutorización entrega de tesis al sistema de bibliotecas (1).pdfAutorización entrega de tesis al sistema de bibliotecas (1).pdfHIDEapplication/pdf270837https://repositorio.uniandes.edu.co/bitstreams/0f7533c7-b1cf-42a1-9b55-61754b2904d6/download25f647610d866654dacf315b7c98a5f1MD51Neural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdfNeural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdfapplication/pdf4840447https://repositorio.uniandes.edu.co/bitstreams/794d6d40-d550-4f9f-99b1-601132a039cd/downloadca5d913a612e89bdef55140fff3747f2MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/d015e78e-08e9-4466-a80b-1645d236fad0/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/dc0998c3-88a8-424b-baf8-bb01daea69c1/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTAutorización entrega de tesis al sistema de bibliotecas (1).pdf.txtAutorización entrega de tesis al sistema de bibliotecas (1).pdf.txtExtracted texttext/plain1994https://repositorio.uniandes.edu.co/bitstreams/4face556-56c3-451d-97a1-0da1612542b1/downloadcbf5cb088c464dbf3be059777ef158a2MD55Neural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.txtNeural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.txtExtracted texttext/plain100881https://repositorio.uniandes.edu.co/bitstreams/1ed4c9fb-4979-469a-89a0-feb6515ce2f7/download0ea5e36fed7630b571ffb3ae525bce8fMD57THUMBNAILAutorización entrega de tesis al sistema de bibliotecas (1).pdf.jpgAutorización entrega de tesis al sistema de bibliotecas (1).pdf.jpgGenerated Thumbnailimage/jpeg10831https://repositorio.uniandes.edu.co/bitstreams/9819840a-28bb-452d-95df-55ed6e77d49b/downloadda22ce3c726424e6afd8391dc4b8331eMD56Neural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.jpgNeural_Network_Optimization_of_Speckle_Phase_Contrast_X_ray_Imaging_for_Mammography_Applications.pdf.jpgGenerated Thumbnailimage/jpeg7119https://repositorio.uniandes.edu.co/bitstreams/0a2e2680-332d-457c-a42a-e9c2b0edf08a/download0dc1dbe329f604adf5a639a6154b2028MD581992/75726oai:repositorio.uniandes.edu.co:1992/757262025-03-05 09:39:27.112http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K