VALS: A Visual Analytics Framework for Longitudinal Studies

El análisis visual de datos ayuda a comprender distintos tipos de fenómenos al permitir a los expertos explorar en busca de relaciones, patrones, valores atípicos, cambios inesperados y mucho más. Los expertos necesitan herramientas que les ayuden a encontrar información útil y procesable en los dat...

Full description

Autores:
Gómez Betancur, Duván Alberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/66426
Acceso en línea:
http://hdl.handle.net/1992/66426
Palabra clave:
Estudios de cohortes
Análisis exploratorio de datos
Datos longitudinales
Análisis visual
Visualización de información
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_0e3c48d916b1d3b7b315e5a8ac1e2464
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/66426
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv VALS: A Visual Analytics Framework for Longitudinal Studies
title VALS: A Visual Analytics Framework for Longitudinal Studies
spellingShingle VALS: A Visual Analytics Framework for Longitudinal Studies
Estudios de cohortes
Análisis exploratorio de datos
Datos longitudinales
Análisis visual
Visualización de información
Ingeniería
title_short VALS: A Visual Analytics Framework for Longitudinal Studies
title_full VALS: A Visual Analytics Framework for Longitudinal Studies
title_fullStr VALS: A Visual Analytics Framework for Longitudinal Studies
title_full_unstemmed VALS: A Visual Analytics Framework for Longitudinal Studies
title_sort VALS: A Visual Analytics Framework for Longitudinal Studies
dc.creator.fl_str_mv Gómez Betancur, Duván Alberto
dc.contributor.advisor.none.fl_str_mv Charpak, Nathalie
Hernández Peñaloza, José Tiberio
dc.contributor.author.none.fl_str_mv Gómez Betancur, Duván Alberto
dc.contributor.jury.none.fl_str_mv Hagen, Hans
Branch, John William
Ahumada, César
Villamil Giraldo, María del Pilar
dc.contributor.researchgroup.es_CO.fl_str_mv Imagine: Computación Visual, I+D+I
dc.subject.keyword.none.fl_str_mv Estudios de cohortes
Análisis exploratorio de datos
Datos longitudinales
Análisis visual
Visualización de información
topic Estudios de cohortes
Análisis exploratorio de datos
Datos longitudinales
Análisis visual
Visualización de información
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description El análisis visual de datos ayuda a comprender distintos tipos de fenómenos al permitir a los expertos explorar en busca de relaciones, patrones, valores atípicos, cambios inesperados y mucho más. Los expertos necesitan herramientas que les ayuden a encontrar información útil y procesable en los datos para poder comprobar sus hipótesis y desarrollar otras nuevas. Esta necesidad se hace más evidente en los estudios longitudinales, en los que suele haber un gran número de variables y el proceso que se analiza también puede ser complejo. Presentamos VALS (Visual Analytics in Longitudinal Studies), un framework para explorar visualmente datos de estudios longitudinales. VALS incluye un modelo de datos, un modelo de categorización de tareas y un enfoque hacia la orientación de los usuarios mediante técnicas de ingeniería de características y visualizaciones interactivas, todo lo cual ayuda a los analistas a realizar sus tareas de análisis. La construcción de VALS estuvo acompañada por expertos en estudios clínicos longitudinales. También hemos desarrollado un prototipo de herramienta para un estudio de caso utilizando conjuntos de datos del mundo real. Las pruebas recogidas en el estudio de caso demuestran la utilidad de una herramienta de análisis visual basada en VALS.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-19
dc.date.accessioned.none.fl_str_mv 2023-04-26T15:57:27Z
dc.date.available.none.fl_str_mv 2023-04-26T15:57:27Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/66426
dc.identifier.doi.none.fl_str_mv 10.57784/1992/66426
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/66426
identifier_str_mv 10.57784/1992/66426
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv M Ali et al. "Clustering and Classification for Time Series Data in Visual Analytics: A Survey". In: ieeexplore.ieee.org (2019).
Diego A. Angulo et al. "A multi-facetted visual analytics tool for exploratory analysis of human brain and function datasets". In: Frontiers in Neuroinformatics 10 (Aug. 2016), p. 36.
M Behrisch et al. "Quality metrics for information visualization". In: Wiley Online Library 37.3 (June 2018), pp. 625-662. DOI: 10.1111/cgf.13446.
M Bostock et al. "D³ data-driven documents". In: ieeexplore.ieee.org (2010).
Bokai Cao et al. "Tensor-Based Multi-View Feature Selection with Applications to Brain Diseases". In: 2014 IEEE International Conference on Data Mining, Vol. IEEE, Dec. 2014, pp. 40-49. ISBN: 978-1-4799-4302-9. DOI: 10.1109/ICDM.2014.26.
Stuart K. Card, Jock D. Mackinlay, and Ben. Shneiderman. "Readings in information visualization : using vision to think". In: (1999), p. 686.
Davide Ceneda. "Guidance-Enriched Visual Analytics". PhD thesis. 2021.
Davide Ceneda, Theresia Gschwandtner, and Silvia Miksch. "A review of guidance approaches in visual data analysis: A multifocal perspective". In: Computer Graphics Forum 38.3 (2019), pp. 861-879.
Davide Ceneda et al. "Characterizing guidance in visual analytics". In: IEEE Transactions on Visualization and Computer Graphics 23.1 (2017), pp. 111-120.
Davide Ceneda et al. "Guide me in analysis: A framework for guidance designers". In: Computer Graphics Forum 39.6 (Sept. 2020), pp. 269-288.
Nathalie Charpak et al. "A randomized, controlled trial of Kangaroo Mother Care: Results of follow-up at 1 year of corrected age". In: Pediatrics 108.5 (2001), pp. 1072-1079.
Nathalie Charpak et al. "Kangaroo mother care had a protective effect on the volume of brain structures in young adults born preterm". In: Acta Paediatrica (Feb. 2022).
Nathalie Charpak et al. "Kangaroo Mother Care: 25 years after". In: Acta Paediatrica 94.5 (Jan. 2007), pp. 514-522.
Nathalie Charpak et al. "Twenty-year follow-up of kangaroo mother care versus traditional care". In: Pediatrics 139.1 (2017).
M Cheng et al. "Tensor-Based Low-Dimensional Representation Learning for Multi-View Clustering". In: ieeexplore.ieee.org (2019).
Dianne Cook and Deborah F Swayne. Interactive and Dynamic Graphics for Data Analysis: With Examples Using R and GGobi.
Zhe Cui et al. "DataSite: Proactive visual data exploration with computation of insightbased recommendations". In: Information Visualization 18.2 (Apr. 2019), pp. 251-267.
Cagatay Demiralp et al. "Foresight: Recommending visual insights". In: Proceedings ofthe VLDB Endowment 10.12 (2017).
Frederik L Dennig et al. FDive: Learning Relevance Models using Pattern-based Similarity Measures. Tech. rep. 2019.
Departamento Nacional de Estadística. Datos de nacimientos en Colombia. 2021. URL: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos-y-defunciones/nacimientos.
Kedar Dhamdhere et al. "Analyza: Exploring data with conversation". In: International Conference on Intelligent User Interfaces, Proceedings IUI. Association for Computing Machinery, Mar. 2017, pp. 493-504. ISBN: 9781450343480.
Deisy Diaz et al. "Visual tools for the exploration of growth data in a cohort of kangaroo infants during their first year of life". In: 2017 IEEE Workshop on Visual Analytics in Healthcare (VAHC). IEEE, Oct. 2017, pp. 9-16. ISBN: 978-1-5386-3187-4.
Alan Dix et al. Human-Computer Interaction. 3rd ed. Pearson, 2004.
Guozhu Dong and Huan Liu. Feature engineering for machine learning and data analytics. Ed. by Guozhu Dong and Huan Liu. CRC Press, 2018.
Qian Fang, Chen Yu, and Zhang Weiping. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data". In: Journal of Multivariate Analysis 176 (Mar. 2020), p. 104580. ISSN: 0047-259X.
Stephen. Few. "Show me the numbers : designing tables and graphs to enlighten". (2004), p. 265.
Fabian Fischer et al. "VisTracer: A visual analytics tool to investigate routing anomalies in traceroutes". In: ACM International Conference Proceeding Series (2012), pp. 80-87.
G Fitzmaurice et al. "Longitudinal data analysis". (2008).
Garrett M. Fitzmaurice, Nan M. Laird, and James H. Ware. Applied longitudinal analysis. Wiley, 2012.
Takanori Fujiwara et al. "A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction". In: IEEE Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 1601-1611. ISSN: 19410506.
JAG Gómez et al. "TreeVersity: Comparing tree structures by topology and node's attributes differences". In: ieeexplore.ieee.org. 2011.
David Gotz and Michelle X. Zhou. "Characterizing users visual analytic activity for insight provenance". In: Information Visualization 8.1 (Mar. 2009), pp. 42-55.
Yi Guo et al. "Survey on visual analysis of event sequence data". In: IEEE Transactions on Visualization and Computer Graphics (2021).
Maureen Hack, Harriet Friedman, and Avroy A. Fanaroff. "Outcomes of Extremely Low Birth Weight Infants". In: Pediatrics 98.5 (1996).
H Hauser et al. "Visual recommendations for network navigation". In: Wiley Online Library 30.3 (2011), pp. 1081-1090.
Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky. "A tour through the visualization zoo". In: Communications of the ACM 53.6 (June 2010), pp. 59-67.
Jeffrey Heer and Danah Boyd. "Vizster: Visualizing online social networks". In: Proceedings - IEEE Symposium on Information Visualization, INFO VIS (2005), pp. 32-39.
Jeffrey Heer and Ben Shneiderman. "Interactive dynamics for visual analysis". In: Communications of the ACM 55.4 (Apr. 2012), pp. 45-54.
Roberto Hernández-Sampieri and Paulina Mendoza. Metodología de la investigación. Vol. 11. Mc Graw Hill, 2018, p. 751.
Eric Horvitz. "Principles of mixed-initiative user interfaces". In: Conference on Human Factors in Computing Systems - Proceedings (1999), pp. 159-166.
Kevin Hu, Diana Orghian, and César Hidalgo. "DIVE: A mixed-initiative system supporting integrated data exploration workflows". In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA 2018 (2018).
Kevin Hu et al. "VizML: A machine learning approach to visualization recommendation". In: Conference on Human Factors in Computing Systems - Proceedings (2019).
Human Brain Project Home. URL: https://www.humanbrainproject.eu/en/.
Human Connectome Project - Mapping the human brain connectivity. URL: http://www.humanconnectomeproject.org/.
Shaoxiong Ji et al. "A Survey on Knowledge Graphs: Representation, Acquisition, and Applications". In: IEEE Transactions on Neural Networks and Learning Systems (2021), pp. 1-27. ISSN: 21622388.
Zhuochen Jin et al. "CarePre: An Intelligent Clinical Decision Assistance System". In:ACM Transactions on Computing for Healthcare 1.1 (Mar. 2020). ISSN: 26378051.
Jimmy Johansson et al. "Revealing structure within clustered parallel coordinates displays". In: IEEE Symposium on Information Visualization. 2005, pp. 125-132.
Daniel Jönsson et al. "A Visual Environment for Hypothesis Formation and Reasoning in Studies with fMRI and Multivariate Clinical Data". In: (2019).
Daniel Jönsson et al. "VisualNeuro: A Hypothesis Formation and Reasoning Application for Multi-Variate Brain Cohort Study Data". In: Computer Graphics Forum (2020), pp. 1-16.
Doris Jung-Lin Lee et al. "Avoiding Drill-down Fallacies with VisPilot: Assisted Exploration of Data Subsets". In: Proceedings of the 24th International Conference on Intelligent User Interfaces (2019).
Niranjan Kamat, Eugene Wu, and Arnab Nandi. "TrendQuery: A system for interactive exploration of trends". In: HILDA 2016 - Proceedings of the Workshop on Human-Inthe-Loop Data Analytics (June 2016).
Mehmed. Kantardzic. Data mining : concepts, models, methods, and algorithms. 3rd ed. 2020, p. 639. ISBN: 978-1-119-51604-0.
James Max Kanter and Kalyan Veeramachaneni. "Deep feature synthesis: Towards automating data science endeavors". In: 2015 IEEE international conference on data science and advanced analytics (DSAA). 2015, pp. 1-10.
Daniel Keim et al. "Visual analytics: Definition, process, and challenges". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 4950 LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 154-175. ISBN: 354070955X.
Kohlhammer Jörn Keim Daniel, Geo rey Ellis Mansmann, and Florian. "Mastering the Information Age Solving Problems with Visual Analytics". In: Mastering the Information Age Solving Problems with Visual Analytics (2010), pp. 57-86. ISSN: 1877-0509.
Johnson J. G. Keiriz et al. Exploring the Human Connectome Topology in Group Studies. June 2017.
Johnson J.G. Keiriz et al. "NeuroCave: AWeb-based Immersive Visualization Platform for Exploring Connectome Datasets". In: Network Neuroscience (Feb. 2018), pp. 1-19. ISSN: 2472-1751.
C Larman and V.R. Basili. "Iterative and incremental developments. a brief history". In: ieeexplore.ieee.org (2003).
Doris Jung-Lin Lee. "Designing Automated Assistants for Visual Data Exploration". PhD thesis. UC Berkeley, July 2021.
Doris Jung-Lin Lee and Aditya Parameswaran. "The case for a visual discovery assistant: A holistic solution for accelerating visual data exploration". In: IEEE Data Eng. Bull. 41.3 (2018), pp. 3-14.
Doris Jung-Lin Lee et al. "Lux: Always-on visualization recommendations for exploratory data science". In: Proceedings of the VLDB Endowment 15.3 (2022), pp. 727-738.
Fritz Lekschas et al. "Peax: Interactive Visual Pattern Search in Sequential Data Using Unsupervised Deep Representation Learning". In: bioRxiv (2019), p. 597518.
Haotian Li et al. "KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation". 2021.
Fang Liu and Jianbo Su. "An Online Feature Learning Algorithm Using HCI-Based Reinforcement Learning". In: Springer, Berlin, Heidelberg, 2004, pp. 293-298.
Jock Mackinlay. "Automating the design of graphical presentations of relational information". In: ACM Transactions on Graphics (TOG) 5.2 (Apr. 1986), pp. 110-141. ISSN: 15577368.
Jock D. Mackinlay, Pat Hanrahan, and Chris Stolte. "Show Me: Automatic presentation for visual analysis". In: IEEE Transactions on Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1137-1144.
Craig H. Mallinckrodt and Ilya. Lipkovich. "Analyzing longitudinal clinical trial data".
Ronny S. Mans, Wil M. P. van der Aalst, and Rob J. B. Vanwersch. "Healthcare Processes". (2015), pp. 11-15.
Wendy L. Martinez, Angel R. Martinez, and Jeffrey L. Solka. Exploratory Data Analysis with MATLAB, Third Edition. Chapman and Hall/CRC, Aug. 2017.
T. May et al. "Using Signposts for Navigation in Large Graphs". In: undefined 31.3 PART 2 (2012), pp. 985-994. ISSN: 14678659.
Dominik Moritz et al. "Formalizing visualization design knowledge as constraints: Actionable and extensible models in Draco". In: IEEE Transactions on Visualization and Computer Graphics 25.1 (2019).
Tamara Munzner. Visualization Analysis and Design. CRC Press, 2014.
Renato Novais et al. "On the proactive and interactive visualization for feature evolution comprehension: An industrial investigation". In: Proceedings - International Conference on Software Engineering. 2012, pp.1044-1053. ISBN: 9781467310673.
Sinan Ozdemir and Divya Susarla. Feature engineering made easy : identify unique features from your dataset in order to build powerful machine learning systems. 2018, p. 316.
Heiko Paulheim. "Knowledge graph refinement: A survey of approaches and evaluation methods". In: Semantic Web 8.3 (2017), pp. 489-508. ISSN: 22104968.
Adam Perer and Ben Shneiderman. "Systematic yet flexible discovery: Guiding domain experts through exploratory data Analysis". In: International Conference on Intelligent User Interfaces, Proceedings IUI (2008), pp. 109-118.
Bradley S. Peterson et al. "Regional brain volume abnormalities and long-term cognitive outcome in preterm infants". In: Journal of the American Medical Association 284.15 (2000), pp. 1939-1947.
Alan Phillips et al. "Estimands: discussion points from the PSI estimands and sensitivity expert group". In: Pharmaceutical Statistics 16.1 (Jan. 2017), pp. 6-11. ISSN: 15391612.
"Principles of Clinical Cancer Research". In: Principles of Clinical Cancer Research (Nov. 2018).
William Ribarsky and Brian Fisher. "The human-computer system: Towards an operational model for problem solving". In: 49th Hawaii International Conference on System Sciences (HICSS). 2016, pp. 1446-1455.
Michael de Ridder, Karsten Klein, and Jinman Kim. "A review and outlook on visual analytics for uncertainties in functional magnetic resonance imaging". In: Brain Informatics 5.2 (Dec. 2018), p. 5.
Michael de Ridder et al. "An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity". In: Neuroinformatics 17.2 (Apr. 2019), pp. 211¿223.
Diego Rodrigues et al. "Associative patterns in health data: exploring new techniques". In: Health and Technology 12.2 (Mar. 2022), pp. 415-431. ISSN: 21907196.
Dominik Sacha et al. "Knowledge generation model for visual analytics". In: IEEE transactions on visualization and computer graphics 20 (2014), pp. 1604-1613.
Sunita Sarawagi. "User-adaptive exploration of multidimensional data". In: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB-00 (2000), pp. 307-316.
Mario Schmidt. "The Sankey Diagram in Energy and Material Flow Management". In: Journal of Industrial Ecology 12.2 (Apr. 2008), pp. 173-185. ISSN: 1530-9290.
Hans-Jörg Schulz et al. "Towards a characterization of guidance in visualization". In: Poster at IEEE Conference on Information Visualization (InfoVis). 2013.
Leixian Shen et al. "Visual Data Analysis with Task-based Recommendations". In: (May 2022).
Ben Shneiderman. "Eyes have it: a task by data type taxonomy for information visualizations". In: IEEE Symposium on Visual Languages, Proceedings. 1996, pp. 336-343.
Ben. Shneiderman and Catherine. Plaisant. "Designing the user interface : strategies for effective human-computer interaction". In: (2010), p. 606.
Tarique Siddiqui et al. "Effortless data exploration with Zenvisage: An expressive and interactive visual analytics system". In: Proceedings of the VLDB Endowment 10.4 (Apr. 2016), pp. 457-468.
Marc Streit et al. "Model-driven design for the visual analysis of heterogeneous data"¿. In: IEEE Transactions on Visualization and Computer Graphics 18.6 (2011), pp. 998-1010.
JJ Thiagarajan et al. "PADDLE: Performance Analysis using a Data-driven Learning Environment". In: (2017).
Edward R Tufte. "The visual display of quantitative information". In: (2001).
JohnW. Tukey. "We need both exploratory and confirmatory". In: The American Statistician 34.1 (Feb. 1980), p. 23.
Gerald Van Belle et al. Biostatistics: A Methodology for the Health Sciences. Vol. 39. 3. 2005, pp. 576-577. ISBN: 9786468600.
Manasi Vartak et al. "SEEDB: Automatically generating query visualizations". In: Proceedings of the VLDB Endowment 7.13 (2014), pp. 1581-1584.
Manasi Vartak et al. "Towards visualization recommendation systems". In: SIGMOD Record 45.4 (2016), pp. 34-39.
PF Velleman and DC Hoaglin. Applications, basics, and computing of exploratory data analysis. 1981.
Randle Aaron M. Villanueva and Zhuo Job Chen. "ggplot2: Elegant Graphics for Data Analysis (2nd ed.)" In: https://doi.org/10.1080/15366367.2019.1565254 17.3 (July 2019), pp. 160-167. ISSN: 1536-6367.
Colin Ware. Information visualization: perception for design. 2019.
Colin Ware, William Wright, and Nicholas J. Pioch. "Visual thinking design patterns". In: Proceedings: DMS 2013 - 19th International Conference on Distributed Multimedia Systems (2013), pp. 150-155.
Michael L.Waskom. "seaborn: statistical data visualization". In: Journal of Open Source Software 6.60 (Apr. 2021), p. 3021. ISSN: 2475-9066.
Graham Wills. Linked Data Views. Springer, Berlin, Heidelberg, 2008, pp. 217-241.
KanitWongsuphasawat et al. "Voyager 2: Augmenting visual analysis with partial view specifications". In: Conference on Human Factors in Computing Systems - Proceedings. 2017, pp. 2648-2659.
Jason D. Yeatman et al. "A browser-based tool for visualization and analysis of diffusion MRI data". In: Nature Communications 9.1 (Dec. 2018), p. 940. ISSN: 2041-1723.
Jason D. Yeatman et al. "Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification". In: PLoS ONE 7.11 (Nov. 2012). ISSN: 19326203.
Ji Soo Yi et al. "Toward a deeper understanding of the role of interaction in information visualization". In: IEEE Transactions on Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1224-1231. ISSN: 10772626.
Fuzheng Zhang et al. "Collaborative knowledge base embedding for recommender systems". In: dl.acm.org 13-17-Augu (Aug. 2016), pp. 353-362.
Haitao Zhao et al. Feature Learning and Understanding. Information Fusion and Data Science. Cham: Springer International Publishing, 2020. ISBN: 978-3-030-40793-3.
Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles and techniques for data scientists. O'Reilly Media, Inc., 2018.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 122
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c339d55f-f5f1-4715-ba29-a08b3bc8ddc8/download
https://repositorio.uniandes.edu.co/bitstreams/1c1bd1fa-bfda-4f10-9d2b-896523dd5cbc/download
https://repositorio.uniandes.edu.co/bitstreams/52c72135-bb86-4fd1-a1dd-fe555867c8ee/download
https://repositorio.uniandes.edu.co/bitstreams/e89c5e8b-db0d-4733-a031-d1d0b0d39a20/download
https://repositorio.uniandes.edu.co/bitstreams/cf019a10-1060-447e-b6d0-9b6cb705c850/download
https://repositorio.uniandes.edu.co/bitstreams/87ec9ef7-0589-488c-8e5c-858ae222dd66/download
https://repositorio.uniandes.edu.co/bitstreams/7e092de4-9cda-4670-9918-be1c5b888779/download
bitstream.checksum.fl_str_mv 6f29fa58863d2a3edd3c87f9ca9133cc
11edbd3ce75179c969730d54a8f005f3
c1b05cb28f929fc86ddfee6957462378
87f4718a89c8c4b7e6db9f7a3f53f901
68ee18cb7d245ca717520f72a5d26be7
08b106dfeb12472e88207a069e15ba30
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111748304011264
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Charpak, Nathalie3bc5ae8c-1bf4-4b3d-a96a-5a122bb76ad4600Hernández Peñaloza, José Tiberiovirtual::4212-1Gómez Betancur, Duván Alberto9c633435-0066-47a3-8893-7bbb17f5f9a0600Hagen, HansBranch, John WilliamAhumada, CésarVillamil Giraldo, María del PilarImagine: Computación Visual, I+D+I2023-04-26T15:57:27Z2023-04-26T15:57:27Z2022-07-19http://hdl.handle.net/1992/6642610.57784/1992/66426instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El análisis visual de datos ayuda a comprender distintos tipos de fenómenos al permitir a los expertos explorar en busca de relaciones, patrones, valores atípicos, cambios inesperados y mucho más. Los expertos necesitan herramientas que les ayuden a encontrar información útil y procesable en los datos para poder comprobar sus hipótesis y desarrollar otras nuevas. Esta necesidad se hace más evidente en los estudios longitudinales, en los que suele haber un gran número de variables y el proceso que se analiza también puede ser complejo. Presentamos VALS (Visual Analytics in Longitudinal Studies), un framework para explorar visualmente datos de estudios longitudinales. VALS incluye un modelo de datos, un modelo de categorización de tareas y un enfoque hacia la orientación de los usuarios mediante técnicas de ingeniería de características y visualizaciones interactivas, todo lo cual ayuda a los analistas a realizar sus tareas de análisis. La construcción de VALS estuvo acompañada por expertos en estudios clínicos longitudinales. También hemos desarrollado un prototipo de herramienta para un estudio de caso utilizando conjuntos de datos del mundo real. Las pruebas recogidas en el estudio de caso demuestran la utilidad de una herramienta de análisis visual basada en VALS.Doctor en IngenieríaDoctoradoAnalítica Visual y Visualización de Información122application/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónVALS: A Visual Analytics Framework for Longitudinal StudiesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDEstudios de cohortesAnálisis exploratorio de datosDatos longitudinalesAnálisis visualVisualización de informaciónIngenieríaM Ali et al. "Clustering and Classification for Time Series Data in Visual Analytics: A Survey". In: ieeexplore.ieee.org (2019).Diego A. Angulo et al. "A multi-facetted visual analytics tool for exploratory analysis of human brain and function datasets". In: Frontiers in Neuroinformatics 10 (Aug. 2016), p. 36.M Behrisch et al. "Quality metrics for information visualization". In: Wiley Online Library 37.3 (June 2018), pp. 625-662. DOI: 10.1111/cgf.13446.M Bostock et al. "D³ data-driven documents". In: ieeexplore.ieee.org (2010).Bokai Cao et al. "Tensor-Based Multi-View Feature Selection with Applications to Brain Diseases". In: 2014 IEEE International Conference on Data Mining, Vol. IEEE, Dec. 2014, pp. 40-49. ISBN: 978-1-4799-4302-9. DOI: 10.1109/ICDM.2014.26.Stuart K. Card, Jock D. Mackinlay, and Ben. Shneiderman. "Readings in information visualization : using vision to think". In: (1999), p. 686.Davide Ceneda. "Guidance-Enriched Visual Analytics". PhD thesis. 2021.Davide Ceneda, Theresia Gschwandtner, and Silvia Miksch. "A review of guidance approaches in visual data analysis: A multifocal perspective". In: Computer Graphics Forum 38.3 (2019), pp. 861-879.Davide Ceneda et al. "Characterizing guidance in visual analytics". In: IEEE Transactions on Visualization and Computer Graphics 23.1 (2017), pp. 111-120.Davide Ceneda et al. "Guide me in analysis: A framework for guidance designers". In: Computer Graphics Forum 39.6 (Sept. 2020), pp. 269-288.Nathalie Charpak et al. "A randomized, controlled trial of Kangaroo Mother Care: Results of follow-up at 1 year of corrected age". In: Pediatrics 108.5 (2001), pp. 1072-1079.Nathalie Charpak et al. "Kangaroo mother care had a protective effect on the volume of brain structures in young adults born preterm". In: Acta Paediatrica (Feb. 2022).Nathalie Charpak et al. "Kangaroo Mother Care: 25 years after". In: Acta Paediatrica 94.5 (Jan. 2007), pp. 514-522.Nathalie Charpak et al. "Twenty-year follow-up of kangaroo mother care versus traditional care". In: Pediatrics 139.1 (2017).M Cheng et al. "Tensor-Based Low-Dimensional Representation Learning for Multi-View Clustering". In: ieeexplore.ieee.org (2019).Dianne Cook and Deborah F Swayne. Interactive and Dynamic Graphics for Data Analysis: With Examples Using R and GGobi.Zhe Cui et al. "DataSite: Proactive visual data exploration with computation of insightbased recommendations". In: Information Visualization 18.2 (Apr. 2019), pp. 251-267.Cagatay Demiralp et al. "Foresight: Recommending visual insights". In: Proceedings ofthe VLDB Endowment 10.12 (2017).Frederik L Dennig et al. FDive: Learning Relevance Models using Pattern-based Similarity Measures. Tech. rep. 2019.Departamento Nacional de Estadística. Datos de nacimientos en Colombia. 2021. URL: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos-y-defunciones/nacimientos.Kedar Dhamdhere et al. "Analyza: Exploring data with conversation". In: International Conference on Intelligent User Interfaces, Proceedings IUI. Association for Computing Machinery, Mar. 2017, pp. 493-504. ISBN: 9781450343480.Deisy Diaz et al. "Visual tools for the exploration of growth data in a cohort of kangaroo infants during their first year of life". In: 2017 IEEE Workshop on Visual Analytics in Healthcare (VAHC). IEEE, Oct. 2017, pp. 9-16. ISBN: 978-1-5386-3187-4.Alan Dix et al. Human-Computer Interaction. 3rd ed. Pearson, 2004.Guozhu Dong and Huan Liu. Feature engineering for machine learning and data analytics. Ed. by Guozhu Dong and Huan Liu. CRC Press, 2018.Qian Fang, Chen Yu, and Zhang Weiping. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data". In: Journal of Multivariate Analysis 176 (Mar. 2020), p. 104580. ISSN: 0047-259X.Stephen. Few. "Show me the numbers : designing tables and graphs to enlighten". (2004), p. 265.Fabian Fischer et al. "VisTracer: A visual analytics tool to investigate routing anomalies in traceroutes". In: ACM International Conference Proceeding Series (2012), pp. 80-87.G Fitzmaurice et al. "Longitudinal data analysis". (2008).Garrett M. Fitzmaurice, Nan M. Laird, and James H. Ware. Applied longitudinal analysis. Wiley, 2012.Takanori Fujiwara et al. "A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction". In: IEEE Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 1601-1611. ISSN: 19410506.JAG Gómez et al. "TreeVersity: Comparing tree structures by topology and node's attributes differences". In: ieeexplore.ieee.org. 2011.David Gotz and Michelle X. Zhou. "Characterizing users visual analytic activity for insight provenance". In: Information Visualization 8.1 (Mar. 2009), pp. 42-55.Yi Guo et al. "Survey on visual analysis of event sequence data". In: IEEE Transactions on Visualization and Computer Graphics (2021).Maureen Hack, Harriet Friedman, and Avroy A. Fanaroff. "Outcomes of Extremely Low Birth Weight Infants". In: Pediatrics 98.5 (1996).H Hauser et al. "Visual recommendations for network navigation". In: Wiley Online Library 30.3 (2011), pp. 1081-1090.Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky. "A tour through the visualization zoo". In: Communications of the ACM 53.6 (June 2010), pp. 59-67.Jeffrey Heer and Danah Boyd. "Vizster: Visualizing online social networks". In: Proceedings - IEEE Symposium on Information Visualization, INFO VIS (2005), pp. 32-39.Jeffrey Heer and Ben Shneiderman. "Interactive dynamics for visual analysis". In: Communications of the ACM 55.4 (Apr. 2012), pp. 45-54.Roberto Hernández-Sampieri and Paulina Mendoza. Metodología de la investigación. Vol. 11. Mc Graw Hill, 2018, p. 751.Eric Horvitz. "Principles of mixed-initiative user interfaces". In: Conference on Human Factors in Computing Systems - Proceedings (1999), pp. 159-166.Kevin Hu, Diana Orghian, and César Hidalgo. "DIVE: A mixed-initiative system supporting integrated data exploration workflows". In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA 2018 (2018).Kevin Hu et al. "VizML: A machine learning approach to visualization recommendation". In: Conference on Human Factors in Computing Systems - Proceedings (2019).Human Brain Project Home. URL: https://www.humanbrainproject.eu/en/.Human Connectome Project - Mapping the human brain connectivity. URL: http://www.humanconnectomeproject.org/.Shaoxiong Ji et al. "A Survey on Knowledge Graphs: Representation, Acquisition, and Applications". In: IEEE Transactions on Neural Networks and Learning Systems (2021), pp. 1-27. ISSN: 21622388.Zhuochen Jin et al. "CarePre: An Intelligent Clinical Decision Assistance System". In:ACM Transactions on Computing for Healthcare 1.1 (Mar. 2020). ISSN: 26378051.Jimmy Johansson et al. "Revealing structure within clustered parallel coordinates displays". In: IEEE Symposium on Information Visualization. 2005, pp. 125-132.Daniel Jönsson et al. "A Visual Environment for Hypothesis Formation and Reasoning in Studies with fMRI and Multivariate Clinical Data". In: (2019).Daniel Jönsson et al. "VisualNeuro: A Hypothesis Formation and Reasoning Application for Multi-Variate Brain Cohort Study Data". In: Computer Graphics Forum (2020), pp. 1-16.Doris Jung-Lin Lee et al. "Avoiding Drill-down Fallacies with VisPilot: Assisted Exploration of Data Subsets". In: Proceedings of the 24th International Conference on Intelligent User Interfaces (2019).Niranjan Kamat, Eugene Wu, and Arnab Nandi. "TrendQuery: A system for interactive exploration of trends". In: HILDA 2016 - Proceedings of the Workshop on Human-Inthe-Loop Data Analytics (June 2016).Mehmed. Kantardzic. Data mining : concepts, models, methods, and algorithms. 3rd ed. 2020, p. 639. ISBN: 978-1-119-51604-0.James Max Kanter and Kalyan Veeramachaneni. "Deep feature synthesis: Towards automating data science endeavors". In: 2015 IEEE international conference on data science and advanced analytics (DSAA). 2015, pp. 1-10.Daniel Keim et al. "Visual analytics: Definition, process, and challenges". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 4950 LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 154-175. ISBN: 354070955X.Kohlhammer Jörn Keim Daniel, Geo rey Ellis Mansmann, and Florian. "Mastering the Information Age Solving Problems with Visual Analytics". In: Mastering the Information Age Solving Problems with Visual Analytics (2010), pp. 57-86. ISSN: 1877-0509.Johnson J. G. Keiriz et al. Exploring the Human Connectome Topology in Group Studies. June 2017.Johnson J.G. Keiriz et al. "NeuroCave: AWeb-based Immersive Visualization Platform for Exploring Connectome Datasets". In: Network Neuroscience (Feb. 2018), pp. 1-19. ISSN: 2472-1751.C Larman and V.R. Basili. "Iterative and incremental developments. a brief history". In: ieeexplore.ieee.org (2003).Doris Jung-Lin Lee. "Designing Automated Assistants for Visual Data Exploration". PhD thesis. UC Berkeley, July 2021.Doris Jung-Lin Lee and Aditya Parameswaran. "The case for a visual discovery assistant: A holistic solution for accelerating visual data exploration". In: IEEE Data Eng. Bull. 41.3 (2018), pp. 3-14.Doris Jung-Lin Lee et al. "Lux: Always-on visualization recommendations for exploratory data science". In: Proceedings of the VLDB Endowment 15.3 (2022), pp. 727-738.Fritz Lekschas et al. "Peax: Interactive Visual Pattern Search in Sequential Data Using Unsupervised Deep Representation Learning". In: bioRxiv (2019), p. 597518.Haotian Li et al. "KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation". 2021.Fang Liu and Jianbo Su. "An Online Feature Learning Algorithm Using HCI-Based Reinforcement Learning". In: Springer, Berlin, Heidelberg, 2004, pp. 293-298.Jock Mackinlay. "Automating the design of graphical presentations of relational information". In: ACM Transactions on Graphics (TOG) 5.2 (Apr. 1986), pp. 110-141. ISSN: 15577368.Jock D. Mackinlay, Pat Hanrahan, and Chris Stolte. "Show Me: Automatic presentation for visual analysis". In: IEEE Transactions on Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1137-1144.Craig H. Mallinckrodt and Ilya. Lipkovich. "Analyzing longitudinal clinical trial data".Ronny S. Mans, Wil M. P. van der Aalst, and Rob J. B. Vanwersch. "Healthcare Processes". (2015), pp. 11-15.Wendy L. Martinez, Angel R. Martinez, and Jeffrey L. Solka. Exploratory Data Analysis with MATLAB, Third Edition. Chapman and Hall/CRC, Aug. 2017.T. May et al. "Using Signposts for Navigation in Large Graphs". In: undefined 31.3 PART 2 (2012), pp. 985-994. ISSN: 14678659.Dominik Moritz et al. "Formalizing visualization design knowledge as constraints: Actionable and extensible models in Draco". In: IEEE Transactions on Visualization and Computer Graphics 25.1 (2019).Tamara Munzner. Visualization Analysis and Design. CRC Press, 2014.Renato Novais et al. "On the proactive and interactive visualization for feature evolution comprehension: An industrial investigation". In: Proceedings - International Conference on Software Engineering. 2012, pp.1044-1053. ISBN: 9781467310673.Sinan Ozdemir and Divya Susarla. Feature engineering made easy : identify unique features from your dataset in order to build powerful machine learning systems. 2018, p. 316.Heiko Paulheim. "Knowledge graph refinement: A survey of approaches and evaluation methods". In: Semantic Web 8.3 (2017), pp. 489-508. ISSN: 22104968.Adam Perer and Ben Shneiderman. "Systematic yet flexible discovery: Guiding domain experts through exploratory data Analysis". In: International Conference on Intelligent User Interfaces, Proceedings IUI (2008), pp. 109-118.Bradley S. Peterson et al. "Regional brain volume abnormalities and long-term cognitive outcome in preterm infants". In: Journal of the American Medical Association 284.15 (2000), pp. 1939-1947.Alan Phillips et al. "Estimands: discussion points from the PSI estimands and sensitivity expert group". In: Pharmaceutical Statistics 16.1 (Jan. 2017), pp. 6-11. ISSN: 15391612."Principles of Clinical Cancer Research". In: Principles of Clinical Cancer Research (Nov. 2018).William Ribarsky and Brian Fisher. "The human-computer system: Towards an operational model for problem solving". In: 49th Hawaii International Conference on System Sciences (HICSS). 2016, pp. 1446-1455.Michael de Ridder, Karsten Klein, and Jinman Kim. "A review and outlook on visual analytics for uncertainties in functional magnetic resonance imaging". In: Brain Informatics 5.2 (Dec. 2018), p. 5.Michael de Ridder et al. "An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity". In: Neuroinformatics 17.2 (Apr. 2019), pp. 211¿223.Diego Rodrigues et al. "Associative patterns in health data: exploring new techniques". In: Health and Technology 12.2 (Mar. 2022), pp. 415-431. ISSN: 21907196.Dominik Sacha et al. "Knowledge generation model for visual analytics". In: IEEE transactions on visualization and computer graphics 20 (2014), pp. 1604-1613.Sunita Sarawagi. "User-adaptive exploration of multidimensional data". In: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB-00 (2000), pp. 307-316.Mario Schmidt. "The Sankey Diagram in Energy and Material Flow Management". In: Journal of Industrial Ecology 12.2 (Apr. 2008), pp. 173-185. ISSN: 1530-9290.Hans-Jörg Schulz et al. "Towards a characterization of guidance in visualization". In: Poster at IEEE Conference on Information Visualization (InfoVis). 2013.Leixian Shen et al. "Visual Data Analysis with Task-based Recommendations". In: (May 2022).Ben Shneiderman. "Eyes have it: a task by data type taxonomy for information visualizations". In: IEEE Symposium on Visual Languages, Proceedings. 1996, pp. 336-343.Ben. Shneiderman and Catherine. Plaisant. "Designing the user interface : strategies for effective human-computer interaction". In: (2010), p. 606.Tarique Siddiqui et al. "Effortless data exploration with Zenvisage: An expressive and interactive visual analytics system". In: Proceedings of the VLDB Endowment 10.4 (Apr. 2016), pp. 457-468.Marc Streit et al. "Model-driven design for the visual analysis of heterogeneous data"¿. In: IEEE Transactions on Visualization and Computer Graphics 18.6 (2011), pp. 998-1010.JJ Thiagarajan et al. "PADDLE: Performance Analysis using a Data-driven Learning Environment". In: (2017).Edward R Tufte. "The visual display of quantitative information". In: (2001).JohnW. Tukey. "We need both exploratory and confirmatory". In: The American Statistician 34.1 (Feb. 1980), p. 23.Gerald Van Belle et al. Biostatistics: A Methodology for the Health Sciences. Vol. 39. 3. 2005, pp. 576-577. ISBN: 9786468600.Manasi Vartak et al. "SEEDB: Automatically generating query visualizations". In: Proceedings of the VLDB Endowment 7.13 (2014), pp. 1581-1584.Manasi Vartak et al. "Towards visualization recommendation systems". In: SIGMOD Record 45.4 (2016), pp. 34-39.PF Velleman and DC Hoaglin. Applications, basics, and computing of exploratory data analysis. 1981.Randle Aaron M. Villanueva and Zhuo Job Chen. "ggplot2: Elegant Graphics for Data Analysis (2nd ed.)" In: https://doi.org/10.1080/15366367.2019.1565254 17.3 (July 2019), pp. 160-167. ISSN: 1536-6367.Colin Ware. Information visualization: perception for design. 2019.Colin Ware, William Wright, and Nicholas J. Pioch. "Visual thinking design patterns". In: Proceedings: DMS 2013 - 19th International Conference on Distributed Multimedia Systems (2013), pp. 150-155.Michael L.Waskom. "seaborn: statistical data visualization". In: Journal of Open Source Software 6.60 (Apr. 2021), p. 3021. ISSN: 2475-9066.Graham Wills. Linked Data Views. Springer, Berlin, Heidelberg, 2008, pp. 217-241.KanitWongsuphasawat et al. "Voyager 2: Augmenting visual analysis with partial view specifications". In: Conference on Human Factors in Computing Systems - Proceedings. 2017, pp. 2648-2659.Jason D. Yeatman et al. "A browser-based tool for visualization and analysis of diffusion MRI data". In: Nature Communications 9.1 (Dec. 2018), p. 940. ISSN: 2041-1723.Jason D. Yeatman et al. "Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification". In: PLoS ONE 7.11 (Nov. 2012). ISSN: 19326203.Ji Soo Yi et al. "Toward a deeper understanding of the role of interaction in information visualization". In: IEEE Transactions on Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1224-1231. ISSN: 10772626.Fuzheng Zhang et al. "Collaborative knowledge base embedding for recommender systems". In: dl.acm.org 13-17-Augu (Aug. 2016), pp. 353-362.Haitao Zhao et al. Feature Learning and Understanding. Information Fusion and Data Science. Cham: Springer International Publishing, 2020. ISBN: 978-3-030-40793-3.Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles and techniques for data scientists. O'Reilly Media, Inc., 2018.201310137Publicationhttps://scholar.google.es/citations?user=-gUUc7oAAAAJvirtual::4212-10000-0002-5035-4363virtual::4212-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246689virtual::4212-1ad318216-13a5-4de4-9d7f-e3ab42397d84virtual::4212-1ad318216-13a5-4de4-9d7f-e3ab42397d84virtual::4212-1THUMBNAILVALS - A Visual Analytics Framework for Longitudinal Studies.pdf.jpgVALS - A Visual Analytics Framework for Longitudinal Studies.pdf.jpgIM Thumbnailimage/jpeg13290https://repositorio.uniandes.edu.co/bitstreams/c339d55f-f5f1-4715-ba29-a08b3bc8ddc8/download6f29fa58863d2a3edd3c87f9ca9133ccMD56DuvanGOMEZ-EntregaBiblioteca-Firma Asesores-2023-04.pdf.jpgDuvanGOMEZ-EntregaBiblioteca-Firma Asesores-2023-04.pdf.jpgIM Thumbnailimage/jpeg16233https://repositorio.uniandes.edu.co/bitstreams/1c1bd1fa-bfda-4f10-9d2b-896523dd5cbc/download11edbd3ce75179c969730d54a8f005f3MD58ORIGINALVALS - A Visual Analytics Framework for Longitudinal Studies.pdfVALS - A Visual Analytics Framework for Longitudinal Studies.pdfTesisapplication/pdf4243113https://repositorio.uniandes.edu.co/bitstreams/52c72135-bb86-4fd1-a1dd-fe555867c8ee/downloadc1b05cb28f929fc86ddfee6957462378MD52DuvanGOMEZ-EntregaBiblioteca-Firma Asesores-2023-04.pdfDuvanGOMEZ-EntregaBiblioteca-Firma Asesores-2023-04.pdfHIDEapplication/pdf529901https://repositorio.uniandes.edu.co/bitstreams/e89c5e8b-db0d-4733-a031-d1d0b0d39a20/download87f4718a89c8c4b7e6db9f7a3f53f901MD54TEXTVALS - A Visual Analytics Framework for Longitudinal Studies.pdf.txtVALS - A Visual Analytics Framework for Longitudinal Studies.pdf.txtExtracted texttext/plain299355https://repositorio.uniandes.edu.co/bitstreams/cf019a10-1060-447e-b6d0-9b6cb705c850/download68ee18cb7d245ca717520f72a5d26be7MD55DuvanGOMEZ-EntregaBiblioteca-Firma Asesores-2023-04.pdf.txtDuvanGOMEZ-EntregaBiblioteca-Firma Asesores-2023-04.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/87ec9ef7-0589-488c-8e5c-858ae222dd66/download08b106dfeb12472e88207a069e15ba30MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/7e092de4-9cda-4670-9918-be1c5b888779/download5aa5c691a1ffe97abd12c2966efcb8d6MD531992/66426oai:repositorio.uniandes.edu.co:1992/664262024-08-26 15:21:32.248https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==