Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia

Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale nonpharmaceutical interventions (NPIs) were implemented as national emergencies in most of the municipalities of the country starting by a lockdown on March 20th of 2020. Using combinations of meta-population models...

Full description

Autores:
Cascante Vega, Jaime Enrique
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/50947
Acceso en línea:
http://hdl.handle.net/1992/50947
Palabra clave:
COVID-19 (Enfermedad)
Pandemias
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_0c9be75994affc7bd6014c4b876b678a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/50947
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cordovez Alvarez, Juan Manuel3a3e4921-262c-432f-b5a1-c531393cc818600Santos Vega, Mauricioae9fa839-378a-442d-9e4b-d98a2beeb414500Cascante Vega, Jaime Enrique6cb9852c-57a4-41c4-960e-06c74ebd03f6500Arbeláez Escalante, Pablo AndrésFeged Rivadeneira, Alejandro2021-08-10T18:04:40Z2021-08-10T18:04:40Z2020http://hdl.handle.net/1992/5094723454.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale nonpharmaceutical interventions (NPIs) were implemented as national emergencies in most of the municipalities of the country starting by a lockdown on March 20th of 2020. Using combinations of meta-population models SEAIIRD (Susceptible-Exposed-Asymptomatic-Infected-RecoveredDiseased) which describes the disease dynamics in the different localities, with movement data that accounts for the number of commuters between units and statistical inference algorithms could be an effective approach to both nowcast and forecast the number of cases and deaths in the country. Here we used an iterated filtering (IF) framework to fit the parameters of our model to the reported data across municipalities from march to late October in locations with more than 50 reported deaths and cases historically. Since the model is high dimensional (6 state variable by municipality) inference on those parameters is highly non-trivial, so we used an Ensemble-Adjustment-Kalman-Filter (EAKF) to estimate...Magíster en Ingeniería BiomédicaMaestría20 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería BiomédicaFacultad de IngenieríaDepartamento de Ingeniería BiomédicaEstimating and forecasting the burden and spread of SARS-CoV2 first wave in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMCOVID-19 (Enfermedad)PandemiasIngeniería201413770PublicationTEXT23454.pdf.txt23454.pdf.txtExtracted texttext/plain57008https://repositorio.uniandes.edu.co/bitstreams/164d9cd5-65ad-4136-bdce-cb87b95c4791/download6ff80c10b1742727702d62142def5355MD54ORIGINAL23454.pdfapplication/pdf25793300https://repositorio.uniandes.edu.co/bitstreams/3c910a05-b1ea-4b63-9a03-d21f8a014675/download9a86b39a171aa2550cd0a0e96794ebe7MD51THUMBNAIL23454.pdf.jpg23454.pdf.jpgIM Thumbnailimage/jpeg9697https://repositorio.uniandes.edu.co/bitstreams/2b01112a-91ac-44d4-8565-16143468a002/downloadff8ec8d6f4c20c8f8425bdfcdd38b423MD551992/50947oai:repositorio.uniandes.edu.co:1992/509472023-10-10 19:56:07.808http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
title Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
spellingShingle Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
COVID-19 (Enfermedad)
Pandemias
Ingeniería
title_short Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
title_full Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
title_fullStr Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
title_full_unstemmed Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
title_sort Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
dc.creator.fl_str_mv Cascante Vega, Jaime Enrique
dc.contributor.advisor.none.fl_str_mv Cordovez Alvarez, Juan Manuel
Santos Vega, Mauricio
dc.contributor.author.none.fl_str_mv Cascante Vega, Jaime Enrique
dc.contributor.jury.none.fl_str_mv Arbeláez Escalante, Pablo Andrés
Feged Rivadeneira, Alejandro
dc.subject.armarc.none.fl_str_mv COVID-19 (Enfermedad)
Pandemias
topic COVID-19 (Enfermedad)
Pandemias
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale nonpharmaceutical interventions (NPIs) were implemented as national emergencies in most of the municipalities of the country starting by a lockdown on March 20th of 2020. Using combinations of meta-population models SEAIIRD (Susceptible-Exposed-Asymptomatic-Infected-RecoveredDiseased) which describes the disease dynamics in the different localities, with movement data that accounts for the number of commuters between units and statistical inference algorithms could be an effective approach to both nowcast and forecast the number of cases and deaths in the country. Here we used an iterated filtering (IF) framework to fit the parameters of our model to the reported data across municipalities from march to late October in locations with more than 50 reported deaths and cases historically. Since the model is high dimensional (6 state variable by municipality) inference on those parameters is highly non-trivial, so we used an Ensemble-Adjustment-Kalman-Filter (EAKF) to estimate...
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:04:40Z
dc.date.available.none.fl_str_mv 2021-08-10T18:04:40Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/50947
dc.identifier.pdf.none.fl_str_mv 23454.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/50947
identifier_str_mv 23454.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Maestría en Ingeniería Biomédica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Biomédica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/164d9cd5-65ad-4136-bdce-cb87b95c4791/download
https://repositorio.uniandes.edu.co/bitstreams/3c910a05-b1ea-4b63-9a03-d21f8a014675/download
https://repositorio.uniandes.edu.co/bitstreams/2b01112a-91ac-44d4-8565-16143468a002/download
bitstream.checksum.fl_str_mv 6ff80c10b1742727702d62142def5355
9a86b39a171aa2550cd0a0e96794ebe7
ff8ec8d6f4c20c8f8425bdfcdd38b423
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134080185106432