Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia
Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale nonpharmaceutical interventions (NPIs) were implemented as national emergencies in most of the municipalities of the country starting by a lockdown on March 20th of 2020. Using combinations of meta-population models...
- Autores:
-
Cascante Vega, Jaime Enrique
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/50947
- Acceso en línea:
- http://hdl.handle.net/1992/50947
- Palabra clave:
- COVID-19 (Enfermedad)
Pandemias
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_0c9be75994affc7bd6014c4b876b678a |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/50947 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cordovez Alvarez, Juan Manuel3a3e4921-262c-432f-b5a1-c531393cc818600Santos Vega, Mauricioae9fa839-378a-442d-9e4b-d98a2beeb414500Cascante Vega, Jaime Enrique6cb9852c-57a4-41c4-960e-06c74ebd03f6500Arbeláez Escalante, Pablo AndrésFeged Rivadeneira, Alejandro2021-08-10T18:04:40Z2021-08-10T18:04:40Z2020http://hdl.handle.net/1992/5094723454.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale nonpharmaceutical interventions (NPIs) were implemented as national emergencies in most of the municipalities of the country starting by a lockdown on March 20th of 2020. Using combinations of meta-population models SEAIIRD (Susceptible-Exposed-Asymptomatic-Infected-RecoveredDiseased) which describes the disease dynamics in the different localities, with movement data that accounts for the number of commuters between units and statistical inference algorithms could be an effective approach to both nowcast and forecast the number of cases and deaths in the country. Here we used an iterated filtering (IF) framework to fit the parameters of our model to the reported data across municipalities from march to late October in locations with more than 50 reported deaths and cases historically. Since the model is high dimensional (6 state variable by municipality) inference on those parameters is highly non-trivial, so we used an Ensemble-Adjustment-Kalman-Filter (EAKF) to estimate...Magíster en Ingeniería BiomédicaMaestría20 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería BiomédicaFacultad de IngenieríaDepartamento de Ingeniería BiomédicaEstimating and forecasting the burden and spread of SARS-CoV2 first wave in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMCOVID-19 (Enfermedad)PandemiasIngeniería201413770PublicationTEXT23454.pdf.txt23454.pdf.txtExtracted texttext/plain57008https://repositorio.uniandes.edu.co/bitstreams/164d9cd5-65ad-4136-bdce-cb87b95c4791/download6ff80c10b1742727702d62142def5355MD54ORIGINAL23454.pdfapplication/pdf25793300https://repositorio.uniandes.edu.co/bitstreams/3c910a05-b1ea-4b63-9a03-d21f8a014675/download9a86b39a171aa2550cd0a0e96794ebe7MD51THUMBNAIL23454.pdf.jpg23454.pdf.jpgIM Thumbnailimage/jpeg9697https://repositorio.uniandes.edu.co/bitstreams/2b01112a-91ac-44d4-8565-16143468a002/downloadff8ec8d6f4c20c8f8425bdfcdd38b423MD551992/50947oai:repositorio.uniandes.edu.co:1992/509472023-10-10 19:56:07.808http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
title |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
spellingShingle |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia COVID-19 (Enfermedad) Pandemias Ingeniería |
title_short |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
title_full |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
title_fullStr |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
title_full_unstemmed |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
title_sort |
Estimating and forecasting the burden and spread of SARS-CoV2 first wave in Colombia |
dc.creator.fl_str_mv |
Cascante Vega, Jaime Enrique |
dc.contributor.advisor.none.fl_str_mv |
Cordovez Alvarez, Juan Manuel Santos Vega, Mauricio |
dc.contributor.author.none.fl_str_mv |
Cascante Vega, Jaime Enrique |
dc.contributor.jury.none.fl_str_mv |
Arbeláez Escalante, Pablo Andrés Feged Rivadeneira, Alejandro |
dc.subject.armarc.none.fl_str_mv |
COVID-19 (Enfermedad) Pandemias |
topic |
COVID-19 (Enfermedad) Pandemias Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale nonpharmaceutical interventions (NPIs) were implemented as national emergencies in most of the municipalities of the country starting by a lockdown on March 20th of 2020. Using combinations of meta-population models SEAIIRD (Susceptible-Exposed-Asymptomatic-Infected-RecoveredDiseased) which describes the disease dynamics in the different localities, with movement data that accounts for the number of commuters between units and statistical inference algorithms could be an effective approach to both nowcast and forecast the number of cases and deaths in the country. Here we used an iterated filtering (IF) framework to fit the parameters of our model to the reported data across municipalities from march to late October in locations with more than 50 reported deaths and cases historically. Since the model is high dimensional (6 state variable by municipality) inference on those parameters is highly non-trivial, so we used an Ensemble-Adjustment-Kalman-Filter (EAKF) to estimate... |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:04:40Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:04:40Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/50947 |
dc.identifier.pdf.none.fl_str_mv |
23454.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/50947 |
identifier_str_mv |
23454.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
20 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Ingeniería Biomédica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Biomédica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/164d9cd5-65ad-4136-bdce-cb87b95c4791/download https://repositorio.uniandes.edu.co/bitstreams/3c910a05-b1ea-4b63-9a03-d21f8a014675/download https://repositorio.uniandes.edu.co/bitstreams/2b01112a-91ac-44d4-8565-16143468a002/download |
bitstream.checksum.fl_str_mv |
6ff80c10b1742727702d62142def5355 9a86b39a171aa2550cd0a0e96794ebe7 ff8ec8d6f4c20c8f8425bdfcdd38b423 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134080185106432 |