An automatic trading strategy for the Colombian government bonds in R
The objective of this work is to make advances in the execution of an algorithm that performs a trading strategy, based on the academic support of the classic portfolio theory, macroeconomic theory of economic policy and some precepts of implementation with financial machine learning (ML) applicatio...
- Autores:
-
Rey álvarez, Karen Estefanía
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51443
- Acceso en línea:
- http://hdl.handle.net/1992/51443
- Palabra clave:
- Bonos
Deuda pública
Aprendizaje automático (Inteligencia artificial)
Administración
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_0c97db8217a9806c341d5babbf40ad0d |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51443 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An automatic trading strategy for the Colombian government bonds in R |
title |
An automatic trading strategy for the Colombian government bonds in R |
spellingShingle |
An automatic trading strategy for the Colombian government bonds in R Bonos Deuda pública Aprendizaje automático (Inteligencia artificial) Administración |
title_short |
An automatic trading strategy for the Colombian government bonds in R |
title_full |
An automatic trading strategy for the Colombian government bonds in R |
title_fullStr |
An automatic trading strategy for the Colombian government bonds in R |
title_full_unstemmed |
An automatic trading strategy for the Colombian government bonds in R |
title_sort |
An automatic trading strategy for the Colombian government bonds in R |
dc.creator.fl_str_mv |
Rey álvarez, Karen Estefanía |
dc.contributor.advisor.none.fl_str_mv |
Rocha, Gonçalo González Ferrero, Maximiliano |
dc.contributor.author.none.fl_str_mv |
Rey álvarez, Karen Estefanía |
dc.contributor.jury.none.fl_str_mv |
Arcila Barrero, Carlos Alfredo |
dc.subject.armarc.none.fl_str_mv |
Bonos Deuda pública Aprendizaje automático (Inteligencia artificial) |
topic |
Bonos Deuda pública Aprendizaje automático (Inteligencia artificial) Administración |
dc.subject.themes.none.fl_str_mv |
Administración |
description |
The objective of this work is to make advances in the execution of an algorithm that performs a trading strategy, based on the academic support of the classic portfolio theory, macroeconomic theory of economic policy and some precepts of implementation with financial machine learning (ML) applications. Regarding ML, despite the fact that there are several authors, this work is based on the techniques and advances that have emerged from the studies of the author Marcos Lopez de Prado, since it is well known not only in the academic field, but also in investment industry. These characteristics make the methodological development of this work be applied to the related data, which is real data from the Colombian market, public debt bonds hereafter referred TES. The advances in ML by Professor Lopez de Prado will serve as a point of reference to backtest a very simple trading strategy, but looking beyond, the work will serve to leave a guide on how to implement through steps the development of an algorithm that performs any strategy, taking into account each stage for its later execution. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:25:16Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:25:16Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51443 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/51443 |
dc.identifier.pdf.none.fl_str_mv |
23150.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51443 |
identifier_str_mv |
10.57784/1992/51443 23150.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
25 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Finanzas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Administración |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/50e16a8c-79a9-4ba0-a0c8-5a90d53a816a/download https://repositorio.uniandes.edu.co/bitstreams/8fda58b1-08fd-49cb-9ad6-4e9706d7168a/download https://repositorio.uniandes.edu.co/bitstreams/335a6108-7589-44b4-8015-3cb6b1840dbc/download |
bitstream.checksum.fl_str_mv |
72ef4b121867e70757ff55f4ddc79944 608f20c9f64bcb444ab40d1aefd8f70c e4eb5644d93c57e688b79f9e3341ab41 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818112030670848000 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rocha, Gonçalob70146e5-2540-41ee-b4fe-4615650409d7500González Ferrero, Maximilianovirtual::15967-1Rey álvarez, Karen Estefanía8fd31f11-c8b2-4ce2-b6f5-821680e0e694500Arcila Barrero, Carlos Alfredo2021-08-10T18:25:16Z2021-08-10T18:25:16Z2020http://hdl.handle.net/1992/5144310.57784/1992/5144323150.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The objective of this work is to make advances in the execution of an algorithm that performs a trading strategy, based on the academic support of the classic portfolio theory, macroeconomic theory of economic policy and some precepts of implementation with financial machine learning (ML) applications. Regarding ML, despite the fact that there are several authors, this work is based on the techniques and advances that have emerged from the studies of the author Marcos Lopez de Prado, since it is well known not only in the academic field, but also in investment industry. These characteristics make the methodological development of this work be applied to the related data, which is real data from the Colombian market, public debt bonds hereafter referred TES. The advances in ML by Professor Lopez de Prado will serve as a point of reference to backtest a very simple trading strategy, but looking beyond, the work will serve to leave a guide on how to implement through steps the development of an algorithm that performs any strategy, taking into account each stage for its later execution.El objetivo de este trabajo es avanzar en la ejecución de un algoritmo que realiza un trading estrategia, basada en el apoyo académico de la teoría clásica de la cartera, la teoría macroeconómica de política económica y algunos preceptos de implementación con aprendizaje automático financiero (ML) aplicaciones. En cuanto al LA, a pesar de que hay varios autores, este trabajo se basa en las técnicas y avances que han surgido de los estudios del autor Marcos López de Prado, ya que es bien conocido no solo en el campo académico, sino también en la industria de inversiones. Estas características hacen que El desarrollo metodológico de este trabajo se aplicará a los datos relacionados, que son datos reales del Mercado colombiano, bonos de deuda pública en adelante denominados TES. Los avances en ML por el profesor López de Prado servirá como punto de referencia para backtesting de una estrategia comercial muy simple, pero mirando más allá, El trabajo servirá para dejar una guía sobre cómo implementar por pasos el desarrollo de un algoritmo. que realiza cualquier estrategia, teniendo en cuenta cada etapa para su posterior ejecución.Magíster en FinanzasMaestría25 hojasapplication/pdfengUniversidad de los AndesMaestría en FinanzasFacultad de AdministraciónAn automatic trading strategy for the Colombian government bonds in RTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMBonosDeuda públicaAprendizaje automático (Inteligencia artificial)Administración201726005Publicatione8c6a1bc-96aa-4116-a3b3-8332e2222bd4virtual::15967-1e8c6a1bc-96aa-4116-a3b3-8332e2222bd4virtual::15967-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001033298virtual::15967-1THUMBNAIL23150.pdf.jpg23150.pdf.jpgIM Thumbnailimage/jpeg5523https://repositorio.uniandes.edu.co/bitstreams/50e16a8c-79a9-4ba0-a0c8-5a90d53a816a/download72ef4b121867e70757ff55f4ddc79944MD55TEXT23150.pdf.txt23150.pdf.txtExtracted texttext/plain48021https://repositorio.uniandes.edu.co/bitstreams/8fda58b1-08fd-49cb-9ad6-4e9706d7168a/download608f20c9f64bcb444ab40d1aefd8f70cMD54ORIGINAL23150.pdfapplication/pdf1492531https://repositorio.uniandes.edu.co/bitstreams/335a6108-7589-44b4-8015-3cb6b1840dbc/downloade4eb5644d93c57e688b79f9e3341ab41MD511992/51443oai:repositorio.uniandes.edu.co:1992/514432024-11-29 10:35:02.239http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |