Natural Language Inference (NLI) via LLMs.
Natural Language Inference (NLI) is a fundamental task in Natural Language Processing that aims to determine whether a hypothesis can be inferred from a given premise. Although numerous experiments have been conducted to evaluate this task using various language models, most of these efforts have fo...
- Autores:
-
Pérez Terán, Nicolás
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75670
- Acceso en línea:
- https://hdl.handle.net/1992/75670
- Palabra clave:
- Recognizing Textual Entailment
Natural Language Processing
IA
Research
Natural Language Inference
Large Language Models
Human Validation
Ingeniería
- Rights
- License
- Attribution-ShareAlike 4.0 International
id |
UNIANDES2_0bacfee2ba1a0637cdebe1cab67017ad |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75670 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Natural Language Inference (NLI) via LLMs. |
title |
Natural Language Inference (NLI) via LLMs. |
spellingShingle |
Natural Language Inference (NLI) via LLMs. Recognizing Textual Entailment Natural Language Processing IA Research Natural Language Inference Large Language Models Human Validation Ingeniería |
title_short |
Natural Language Inference (NLI) via LLMs. |
title_full |
Natural Language Inference (NLI) via LLMs. |
title_fullStr |
Natural Language Inference (NLI) via LLMs. |
title_full_unstemmed |
Natural Language Inference (NLI) via LLMs. |
title_sort |
Natural Language Inference (NLI) via LLMs. |
dc.creator.fl_str_mv |
Pérez Terán, Nicolás |
dc.contributor.advisor.none.fl_str_mv |
Manrique Piramanrique, Rubén Francisco |
dc.contributor.author.none.fl_str_mv |
Pérez Terán, Nicolás |
dc.subject.keyword.eng.fl_str_mv |
Recognizing Textual Entailment Natural Language Processing IA Research Natural Language Inference Large Language Models Human Validation |
topic |
Recognizing Textual Entailment Natural Language Processing IA Research Natural Language Inference Large Language Models Human Validation Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Natural Language Inference (NLI) is a fundamental task in Natural Language Processing that aims to determine whether a hypothesis can be inferred from a given premise. Although numerous experiments have been conducted to evaluate this task using various language models, most of these efforts have focused on the English language, leaving Spanish relatively unexplored. This thesis evaluates the state of the art of NLI task using LLMs for the Spanish language, implementing prompting strategies to maximize the performance of LLMs (Large Language Models) in this task. Finally, LLM performance in NLI is determinated for Few-Shot and Zero-Shot scenarios. The Spanish corpus was tested with GPT-4o-Mini which achieved an accuracy of 60% in a human validated subset of the Spanish Corpus, where it was concluded that LLMs struggle to identify the Entailment label and show a preference for selecting the Reasoning label over the others. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-27T15:11:40Z |
dc.date.issued.none.fl_str_mv |
2025-01-16 |
dc.date.available.none.fl_str_mv |
2026-01-27 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75670 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75670 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. CoRR, abs/1508.05326, 2015. URL http://arxiv.org/abs/1508.05326. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165. Ruixiang Cui, Seolhwa Lee, Daniel Hershcovich, and Anders Søgaard. What does the failure to reason with "respectively" in zero/few-shot settings tell us about language models?, 2023. URL https://arxiv.org/abs/2305.19597. Rodriguez Portela Johan David. Natural language inference: a spanish case. Master’s thesis, 2024. URL https://hdl.handle.net/1992/75248. Shreyasi Mandal and Ashutosh Modi. IITK at SemEval-2024 task 2: Exploring the capabilities of LLMs for safe biomedical natural language inference for clinical trials. In Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, and Aiala Rosá, editors, Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1397–1404, Mexico City, Mexico, June 2024. Association for Computational Linguistics. DOI 10.18653/v1/2024.semeval-1.201. URL https://aclanthology.org/2024.semeval-1.201. Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig. Stress test evaluation for natural language inference. In Emily M. Bender, Leon Derczynski, and Pierre Isabelle, editors, Proceedings of the 27th International Conference on Computational Linguistics, pages 2340–2353, Santa Fe, New Mexico, USA, August 2018. Association for Computational Linguistics. URL https://aclanthology.org/C18-1198. Mobashir Sadat and Cornelia Caragea. Scinli: A corpus for natural language inference on scientific text. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7399–7409, Dublin, Ireland, May 2022. Association for Computational Linguistics. DOI 10.18653/v1/2022.acl-long.511. URL https://aclanthology.org/2022.acl-long.511. Mobashir Sadat and Cornelia Caragea. Mscinli: A diverse benchmark for scientific natural language inference, 2024. URL https://arxiv.org/abs/2404.08066. Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.11903. Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In Proceedings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc. |
dc.rights.en.fl_str_mv |
Attribution-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_f1cf http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.none.fl_str_mv |
81 Páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/8b817779-86cc-40f6-96e3-00ca8d8f667b/download https://repositorio.uniandes.edu.co/bitstreams/ca8ecc9f-31af-47b3-8341-5df4c80e5804/download https://repositorio.uniandes.edu.co/bitstreams/a42e4392-ccfe-4d44-91cc-b38005090d88/download https://repositorio.uniandes.edu.co/bitstreams/8b721a48-5dcc-4565-986f-df5b013b491f/download https://repositorio.uniandes.edu.co/bitstreams/0f99a805-c9cc-4a78-9d42-2c7c3dcadee6/download https://repositorio.uniandes.edu.co/bitstreams/62cabcf4-1bab-40b8-ab19-8eb0dcc6691f/download https://repositorio.uniandes.edu.co/bitstreams/ba214ec2-d28d-4775-9cf4-6059d93e8ce3/download https://repositorio.uniandes.edu.co/bitstreams/6516f335-813a-426e-9db8-00633dd781ee/download |
bitstream.checksum.fl_str_mv |
ae9e573a68e7f92501b6913cc846c39f b7403ef70ec4ca01c7a8ef2fe98aa990 43a88154e2046bddaff2835fd5ce0ac3 84a900c9dd4b2a10095a94649e1ce116 e1c06d85ae7b8b032bef47e42e4c08f9 ac3b7599d7678b4fea7cb47cc5ff7f05 4d26fee961d5a88202d840da35eaf6ae e3db4ff7eeda924f49a609528991aafc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159249442668544 |
spelling |
Manrique Piramanrique, Rubén Franciscovirtual::22604-1Pérez Terán, Nicolás2025-01-27T15:11:40Z2026-01-272025-01-16https://hdl.handle.net/1992/75670instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Natural Language Inference (NLI) is a fundamental task in Natural Language Processing that aims to determine whether a hypothesis can be inferred from a given premise. Although numerous experiments have been conducted to evaluate this task using various language models, most of these efforts have focused on the English language, leaving Spanish relatively unexplored. This thesis evaluates the state of the art of NLI task using LLMs for the Spanish language, implementing prompting strategies to maximize the performance of LLMs (Large Language Models) in this task. Finally, LLM performance in NLI is determinated for Few-Shot and Zero-Shot scenarios. The Spanish corpus was tested with GPT-4o-Mini which achieved an accuracy of 60% in a human validated subset of the Spanish Corpus, where it was concluded that LLMs struggle to identify the Entailment label and show a preference for selecting the Reasoning label over the others.PregradoNatural Language Processing81 Páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/http://purl.org/coar/access_right/c_f1cf http://purl.org/coar/access_right/c_f1cfNatural Language Inference (NLI) via LLMs.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRecognizing Textual EntailmentNatural Language ProcessingIAResearchNatural Language InferenceLarge Language ModelsHuman ValidationIngenieríaSamuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. CoRR, abs/1508.05326, 2015. URL http://arxiv.org/abs/1508.05326.Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.Ruixiang Cui, Seolhwa Lee, Daniel Hershcovich, and Anders Søgaard. What does the failure to reason with "respectively" in zero/few-shot settings tell us about language models?, 2023. URL https://arxiv.org/abs/2305.19597.Rodriguez Portela Johan David. Natural language inference: a spanish case. Master’s thesis, 2024. URL https://hdl.handle.net/1992/75248.Shreyasi Mandal and Ashutosh Modi. IITK at SemEval-2024 task 2: Exploring the capabilities of LLMs for safe biomedical natural language inference for clinical trials. In Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, and Aiala Rosá, editors, Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1397–1404, Mexico City, Mexico, June 2024. Association for Computational Linguistics. DOI 10.18653/v1/2024.semeval-1.201. URL https://aclanthology.org/2024.semeval-1.201.Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig. Stress test evaluation for natural language inference. In Emily M. Bender, Leon Derczynski, and Pierre Isabelle, editors, Proceedings of the 27th International Conference on Computational Linguistics, pages 2340–2353, Santa Fe, New Mexico, USA, August 2018. Association for Computational Linguistics. URL https://aclanthology.org/C18-1198.Mobashir Sadat and Cornelia Caragea. Scinli: A corpus for natural language inference on scientific text. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7399–7409, Dublin, Ireland, May 2022. Association for Computational Linguistics. DOI 10.18653/v1/2022.acl-long.511. URL https://aclanthology.org/2022.acl-long.511.Mobashir Sadat and Cornelia Caragea. Mscinli: A diverse benchmark for scientific natural language inference, 2024. URL https://arxiv.org/abs/2404.08066.Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In Proceedings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.202116903Publication9f6e12e0-098e-4548-ab81-75552e8385e7virtual::22604-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::22604-1LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/8b817779-86cc-40f6-96e3-00ca8d8f667b/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALsigned_autorizacion_tesis.pdfsigned_autorizacion_tesis.pdfHIDEapplication/pdf349175https://repositorio.uniandes.edu.co/bitstreams/ca8ecc9f-31af-47b3-8341-5df4c80e5804/downloadb7403ef70ec4ca01c7a8ef2fe98aa990MD53Natural Language Inference.pdfNatural Language Inference.pdfapplication/pdf968361https://repositorio.uniandes.edu.co/bitstreams/a42e4392-ccfe-4d44-91cc-b38005090d88/download43a88154e2046bddaff2835fd5ce0ac3MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/8b721a48-5dcc-4565-986f-df5b013b491f/download84a900c9dd4b2a10095a94649e1ce116MD55TEXTsigned_autorizacion_tesis.pdf.txtsigned_autorizacion_tesis.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/0f99a805-c9cc-4a78-9d42-2c7c3dcadee6/downloade1c06d85ae7b8b032bef47e42e4c08f9MD56Natural Language Inference.pdf.txtNatural Language Inference.pdf.txtExtracted texttext/plain100097https://repositorio.uniandes.edu.co/bitstreams/62cabcf4-1bab-40b8-ab19-8eb0dcc6691f/downloadac3b7599d7678b4fea7cb47cc5ff7f05MD58THUMBNAILsigned_autorizacion_tesis.pdf.jpgsigned_autorizacion_tesis.pdf.jpgGenerated Thumbnailimage/jpeg11112https://repositorio.uniandes.edu.co/bitstreams/ba214ec2-d28d-4775-9cf4-6059d93e8ce3/download4d26fee961d5a88202d840da35eaf6aeMD57Natural Language Inference.pdf.jpgNatural Language Inference.pdf.jpgGenerated Thumbnailimage/jpeg3548https://repositorio.uniandes.edu.co/bitstreams/6516f335-813a-426e-9db8-00633dd781ee/downloade3db4ff7eeda924f49a609528991aafcMD591992/75670oai:repositorio.uniandes.edu.co:1992/756702025-03-05 10:01:55.579http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |