Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module
The growing demand for energy services and resources in Colombia implies a short and long-term modification of the injected power into the grid. In the case of solutions for immediate scenarios, it gives way to tools oriented towards distributed generation (DG) as a solution to variations in demand....
- Autores:
-
Gómez Clavijo, Juan Pablo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73506
- Acceso en línea:
- https://hdl.handle.net/1992/73506
- Palabra clave:
- Battery
Constraints
Control
Frequency
Grid
Distributed
Hosting
Inverter
Planning
Reactive
Regulations
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_0b029c94de39ca64d93b0b994f98b12b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73506 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
title |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
spellingShingle |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module Battery Constraints Control Frequency Grid Distributed Hosting Inverter Planning Reactive Regulations Ingeniería |
title_short |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
title_full |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
title_fullStr |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
title_full_unstemmed |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
title_sort |
Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module |
dc.creator.fl_str_mv |
Gómez Clavijo, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Oliveira de Jesus, Paulo Manuel de |
dc.contributor.author.none.fl_str_mv |
Gómez Clavijo, Juan Pablo |
dc.contributor.jury.none.fl_str_mv |
Ramos López, Gustavo Andrés |
dc.subject.keyword.eng.fl_str_mv |
Battery Constraints Control Frequency Grid Distributed Hosting Inverter Planning Reactive Regulations |
topic |
Battery Constraints Control Frequency Grid Distributed Hosting Inverter Planning Reactive Regulations Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
The growing demand for energy services and resources in Colombia implies a short and long-term modification of the injected power into the grid. In the case of solutions for immediate scenarios, it gives way to tools oriented towards distributed generation (DG) as a solution to variations in demand. However, this involves considering the calculation of the new system capacity in such a way that its stability, reliability, and supply performance are maintained without violating restrictions or requiring an expansion of the distribution network. It is here that Hosting Capacity seeks to satisfy the increasing demand by bringing the generation of nodes closer to their upper voltage limits. Thus, a high value of this parameter indicates a tolerance capacity for new loads without exceeding operating limits. This document studies one of the most effective methods for enhancing Hosting Capacity to indicate a clear path in scenarios of power injection and consumption into a distribution system to maintain performance to the maximum. This methodology consists of a battery system connected through an inverter to the node (secondary substation) to be treated. With this consideration, in the face of frequency or voltage disturbances, this system will act as a battery or storage, depending on the DER or SPARE case, respectively. The study requires the use of the DIgSILENT PowerFactory software analyzed from embedded Python language and DPL (DIgSILENT Powerfactory Language). |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-26T15:16:37Z |
dc.date.available.none.fl_str_mv |
2024-01-26T15:16:37Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73506 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73506 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Vandenbergh, M., Helmbrecht, V., Loew, H., Hermes, R., y Craciun, D., “Technical solutions supporting the large scale integration of photovoltaic systems in the future distribution grids,” en 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Institution of Engineering and Technology, 2013, doi:10.1 049/cp.2013.0699. Y. Yang, M. B., “Power quality and reliability in distribution networks with increased levels of distributed generation,” rep. tec., U.S. Department of Energy Office of Scientific and Technical Information, 2008. Sun, W., Maximizing Renewable Hosting Capacity in Electricity Networks. The Uni- versity of Edinburgh, Scotland, 2015, http://hdl.handle.net/1842/10483. Bollen, M. y Hassan, F., Integration of Distributed Generation in the Power System. Wiley, 2011, doi:10.1002/9781118029039. Santos, I. N., Ćuk, V., Almeida, P. M., Bollen, M. H., y Ribeiro, P. F., “Considerations on hosting capacity for harmonic distortions on transmission and distribution systems,” Electric Power Systems Research, pp. 199–206, 2015, doi:10.1016/j.epsr.2014.09.020. B. Palmintier, R. B., “On the path to sunshot: Emerging issues and challenges in inte- grating solar with the distribution system,” NREL, 2016. Ismael, S. M., Aleem, S. H. A., Abdelaziz, A. Y., y Zobaa, A. F., “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renewable Energy, vol. 130, pp. 1002–1020, 2019, doi:10.1016/j.renene.2018.07.008. Shayani, R. A. y de Oliveira, M. A. G., “Photovoltaic generation penetration limits in radial distribution systems,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1625–1631, 2011, doi:10.1109/tpwrs.2010.2077656. AlAlamat, F., “Increasing the hosting capacity of radial distribution grids in jordan,” 2015. Hassan, S. J. U., Gush, T., y Kim, C.-H., “Maximum hosting capacity assessment of distribution systems with multitype DERs using analytical OPF method,” IEEE Access, vol. 10, pp. 100665–100674, 2022, doi:10.1109/access.2022.3207488. Sun, W., Maximizing Renewable Hosting Capacity in Electricity Networks. The Uni- versity of Edinburgh, Scotland, 2015, http://hdl.handle.net/1842/10483. Celiloglu, R., “Integration of large capacity pv power and measuring pv hosting capacity of north cyprus mv grid,” 2017. Arshad, A., Lindner, M., y Lehtonen, M., “An analysis of photo-voltaic hosting capacity in finnish low voltage distribution networks,” Energies, vol. 10, no. 11, p. 1702, 2017, doi:10.3390/en10111702. Walla, T., “Hosting capacity for photovoltaics in swedish distribution grids,” 2012. Stetz, T., Marten, F., y Braun, M., “Improved low voltage grid-integration of photo- voltaic systems in germany,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 534–542, 2013, doi:10.1109/tste.2012.2198925. Von Appen, J., Braun, M., Stetz, T., Diwold, K., y Geibel, D., “Time in the sun: The 38 challenge of high PV penetration in the german electric grid,” IEEE Power and Energy Magazine, vol. 11, no. 2, pp. 55–64, 2013, doi:10.1109/mpe.2012.2234407. Van THONG, V., DRIESEN, J., y BELMANS, R., “Dg interconnection standards and technical requirements: Comparisons and gaps,” en 19th Int. Conf. Exhib. Electr. Dis- trib., Citeseer, 2007. Bollen, M. y Häger, M., “Power quality: interactions between distributed energy re- sources, the grid, and other customers,” Leonardo Energy, 2005. Vovos, P. N., Kiprakis, A. E., Wallace, A. R., y Harrison, G. P., “Centralized and dis- tributed voltage control: Impact on distributed generation penetration,” IEEE Trans- actions on Power Systems, vol. 22, no. 1, pp. 476–483, 2007, doi:10.1109/tpwrs.2006.8 88982. Seguin, R., Woyak, J., Costyk, D., Hambrick, J., y Mather, B., “High-penetration pv integration handbook for distribution engineers,” rep. tec., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016. Nursebo, S., Chen, P., Carlson, O., y Tjernberg, L. B., “Optimizing wind power hosting capacity of distribution systems using cost benefit analysis,” IEEE Transactions on Power Delivery, vol. 29, no. 3, pp. 1436–1445, 2014, doi:10.1109/tpwrd.2014.2303204. Adefarati, T. y Bansal, R., “Integration of renewable distributed generators into the dis- tribution system: a review,” IET Renewable Power Generation, vol. 10, no. 7, pp. 873– 884, 2016, doi:10.1049/iet-rpg.2015.0378. Smith, J., Rylander, M., y Rogers, L., “Integration of hosting capacity analysis into distribution planning tools,” Electric Power Research Institute (EPRI), Palo Alto, Cal- ifornia, USA, Technical Report, 2016. Rylander, M., Smith, J., Sunderman, W., Smith, D., y Glass, J., “Application of new method for distribution-wide assessment of distributed energy resources,” en 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), IEEE, 2016, doi:10.1109/tdc.2016.7519994. PowerFactory, D., “User manual,” 2023. Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., y Jenkins, N., “Integrating dis- tributed generation into electric power systems: A review of drivers, challenges and opportunities,” Electric Power Systems Research, vol. 77, no. 9, pp. 1189–1203, 2007, doi:10.1016/j.epsr.2006.08.016. Wang, Y., Silva, V., y Lopez-Botet-Zulueta, M., “Impact of high penetration of variable renewable generation on frequency dynamics in the continental europe interconnected system,” IET Renewable Power Generation, vol. 10, no. 1, pp. 10–16, 2016, doi:10.104 9/iet-rpg.2015.0141. Athari, M. H., Wang, Z., y Eylas, S. H., “Time-series analysis of photovoltaic dis- tributed generation impacts on a local distributed network,” en 2017 IEEE Manchester PowerTech, IEEE, 2017, doi:10.1109/ptc.2017.7980908. DIgSILENT, “Bess simulation model, application example,” 2023. Chatrung, N., “Battery energy storage system (BESS) and development of grid scale BESS in EGAT,” en 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), IEEE, 2019, doi:10.1109/gtdasia.2019.8715953. Etherden, N. y Bollen, M. H. J., “Dimensioning of energy storage for increased in- tegration of wind power,” IEEE Transactions on Sustainable Energy, vol. 4, no. 3, pp. 546–553, 2013, doi:10.1109/tste.2012.2228244. Rascon, O. C., Schachler, B., Buhler, J., Resch, M., y Sumper, A., “Increasing the hosting capacity of distribution grids by implementing residential PV storage systems and reactive power control,” en 2016 13th International Conference on the European Energy Market (EEM), IEEE, 2016, doi:10.1109/eem.2016.7521338. Hatziargyriou, N., Karfopoulos, E., Tsitsimelis, A., Koukoula, D., Rossi, M., y Gia- como, V., “On the der hosting capacity of distribution feeders,” en Proc. CIRED 23rd International Conference on Electricity Distribution, 2015. Nicholas Etherden, M. H. B., “The use of battery storage for increasing the hosting capacity of the grid for renewable electricity production,” Innovation for secure and efficent transmision grids, pp. 1–8, 2014, http://www.diva-portal.org/smash/get/diva2: 1008302/FULLTEXT01.pdf . Ebad, M. y Grady, W. M., “An approach for assessing high-penetration PV impact on distribution feeders,” Electric Power Systems Research, vol. 133, pp. 347–354, 2016, doi:10.1016/j.epsr.2015.12.026. Altin, M., Oguz, E. U., Bizkevelci, E., y Simsek, B., “Distributed generation hosting capacity calculation of MV distribution feeders in turkey,” en IEEE PES Innovative Smart Grid Technologies, Europe, IEEE, 2014, doi:10.1109/isgteurope.2014.7028776. Alvarado, J., Alvarado, E., Arevalo, M., Quituisaca, S., Gomez, J., y De Oliveira-De Je- sus, P., “Ant colony systems application for electric distribution network planning,” en 2009 15th International Conference on Intelligent System Applications to Power Systems, IEEE, 2009, doi:10.1109/isap.2009.5352816. Avila-Rojas, A., De Oliveira-De Jesus, P. M., y Alvarez, M., “Distribution network electric vehicle hosting capacity enhancement using an optimal power flow formulation,” Electrical Engineering, no. 3, pp. 1337–1348, 2021, doi:10.1007/s00202-021-01374-7. Schwanz, D., Ronnberg, S. K., y Bollen, M., “Hosting capacity for photovoltaic inverters considering voltage unbalance,” en 2017 IEEE Manchester PowerTech, IEEE, 2017, doi:10.1109/ptc.2017.7981274. De Jaeger, E., Du Bois, A., y Martin, B., “Hosting capacity of lv distribution grids for small distributed generation units, referring to voltage level and unbalance,” en 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4, IET, 2013. Qamar, N., Arshad, A., Mahmoud, K., y Lehtonen, M., “Hosting capacity in distribution grids: A review of definitions, performance indices, determination methodologies, and enhancement techniques,” Energy Science amp; Engineering, vol. 11, no. 4, p. 1536– 1559, 2023, doi:10.1002/ese3.1389. VVB, “Batteriespeicher - Versorgungsbetriebe Bordesholm — vb-bordesholm.de.” https: //www.vb-bordesholm.de/batteriespeicher.html, 2020. Fatima, S., Püvi, V., y Lehtonen, M., “Review on the pv hosting capacity in distribution networks,” Energies, vol. 13, no. 18, p. 4756, 2020, doi:10.3390/en13184756. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
46 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Eléctrica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/a8506897-b14d-45b9-a096-5eaf0e94ad1b/download https://repositorio.uniandes.edu.co/bitstreams/876c0320-7886-4a79-ae95-c079f3cbdf80/download https://repositorio.uniandes.edu.co/bitstreams/25196049-1ea1-4b73-be96-c192b2ea4097/download https://repositorio.uniandes.edu.co/bitstreams/6685da38-f3ec-4ede-a827-8721e2004371/download https://repositorio.uniandes.edu.co/bitstreams/06fa602a-4880-4db5-a278-14666633a06a/download https://repositorio.uniandes.edu.co/bitstreams/20dd0ba0-a609-4a80-a5de-02337f365e54/download https://repositorio.uniandes.edu.co/bitstreams/ef8550b2-2611-4486-9f69-7b340ab9e5f1/download https://repositorio.uniandes.edu.co/bitstreams/81e242a7-4247-4a84-a98d-ea9bd025e673/download |
bitstream.checksum.fl_str_mv |
6e476b4d69bc0745ddbc27ea26e0b87c b8ebc401a73d5497928016c294033879 0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f 2914d5633e8a8db7076037d26f419438 86b5a950659208a3474c2eddcc1a93d7 7f995eaf30a8143373e858ef97db1521 9afe35c8b59318c13f06f4ea0ee6e20d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133967608938496 |
spelling |
Oliveira de Jesus, Paulo Manuel deGómez Clavijo, Juan PabloRamos López, Gustavo Andrés2024-01-26T15:16:37Z2024-01-26T15:16:37Z2024https://hdl.handle.net/1992/73506instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The growing demand for energy services and resources in Colombia implies a short and long-term modification of the injected power into the grid. In the case of solutions for immediate scenarios, it gives way to tools oriented towards distributed generation (DG) as a solution to variations in demand. However, this involves considering the calculation of the new system capacity in such a way that its stability, reliability, and supply performance are maintained without violating restrictions or requiring an expansion of the distribution network. It is here that Hosting Capacity seeks to satisfy the increasing demand by bringing the generation of nodes closer to their upper voltage limits. Thus, a high value of this parameter indicates a tolerance capacity for new loads without exceeding operating limits. This document studies one of the most effective methods for enhancing Hosting Capacity to indicate a clear path in scenarios of power injection and consumption into a distribution system to maintain performance to the maximum. This methodology consists of a battery system connected through an inverter to the node (secondary substation) to be treated. With this consideration, in the face of frequency or voltage disturbances, this system will act as a battery or storage, depending on the DER or SPARE case, respectively. The study requires the use of the DIgSILENT PowerFactory software analyzed from embedded Python language and DPL (DIgSILENT Powerfactory Language).Ingeniero EléctricoPregrado46 páginasapplication/pdfengUniversidad de los AndesIngeniería EléctricaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory moduleTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBatteryConstraintsControlFrequencyGridDistributedHostingInverterPlanningReactiveRegulationsIngenieríaVandenbergh, M., Helmbrecht, V., Loew, H., Hermes, R., y Craciun, D., “Technical solutions supporting the large scale integration of photovoltaic systems in the future distribution grids,” en 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Institution of Engineering and Technology, 2013, doi:10.1 049/cp.2013.0699.Y. Yang, M. B., “Power quality and reliability in distribution networks with increased levels of distributed generation,” rep. tec., U.S. Department of Energy Office of Scientific and Technical Information, 2008.Sun, W., Maximizing Renewable Hosting Capacity in Electricity Networks. The Uni- versity of Edinburgh, Scotland, 2015, http://hdl.handle.net/1842/10483.Bollen, M. y Hassan, F., Integration of Distributed Generation in the Power System. Wiley, 2011, doi:10.1002/9781118029039.Santos, I. N., Ćuk, V., Almeida, P. M., Bollen, M. H., y Ribeiro, P. F., “Considerations on hosting capacity for harmonic distortions on transmission and distribution systems,” Electric Power Systems Research, pp. 199–206, 2015, doi:10.1016/j.epsr.2014.09.020.B. Palmintier, R. B., “On the path to sunshot: Emerging issues and challenges in inte- grating solar with the distribution system,” NREL, 2016.Ismael, S. M., Aleem, S. H. A., Abdelaziz, A. Y., y Zobaa, A. F., “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renewable Energy, vol. 130, pp. 1002–1020, 2019, doi:10.1016/j.renene.2018.07.008.Shayani, R. A. y de Oliveira, M. A. G., “Photovoltaic generation penetration limits in radial distribution systems,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1625–1631, 2011, doi:10.1109/tpwrs.2010.2077656.AlAlamat, F., “Increasing the hosting capacity of radial distribution grids in jordan,” 2015.Hassan, S. J. U., Gush, T., y Kim, C.-H., “Maximum hosting capacity assessment of distribution systems with multitype DERs using analytical OPF method,” IEEE Access, vol. 10, pp. 100665–100674, 2022, doi:10.1109/access.2022.3207488.Sun, W., Maximizing Renewable Hosting Capacity in Electricity Networks. The Uni- versity of Edinburgh, Scotland, 2015, http://hdl.handle.net/1842/10483.Celiloglu, R., “Integration of large capacity pv power and measuring pv hosting capacity of north cyprus mv grid,” 2017.Arshad, A., Lindner, M., y Lehtonen, M., “An analysis of photo-voltaic hosting capacity in finnish low voltage distribution networks,” Energies, vol. 10, no. 11, p. 1702, 2017, doi:10.3390/en10111702.Walla, T., “Hosting capacity for photovoltaics in swedish distribution grids,” 2012.Stetz, T., Marten, F., y Braun, M., “Improved low voltage grid-integration of photo- voltaic systems in germany,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 534–542, 2013, doi:10.1109/tste.2012.2198925.Von Appen, J., Braun, M., Stetz, T., Diwold, K., y Geibel, D., “Time in the sun: The 38 challenge of high PV penetration in the german electric grid,” IEEE Power and Energy Magazine, vol. 11, no. 2, pp. 55–64, 2013, doi:10.1109/mpe.2012.2234407.Van THONG, V., DRIESEN, J., y BELMANS, R., “Dg interconnection standards and technical requirements: Comparisons and gaps,” en 19th Int. Conf. Exhib. Electr. Dis- trib., Citeseer, 2007.Bollen, M. y Häger, M., “Power quality: interactions between distributed energy re- sources, the grid, and other customers,” Leonardo Energy, 2005.Vovos, P. N., Kiprakis, A. E., Wallace, A. R., y Harrison, G. P., “Centralized and dis- tributed voltage control: Impact on distributed generation penetration,” IEEE Trans- actions on Power Systems, vol. 22, no. 1, pp. 476–483, 2007, doi:10.1109/tpwrs.2006.8 88982.Seguin, R., Woyak, J., Costyk, D., Hambrick, J., y Mather, B., “High-penetration pv integration handbook for distribution engineers,” rep. tec., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016.Nursebo, S., Chen, P., Carlson, O., y Tjernberg, L. B., “Optimizing wind power hosting capacity of distribution systems using cost benefit analysis,” IEEE Transactions on Power Delivery, vol. 29, no. 3, pp. 1436–1445, 2014, doi:10.1109/tpwrd.2014.2303204.Adefarati, T. y Bansal, R., “Integration of renewable distributed generators into the dis- tribution system: a review,” IET Renewable Power Generation, vol. 10, no. 7, pp. 873– 884, 2016, doi:10.1049/iet-rpg.2015.0378.Smith, J., Rylander, M., y Rogers, L., “Integration of hosting capacity analysis into distribution planning tools,” Electric Power Research Institute (EPRI), Palo Alto, Cal- ifornia, USA, Technical Report, 2016.Rylander, M., Smith, J., Sunderman, W., Smith, D., y Glass, J., “Application of new method for distribution-wide assessment of distributed energy resources,” en 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), IEEE, 2016, doi:10.1109/tdc.2016.7519994.PowerFactory, D., “User manual,” 2023.Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., y Jenkins, N., “Integrating dis- tributed generation into electric power systems: A review of drivers, challenges and opportunities,” Electric Power Systems Research, vol. 77, no. 9, pp. 1189–1203, 2007, doi:10.1016/j.epsr.2006.08.016.Wang, Y., Silva, V., y Lopez-Botet-Zulueta, M., “Impact of high penetration of variable renewable generation on frequency dynamics in the continental europe interconnected system,” IET Renewable Power Generation, vol. 10, no. 1, pp. 10–16, 2016, doi:10.104 9/iet-rpg.2015.0141.Athari, M. H., Wang, Z., y Eylas, S. H., “Time-series analysis of photovoltaic dis- tributed generation impacts on a local distributed network,” en 2017 IEEE Manchester PowerTech, IEEE, 2017, doi:10.1109/ptc.2017.7980908.DIgSILENT, “Bess simulation model, application example,” 2023.Chatrung, N., “Battery energy storage system (BESS) and development of grid scale BESS in EGAT,” en 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), IEEE, 2019, doi:10.1109/gtdasia.2019.8715953.Etherden, N. y Bollen, M. H. J., “Dimensioning of energy storage for increased in- tegration of wind power,” IEEE Transactions on Sustainable Energy, vol. 4, no. 3, pp. 546–553, 2013, doi:10.1109/tste.2012.2228244.Rascon, O. C., Schachler, B., Buhler, J., Resch, M., y Sumper, A., “Increasing the hosting capacity of distribution grids by implementing residential PV storage systems and reactive power control,” en 2016 13th International Conference on the European Energy Market (EEM), IEEE, 2016, doi:10.1109/eem.2016.7521338.Hatziargyriou, N., Karfopoulos, E., Tsitsimelis, A., Koukoula, D., Rossi, M., y Gia- como, V., “On the der hosting capacity of distribution feeders,” en Proc. CIRED 23rd International Conference on Electricity Distribution, 2015.Nicholas Etherden, M. H. B., “The use of battery storage for increasing the hosting capacity of the grid for renewable electricity production,” Innovation for secure and efficent transmision grids, pp. 1–8, 2014, http://www.diva-portal.org/smash/get/diva2: 1008302/FULLTEXT01.pdf .Ebad, M. y Grady, W. M., “An approach for assessing high-penetration PV impact on distribution feeders,” Electric Power Systems Research, vol. 133, pp. 347–354, 2016, doi:10.1016/j.epsr.2015.12.026.Altin, M., Oguz, E. U., Bizkevelci, E., y Simsek, B., “Distributed generation hosting capacity calculation of MV distribution feeders in turkey,” en IEEE PES Innovative Smart Grid Technologies, Europe, IEEE, 2014, doi:10.1109/isgteurope.2014.7028776.Alvarado, J., Alvarado, E., Arevalo, M., Quituisaca, S., Gomez, J., y De Oliveira-De Je- sus, P., “Ant colony systems application for electric distribution network planning,” en 2009 15th International Conference on Intelligent System Applications to Power Systems, IEEE, 2009, doi:10.1109/isap.2009.5352816.Avila-Rojas, A., De Oliveira-De Jesus, P. M., y Alvarez, M., “Distribution network electric vehicle hosting capacity enhancement using an optimal power flow formulation,” Electrical Engineering, no. 3, pp. 1337–1348, 2021, doi:10.1007/s00202-021-01374-7.Schwanz, D., Ronnberg, S. K., y Bollen, M., “Hosting capacity for photovoltaic inverters considering voltage unbalance,” en 2017 IEEE Manchester PowerTech, IEEE, 2017, doi:10.1109/ptc.2017.7981274.De Jaeger, E., Du Bois, A., y Martin, B., “Hosting capacity of lv distribution grids for small distributed generation units, referring to voltage level and unbalance,” en 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4, IET, 2013.Qamar, N., Arshad, A., Mahmoud, K., y Lehtonen, M., “Hosting capacity in distribution grids: A review of definitions, performance indices, determination methodologies, and enhancement techniques,” Energy Science amp; Engineering, vol. 11, no. 4, p. 1536– 1559, 2023, doi:10.1002/ese3.1389.VVB, “Batteriespeicher - Versorgungsbetriebe Bordesholm — vb-bordesholm.de.” https: //www.vb-bordesholm.de/batteriespeicher.html, 2020.Fatima, S., Püvi, V., y Lehtonen, M., “Review on the pv hosting capacity in distribution networks,” Energies, vol. 13, no. 18, p. 4756, 2020, doi:10.3390/en13184756.201614596PublicationORIGINALFormato de entrega de tesis IELE.pdfFormato de entrega de tesis IELE.pdfHIDEapplication/pdf296026https://repositorio.uniandes.edu.co/bitstreams/a8506897-b14d-45b9-a096-5eaf0e94ad1b/download6e476b4d69bc0745ddbc27ea26e0b87cMD51Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module.pdfHosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module.pdfapplication/pdf7417901https://repositorio.uniandes.edu.co/bitstreams/876c0320-7886-4a79-ae95-c079f3cbdf80/downloadb8ebc401a73d5497928016c294033879MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/25196049-1ea1-4b73-be96-c192b2ea4097/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/6685da38-f3ec-4ede-a827-8721e2004371/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTFormato de entrega de tesis IELE.pdf.txtFormato de entrega de tesis IELE.pdf.txtExtracted texttext/plain2057https://repositorio.uniandes.edu.co/bitstreams/06fa602a-4880-4db5-a278-14666633a06a/download2914d5633e8a8db7076037d26f419438MD55Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module.pdf.txtHosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module.pdf.txtExtracted texttext/plain81032https://repositorio.uniandes.edu.co/bitstreams/20dd0ba0-a609-4a80-a5de-02337f365e54/download86b5a950659208a3474c2eddcc1a93d7MD57THUMBNAILFormato de entrega de tesis IELE.pdf.jpgFormato de entrega de tesis IELE.pdf.jpgGenerated Thumbnailimage/jpeg11840https://repositorio.uniandes.edu.co/bitstreams/ef8550b2-2611-4486-9f69-7b340ab9e5f1/download7f995eaf30a8143373e858ef97db1521MD56Hosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module.pdf.jpgHosting capacity enhancement study for a distribution network implementing BESS from the DIgSILENT PowerFactory module.pdf.jpgGenerated Thumbnailimage/jpeg7561https://repositorio.uniandes.edu.co/bitstreams/81e242a7-4247-4a84-a98d-ea9bd025e673/download9afe35c8b59318c13f06f4ea0ee6e20dMD581992/73506oai:repositorio.uniandes.edu.co:1992/735062024-04-08 10:48:54.523http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |