Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events
Extreme, extended wet and dry seasons have become more frequent in different parts of the world as the result of global warming. The intensity of these events increases the adverse effects that cyclic hydraulic and thermal fluxes have on the performance of geotechnical structures, especially on the...
- Autores:
-
Granados Rueda, Jaime Eduardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73499
- Acceso en línea:
- https://hdl.handle.net/1992/73499
- Palabra clave:
- Soil-atmosphere interaction
Soil-atmosphere-structure interaction
Evaporation
Climatic chamber
Experimental testing
Numerical modeling
Interacción suelo-atmósfera
Interacción suelo-atmósfera-estructura
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNIANDES2_09ed6709aba3e566431969739ecf9f19 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73499 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
title |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
spellingShingle |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events Soil-atmosphere interaction Soil-atmosphere-structure interaction Evaporation Climatic chamber Experimental testing Numerical modeling Interacción suelo-atmósfera Interacción suelo-atmósfera-estructura Ingeniería |
title_short |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
title_full |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
title_fullStr |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
title_full_unstemmed |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
title_sort |
Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying events |
dc.creator.fl_str_mv |
Granados Rueda, Jaime Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Caicedo Hormaza, Bernardo |
dc.contributor.author.none.fl_str_mv |
Granados Rueda, Jaime Eduardo |
dc.contributor.jury.none.fl_str_mv |
Rosin-Paumier, Sandrine Lozada López, Catalina Estrada Mejía, Nicolás |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ingeniería::Geomateriales y Sistemas de Infraestructura |
dc.subject.keyword.eng.fl_str_mv |
Soil-atmosphere interaction Soil-atmosphere-structure interaction Evaporation Climatic chamber Experimental testing Numerical modeling |
topic |
Soil-atmosphere interaction Soil-atmosphere-structure interaction Evaporation Climatic chamber Experimental testing Numerical modeling Interacción suelo-atmósfera Interacción suelo-atmósfera-estructura Ingeniería |
dc.subject.keyword.spa.fl_str_mv |
Interacción suelo-atmósfera Interacción suelo-atmósfera-estructura |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Extreme, extended wet and dry seasons have become more frequent in different parts of the world as the result of global warming. The intensity of these events increases the adverse effects that cyclic hydraulic and thermal fluxes have on the performance of geotechnical structures, especially on the mechanical response of shallow structures. To account for the effects of climate fluctuations, the design, construction, and stability analysis of existing and new geotechnical projects need to implement methods to evaluate soil-atmosphere and soil-atmosphere-structure interactions. This may be achieved using physical and numerical methods that represent the water and heat transfer mechanisms and the thermo-hydro-mechanical (THM) response of unsaturated soils subjected to variable atmospheric conditions and structural loading. This study combined physical testing and numerical methods to evaluate the effects of soil-atmosphere interactions on the hydraulic and thermal fluxes and THM response of unsaturated soils. The first part of this study was experimental and focused on the evaporation process from soil-atmosphere interfaces represented by thin soil layers. A wide range of atmospheric conditions including temperature, relative humidity, irradiance, and wind velocity were imposed on soil surfaces of various textures to identify the key atmospheric parameters and soil properties that control evaporation. Based on the experimental results, an empirical model was proposed to estimate evaporation rates from soil-atmosphere interfaces. The model was expressed as a function of the relative humidity and wind velocity of the air measured near the soil surface, the mean suction of the soil-atmosphere interface, and the soil thickness. These were found to be the most significant atmospheric and soil parameters during evaporation. In the second part of this study, a coupled THM numerical model for soil-atmosphere interaction was developed. The model was written based on the laws of mass and thermal conservation and principles of thermodynamics and unsaturated soil mechanics. The Partial Differential Equations (PDE) that govern the flow of water in liquid and vapor phases and heat transfer were solved using a mixed Explicit-Implicit Finite Difference Scheme. The mechanical response of the soil was coupled to the hydro-thermal fluxes by means of changes in soil suction. The numerical model was validated for drying atmospheric conditions using the results of the experimental program. In the third part of this study, the soil-atmosphere interaction model was adapted to evaluate soil-structure interactions of a lightly-loaded structure subjected to variable atmospheric conditions. The numerical model included the analysis of soil-structure strain compatibility due to structural loading and soil shrinkage or swelling. The distribution of compressive stresses, relative displacements, and potential wall damage were also evaluated. The results of the experimental program and numerical modeling may be used to evaluate the behavior of different types of geotechnical structures under variable climatic conditions. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-26T14:30:52Z |
dc.date.available.none.fl_str_mv |
2024-01-26T14:30:52Z |
dc.date.issued.none.fl_str_mv |
2024-01-18 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73499 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/73499 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73499 |
identifier_str_mv |
10.57784/1992/73499 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Abubaker, A., Kostic, I., & Kostic, O. (2018). Numerical modelling of velocity profile parameters of the atmospheric boundary layer simulated in wind tunnels. IOP Conference Series: Materials Science and Engineering, 393, paper 012025, 10p. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements. In FAO (Food and Agriculture Organization of the United Nations) Irrigation and drainage, paper 56, Chapter 1 – Introduction to evapotranspiration. Alonso, E. & Gens, A. (Eds). (2010). Unsaturated soils, two volume set. Proceedings of 5th International Conference on Unsaturated Soil, CRC Press. Barcelona, Spain, 6-8 September 2010 Alonso, E.E., Gens, A., & Josa, A. (1990). Constitutive model for partially saturated soils. Géotechnique, 40(3), p. 405-430. Alonso, E.E., Gens, A., & Delahaye, C.H. (2003). Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study. Hydrogeology Journal, 11, p. 174-192. Amakye, S.Y., Abbet, S.J., Booth, C.A., & Mahamady, A.M. (2021). Enhancing the engineering properties of subgrade materials using processed waste: a review. Geotechnics, 1(2), p. 307-329. An, N., Hemmati, S., & Cui, Y-J. (2017). Assessment of the methods for determining net radiation at different time-scales of meteorological variables. Journal of Rock Mechanics and Geotechnical Engineering, 9, pp. 239-246. Andrews, M. (2022). ‘From India’s highs to Thailand’s lows, Asia’s weather is hitting extremes.’ The Guardian. Accessed May 7th, 2022. <www.theguardian.com/environment/2022/may/07/asia-extreme-weather-india-pakistan-heatwave-thailand-china-cold>. Archer, A. (2019). Climate change impact on embankments considering temperature effects: centrifuge modelling. PhD Thesis – The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. 291p. Auvray R., Rosin-Paumier S., Abdallah A., & Masrouri F., (2013). Quantification of soft soil cracking during suction cycles by image processing. European Journal of Environmental and Civil Engineering, 18(1), pp. 11-32. Barrera, M. & Garnica, P. (2002). Introducción a la mecánica de suelos no saturados en vías terrestres. Publicación Técnica No. 198, Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte. Barry, R. G. & Chorley, R. J. (2003). Atmosphere, weather and climate. Routledge (8th Edition). Bevacqua E., Zappa G., Lehner F., & Zscheischle J. (2022). Precipitation trends determine future occurrence of compound hot-dry events. Nature Climate Change, 12, pp. 350-355. Bitelli, M., Ventura, F., Campbell, G., Snyder, R.L., Gallegati, F., & Rossi, P. (2008). Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. Journal of Hydrology, 362, pp. 191-205. Boscardin, M.D. & Cording, E.J. (1989). Building response to excavation-induced settlement. Journal of Geotechnical Engineering, 115(1), pp. 1-21. Bratton, D.C. & Womeldorf, C.A. (2011). The wind shear exponent: comparing measured against simulated values and analyzing the phenomena that affect the wind shear. In proceedings of ASME 2011 5th International Conference on Energy Sustainability, Washington D.C., USA, August 7 – 11, 7p. Bui H.H., Nguyen G.D., Kodikara J., & Sanchez M. (2015). Soil cracking modeling using the mesh-free SPH method. Proceedings of 12th Australia-New Zeland Conference on Geomechanics. Wellington, New Zeland. Caicedo, B. (1991). Contribution à l’étude de la migration de l’eau dans les sols pendant le gel et le dégel. Thèse présentée pour l’obtention du grade de docteur, spécialité : mécanique des sols. Ecole Centrale de Paris, Paris, France. 108p. Caicedo, B. (2018). Geotechnical of roads: fundamentals. CRC Press. Caicedo, B. (2021). Geotechnical of roads: advanced analysis and modeling. CRC Press. Carman, P.C. (1956). Flow of gases through porous media. Academic Press Inc. Carvalho, J.C., Gitirana, G.F.N., Machado, S.L, Mascarenha, M.M.M., & Silva Filho, F.C. (2015). Solos não saturados no contexto geotécnico. Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica. Climate Change Institute, (Climate Reanalyzer, University of Maine). (2023). Accessed on July 11, 2023. <https://climatereanalyzer.org/wx/todays-weather/?var_id=prcp-mslp&ortho=3&wt=1>. Corte, A. & Higashi, A. (1964). Experimental research on desiccation cracks in soil. Research report 66. U.S. Army Materiel Command. Cold Regions Research & Engineering Laboratory. Hanover, New Hampshire. Côté, J. & Konrad, J.M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42(1), pp. 443-458. Coulomb, C.A. (1773). Application des règles de maxima et minima à quelques problèmes de statique relatifs à l’Arquitecture. Academie Royale Des Sciences, Mémoire de la Mathematique et de Physics, 7, pp. 343-382. Cui, Y. (2022). Soil-atmosphere interaction in earth structures. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), pp. 35-49. Davenport, A.G. (1960). Rationale for determining design wind velocities. ASCE Journal of the Structural Divisions,86(5), pp. 39-68. Dong, Y., McCartney, J.S., & Lu, N. (2015). Critical review of thermal conductivity models for unsaturated soils. Geotechnical and Geological Engineering, 33, pp. 207-221. Environmental Protection Agency of the US (EPA). (2022). Climate change indicators: heat waves. Accessed June 16th, 2023. <www.epa.gov/climate-indicators/climate-change-indicators-heat-waves>. Fredlund, D.G. & Rahardjo, H. (1993a). An overview of unsaturated soil behavior. Proceedings of ASCE Specialty Session Unsaturated Soil Properties, 31p. Fredlund, D.G. & Rahardjo, H. (1993b). Soil mechanics for unsaturated soils. John Wiley & Sons, Inc. Fredlund, D.G. & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(3), pp. 521-532. Fredlund, M.D., Zhang, J.M., Tran, D., & Fredlund, D.G. (2011). Coupling heat and moisture flow for the computation of actual evaporation. 14th Pan-Am CGS Canadian Geotechnical Conference, Toronto, Canada, 8p. Fredlund, D.G., Rahardjo, H., & Fredlund, M.D. (2012). Unsaturated soil mechanics in engineering practice. John Wiley & Sons, Inc. Fredlund, M.D., Tran, D., & Fredlund, D.G. (2015). The calculation of actual evaporation from an unsaturated soil surface. Proceedings of the 10th International Conference of Acid Rock Drainage & IMWA Annual Conference, Santiago, Chile, pp. 399-412p. Fry, J.J. (1977). Contribution à l’étude et à la pratique du compactage. PhD Thesis – École Centrale de Paris, Paris, France. 443p. Geirinhas, J.L., Russo, A., Libonati, R., Sousa, P., Miralles, D.G., & Trigo, R.M. (2021). Recent increasing frequency of compound summer drought and heatwaves in southeast Brazil. Environmental Research Letters, 16(3), 10p., 034036. Ghezzehei, T.A., Trautz, R.C., Finsterle, S., Cook, P.J., & Ahlers, C.F. (2004). Modeling coupled evaporation and seepage in ventilated cavities. Vadose Zone Journal, 3, pp. 806-818. Gitirana, G., Fredlund, M.D., & Fredlund, D.G. (2006). Numerical modelling of soil-atmosphere interaction for unsaturated surfaces. Proceedings of the 4th International Conference on Unsaturated soils, Carefree, Arizona, pp. 658-669. Granados, J. & Caicedo, B. (2023). Physical and numerical modelling of soil-atmosphere-structure interaction. UNSAT 2023, E3S Web of Conferences 382, 06002, 6p. Goddard Earth Observing System (GEOS, NASA). (2022). Accessed on July 13, 2022. <earthobservatory.nasa.gov/images/150083/heatwaves-and-fires-scorch-europe-africa-and-asia>. Haq, S.N., Khalil, H., Dewan, A., Sangal, A., Hayes, M., & Hammond, E. (2022). ‘Heat wave scorches Europe as UK reaches record-breaking temperatures.’ CNN.com. Accessed July 20, 2022. <edition.cnn.com/europe/live-news/uk-europe-heatwave-fires-news-071922-intl-gbr/index.html> Hatami, K., García, L.M., & Miller, G.A. (2010). Influence of moisture content on the pullout capacity of geotextile reinforcement in marginal soils. 61st Highway Geology Symposium, Oklahoma City, OK. Hendrikx, J. & Harper, A. (2013). Development of a national snow and ice monitoring network for New Zealand. Journal of Hydrology (New Zealand), 52(2), p. 83-96. Holmes, R.M. (1961). Estimation of soil moisture content using evaporation data. Proceedings of Hydrology Symposium, No. 2, Ottawa, Canada, pp. 184-196. Hurtado, G. (2012). Sequía meteorológica y sequía agrícola en Colombia: incidencia y tendencias. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia, 49p. IPCC. (2007). Historical Overview of Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 94-127. IPCC. (2021). Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33-144. Jabro, J. (2009). Water vapor diffusion through soil as affected by temperature and aggregate size. Transport in Porous Media, 77, pp. 417-428. Johansen, O. (1977). Thermal conductivity of soils. Technical report, Cold Regions Research and Engineering Lab. Hanover, NH. Jones, L.D. & Jefferson, I. (2012). Chapter C5: Expansive soils. Manual Series. Institution of Civil Engineers (ICE), 46p. Jones, S., Ramaldho da Silva, B., & Ni, V. (2022). ‘Thousands evacuated as heat causes wildfires in Europe and north Africa.’ The Guardian. July 15, 2022. www.theguardian.com/world/2022/jul/15/thousands-evacuated-as-heat-causes-wildfires-in-europe-and-north-africa. Kandalai, S., John, N. J., & Patel, A. (2023). Effects of climate change on geotechnical infrastructures – state of the art. Environmental Science and Pollution Research, 30, 16878-16904. Lakshmikantha, M.R. (2009). Experimental and theoretical analysis of cracking in drying soils. PhD Thesis – Universitat Politecnica de Catalunya, Barcelona, Spain. 391p. Lozada C., Caicedo B., & Thorel L. (2015). Effects of cracks and desiccation on the bearing capacity of soil deposits. Géotechnique Letters, 5(3), p. 112-117. Lozada C. (2016). Study of the soil atmosphere interaction and bearing capacity of a soil under desiccation. PhD Thesis – Universidad de los Andes, Bogotá, Colombia/École Centrale de Nantes-Université Nantes Angers Le Mans, Nantes, France. 275p. Lozada C., Caicedo B. & Thorel L. (2016). Improved climatic chamber for desiccation simulation. In E3S Web of Conferences, 3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”, 9, 6p. Lozada C., Caicedo B. & Thorel L. (2019). A new climatic chamber for studying soil-atmosphere interaction in physical models. In International Journal of Physical Modelling in Geotechnics, 19(6), pp. 286-304. Mainguy, M., Coussy, O., & Eymard, R. (1999). Modélisation des transferts hydriques isothermes en milieu poreux. Application au séchage des matériaux a base de ciment. Laboratoire Central des Ponts et Chausees. 130 p. Millares, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., & Dolman, A.J. (2011). Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15, pp. 453-469. Miller, C.J., Mi, H. & Yesiller, N. (1998). Experimental analysis of desiccation crack propagation in clay liners. Journal of the American Water Resources Association, 34(3), pp. 677-686. Miller, G.A., Hassanikhah, A. & Varsei, M. (2015). Desiccation crack depth and tensile strength in compacted soil. In Unsaturated Soil Mechanics from Theory to Practice: Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23-26 October 2015, pp. 79-87. Mohr, O. (1900). Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials? Zeit des Ver Deut Ing, 44, pp. 1524-1530. Monteith, J.L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, pp. 205-234. Morris, P.H., Graham, J. & Williams, D.J. (1992). Cracking in drying soils. Canadian Geotechnical Journal, 29(2), pp. 263-277. Murillo, C., (2006). Caracterización geotécnica de estructuras multicapas en centrífuga empleando ondas de superficie. PhD Thesis, Universidad de los Andes. National Aeronautics and Space Administration (NASA). (2005). What’s the difference between weather and climate? Accessed June 16th, 2023. <https://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html>. National Geographic Society. (2022). Weather of climate … what’s the difference? Accessed June 16th, 2023. <https://education.nationalgeographic.org/resource/weather-or-climate-whats-difference>. National Oceanic and Atmospheric Administration (NOAA). (2018). Accessed June 16th, 2023. <https://www.ncei.noaa.gov/news/weather-vs-climate>. National Oceanic and Atmospheric Administration (NOAA). (2023). Accessed June 22nd, 2023. <https://www.noaa.gov/jetstream/atmosphere>. Ng. C.W.W. & Menzies, B. (2007). Advanced unsaturated soil mechanics and engineering. CRC Press. North, G. R., Pyle, J. & Zhang, F. (Editors). (2015). Encyclopedia of Atmospheric Sciences, 2nd Edition. Omidi G., Thomas J., & Brown K. (1996). Effect of desiccation cracking on the hydraulic conductivity of compacted clay liner. Water Air Soil Pollutants, 89, pp. 91-103. Özgür, E. & Koçak, K. (2015). The effects of the atmospheric pressure on evaporation. Acta Geobalcanica, 1(1), 17-24. Pham, H.Q., Fredlund, D.G., & Barbour, S.L. (2002). A simple soil-water hysteresis model for predicting boundary wetting curve. Proceedings of the 55th Canadian Geotechnical and 3rd Joint IAH-CNC and CGS Groundwater Specialty Conferences, pp. 1261-1267. Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, 193, pp. 120-245. Pérez, L. (2021). Efecto de la temperatura en las curvas de compactación Proctor en la arcilla caolín. BSc Thesis – Universidad de los Andes, Bogotá, Colombia. 46p. Pérez, L. (2023). Modelación física del comportamiento de suelos expansivos en presencia de áreas impermeables superficiales mediante la cámara climática. MSc Thesis – Universidad de los Andes, Bogotá, Colombia. 38p. Peron, H., Laloui, L., Hu, L.-B., & Hueckel, T. (2012). Formation of drying crack patterns in soils: a deterministic approach. Acta Geotechnica (2013), 8, 215-221 Peron, H., Laloui, L., & Hueckel, T. (2015). Experimental evidence in desiccation cracking. In Proceedings of Advanced Experimental Unsaturated Soil Mechanics. Trento, Italy, pp. 475-480. Pidwirny, M. & Jones, S. (2009). Chapter 6: Energy and matter, Earth-Sun geometry. Accessed June 23rd, 2003. Puzrin, A.M., Alonso, E.E., & Pinyol, N.M. (2010). Geomechanics of failures. Springer. Puzrin, A.M., Alonso, E.E., & Pinyol, N.M. (2010). Geomechanics of failures. Advanced topics. Springer. Rohwer, C. (1931). Evaporation from free water surfaces. Technical Bulleting No. 271 of the United States Department of Agriculture, Washington, D.C. in cooperation with Colorado Agricultural, 107p. Rosin-Paumier, S., Granados, J. & Caicedo, B. (2023). Soil-atmosphere interaction: cracking of a compacted soil under the effect of a thermo-hydric stress. UNSAT 2023, E3S Web of Conferences 382, 04009, 6p. Sanchez, M., Manzoli, O.L., & Guimares, L.J.N. (2014). Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Computer and Geotechnics, 62, pp. 27-39. Shirazi, S,M., Kazama, H., Salman, F.A., Othman, F. & Akib S. (2010). Permeability and swelling characteristics of bentonite. International Journal of the Physical Sciences, 5(11), pp. 1647-1659. Small, E.E., Badger, A.M., Abolafia-Rosenzweig, R., & Livneh, B. (2018). Estimating soil evaporation using drying rates determined from satellite-based soil moisture records. Remote Sensing, 10(12), 22 p. Song, W.K., Cui, Y.J., Tang, A.M., & Ding, W.Q. (2013). Development of a large-scale environmental chamber for investigating soil water evaporation. Geotechnical Testing Journal, 36(6), 11p. Sturrock, N.S. (1971). Localised boundary layer heat transfer from external building surfaces. In Ph.D. Thesis, University of Liverpool, Liverpool, UK. Suarez, J. (1998). Deslizamientos y estabilidad de taludes en zonas tropicales. Instituto de Investigaciones sobre Erosión y Deslizamientos, Ingeniería de Suelos Ltda - Publicaciones UIS. Take, W.A. & Bolton, M.D. (2002). An atmospheric chamber for the investigation of the effect of seasonal moisture changes on clay slopes. Proceedings of International Conference on Physical Modelling in Geotechnics. St. John’s, Newfoundland, Canada, pp. 765-770. Thomas, H.R., Vardon, P.J., & Li, Y. (2009). Coupled thermo-hydro-chemo-mechanical modeling for geoenvironmental phenomena. Proceedings of International Symposium on Geoenvironmental Engineering. Hangzhou, China, pp. 320-327. Tristancho, J., Caicedo, B., Thorel, L., & Obregón, N., (2012). Climatic chamber with centrifuge to simulate different weather conditions. Geotechnical Testing Journal,35(1), pp. 1-13. UCAR Office of Programs, The National Center for Atmospheric Research. (2003). Accessed June 22nd, 2023. <https://eo.ucar.edu/basics/wx_1_b.html> van Genutchen, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, pp. 892-898. Vardon, P.J. (2015). Climatic influence on geotechnical infrastructure: a review. Environmental Geotechnics, 2(EG3), p. 166-174. Vardon, P.J. (2019). Editorial: Soil-atmosphere interaction. Environmental Geotechnics, 6(6), p. 320-322. Villacreses, J.P., Granados, J.E., Caicedo, B., Torres-Rodas, P. & Yépez, F. (2021). Seismic and hydromechanical performance of rammed earth walls under changing environmental conditions. Construction and Building Materials, 300(4), 14p. Villar, M.V. & Lloret, A. (2004). Temperature influence on the mechanical behaviour of a compacted bentonite. Elsevier Geo-Engineering Book Series, 2, pp. 305-310. Wald, L. (2018). Basics in solar radiation at earth surface. Lecture notes at the Mines ParisTech, PSL Research University, Sophia Antipolis, France. 57p. Wilhite, D.A. & Glantz, M.H. (1985). Understanding the drought phenomenon: the role of definitions. Water International, 10(3), pp. 111-120. Wilson, G.W. (1990). Soil evaporative fluxes for geotechnical engineering problems. PhD Thesis – University of Saskatchewan, Saskatoon, Canada. 489p. Wilson, G.W., Fredlund, D.G., & Barbour S.L. (1994). Coupled soil-atmosphere modelling for soil evaporation. Canadian Geotechnical Journal, 31(2), pp. 151-161. Wilson, G.W., Fredlund, D.G., & Barbour S.L. (1997). The effect of soil suction on evaporative fluxes from soil surfaces. Canadian Geotechnical Journal, 34(4), pp. 145-155. World Development Indicators – World Bank (WDI). (2022). Accessed July 11, 2023 <https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators> World Meteorological Organization (WMO). (1985). Casebook on operational assessment of areal evaporation. Operational Hydrology Report No. 22. WMO-No. 635. Geneva, Switzerland. World Meteorological Organization (WMO). (2015). International Glossary of Hydrology. WMO-No. 385. Geneva, Switzerland. Xue, X., Han, S., Guo, D., Zhao, Z., Zhou, B., & Li, F. (2022). Study of the convective heat transfer coefficient of different building envelope exterior surfaces. Buildings, 12(6), 860. Yahaya, S., Jikan, S., Badarulzaman, N., & Adamu, A. (2017). Chemical composition and particle size analysis of kaolin. Path of Science, 3(10), pp. 1001-1004. Yavuzturk, C., Ksaibati, K., & Chiasson, A.D. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17(4), pp. 465-475. Zhen, L. (2022). China heatwave brings record high temperatures to Shangai and other cities. South China Morning Post. Accessed July 14th, 2022. <https://www.scmp.com/news/china/politics/article/3185316/china-heatwave-brings-record-high-temperatures-shanghai-and>. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
371 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Civil y Ambiental |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/515368f9-b19b-4e74-a847-ce33326aedf1/download https://repositorio.uniandes.edu.co/bitstreams/cc45cb4f-d985-45ce-b417-2ee43fda068f/download https://repositorio.uniandes.edu.co/bitstreams/d458840d-9ec3-4041-9b9d-96ff48587cc9/download https://repositorio.uniandes.edu.co/bitstreams/a4d99b40-890a-4ef8-87b2-00b2665e0990/download https://repositorio.uniandes.edu.co/bitstreams/35b5dbbb-eadc-4d53-8b88-5fcba65407d8/download https://repositorio.uniandes.edu.co/bitstreams/badfb4cc-8d64-4c24-b0fc-420df179eece/download https://repositorio.uniandes.edu.co/bitstreams/a28cb559-77df-4134-a38d-f7cf91a838f7/download https://repositorio.uniandes.edu.co/bitstreams/8951ddc4-a93c-423d-8165-a5a7b7453ff2/download |
bitstream.checksum.fl_str_mv |
49e054fb3a127ba6e95b5ab93727615d 76c2b6fd3def0de0058ad935825d3fd2 934f4ca17e109e0a05eaeaba504d7ce4 ae9e573a68e7f92501b6913cc846c39f c04e48768291f801faecfa2b74c69fbf a9a4343bd7183a22fc5e13919e1068ec 477c4930170be4fab7df99edd3de35fe b571e75b47319c60411b44aa6d6693b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111674379403264 |
spelling |
Caicedo Hormaza, Bernardovirtual::162-1Granados Rueda, Jaime EduardoRosin-Paumier, SandrineLozada López, CatalinaEstrada Mejía, NicolásFacultad de Ingeniería::Geomateriales y Sistemas de Infraestructura2024-01-26T14:30:52Z2024-01-26T14:30:52Z2024-01-18https://hdl.handle.net/1992/7349910.57784/1992/73499instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Extreme, extended wet and dry seasons have become more frequent in different parts of the world as the result of global warming. The intensity of these events increases the adverse effects that cyclic hydraulic and thermal fluxes have on the performance of geotechnical structures, especially on the mechanical response of shallow structures. To account for the effects of climate fluctuations, the design, construction, and stability analysis of existing and new geotechnical projects need to implement methods to evaluate soil-atmosphere and soil-atmosphere-structure interactions. This may be achieved using physical and numerical methods that represent the water and heat transfer mechanisms and the thermo-hydro-mechanical (THM) response of unsaturated soils subjected to variable atmospheric conditions and structural loading. This study combined physical testing and numerical methods to evaluate the effects of soil-atmosphere interactions on the hydraulic and thermal fluxes and THM response of unsaturated soils. The first part of this study was experimental and focused on the evaporation process from soil-atmosphere interfaces represented by thin soil layers. A wide range of atmospheric conditions including temperature, relative humidity, irradiance, and wind velocity were imposed on soil surfaces of various textures to identify the key atmospheric parameters and soil properties that control evaporation. Based on the experimental results, an empirical model was proposed to estimate evaporation rates from soil-atmosphere interfaces. The model was expressed as a function of the relative humidity and wind velocity of the air measured near the soil surface, the mean suction of the soil-atmosphere interface, and the soil thickness. These were found to be the most significant atmospheric and soil parameters during evaporation. In the second part of this study, a coupled THM numerical model for soil-atmosphere interaction was developed. The model was written based on the laws of mass and thermal conservation and principles of thermodynamics and unsaturated soil mechanics. The Partial Differential Equations (PDE) that govern the flow of water in liquid and vapor phases and heat transfer were solved using a mixed Explicit-Implicit Finite Difference Scheme. The mechanical response of the soil was coupled to the hydro-thermal fluxes by means of changes in soil suction. The numerical model was validated for drying atmospheric conditions using the results of the experimental program. In the third part of this study, the soil-atmosphere interaction model was adapted to evaluate soil-structure interactions of a lightly-loaded structure subjected to variable atmospheric conditions. The numerical model included the analysis of soil-structure strain compatibility due to structural loading and soil shrinkage or swelling. The distribution of compressive stresses, relative displacements, and potential wall damage were also evaluated. The results of the experimental program and numerical modeling may be used to evaluate the behavior of different types of geotechnical structures under variable climatic conditions.Doctor en IngenieríaDoctorado371 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Physical and numerical study of soil-atmosphere and soil-atmosphere-structure interactions during drying eventsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDSoil-atmosphere interactionSoil-atmosphere-structure interactionEvaporationClimatic chamberExperimental testingNumerical modelingInteracción suelo-atmósferaInteracción suelo-atmósfera-estructuraIngenieríaAbubaker, A., Kostic, I., & Kostic, O. (2018). Numerical modelling of velocity profile parameters of the atmospheric boundary layer simulated in wind tunnels. IOP Conference Series: Materials Science and Engineering, 393, paper 012025, 10p.Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements. In FAO (Food and Agriculture Organization of the United Nations) Irrigation and drainage, paper 56, Chapter 1 – Introduction to evapotranspiration.Alonso, E. & Gens, A. (Eds). (2010). Unsaturated soils, two volume set. Proceedings of 5th International Conference on Unsaturated Soil, CRC Press. Barcelona, Spain, 6-8 September 2010Alonso, E.E., Gens, A., & Josa, A. (1990). Constitutive model for partially saturated soils. Géotechnique, 40(3), p. 405-430.Alonso, E.E., Gens, A., & Delahaye, C.H. (2003). Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study. Hydrogeology Journal, 11, p. 174-192.Amakye, S.Y., Abbet, S.J., Booth, C.A., & Mahamady, A.M. (2021). Enhancing the engineering properties of subgrade materials using processed waste: a review. Geotechnics, 1(2), p. 307-329.An, N., Hemmati, S., & Cui, Y-J. (2017). Assessment of the methods for determining net radiation at different time-scales of meteorological variables. Journal of Rock Mechanics and Geotechnical Engineering, 9, pp. 239-246.Andrews, M. (2022). ‘From India’s highs to Thailand’s lows, Asia’s weather is hitting extremes.’ The Guardian. Accessed May 7th, 2022. <www.theguardian.com/environment/2022/may/07/asia-extreme-weather-india-pakistan-heatwave-thailand-china-cold>.Archer, A. (2019). Climate change impact on embankments considering temperature effects: centrifuge modelling. PhD Thesis – The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. 291p.Auvray R., Rosin-Paumier S., Abdallah A., & Masrouri F., (2013). Quantification of soft soil cracking during suction cycles by image processing. European Journal of Environmental and Civil Engineering, 18(1), pp. 11-32.Barrera, M. & Garnica, P. (2002). Introducción a la mecánica de suelos no saturados en vías terrestres. Publicación Técnica No. 198, Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte.Barry, R. G. & Chorley, R. J. (2003). Atmosphere, weather and climate. Routledge (8th Edition).Bevacqua E., Zappa G., Lehner F., & Zscheischle J. (2022). Precipitation trends determine future occurrence of compound hot-dry events. Nature Climate Change, 12, pp. 350-355.Bitelli, M., Ventura, F., Campbell, G., Snyder, R.L., Gallegati, F., & Rossi, P. (2008). Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. Journal of Hydrology, 362, pp. 191-205.Boscardin, M.D. & Cording, E.J. (1989). Building response to excavation-induced settlement. Journal of Geotechnical Engineering, 115(1), pp. 1-21.Bratton, D.C. & Womeldorf, C.A. (2011). The wind shear exponent: comparing measured against simulated values and analyzing the phenomena that affect the wind shear. In proceedings of ASME 2011 5th International Conference on Energy Sustainability, Washington D.C., USA, August 7 – 11, 7p.Bui H.H., Nguyen G.D., Kodikara J., & Sanchez M. (2015). Soil cracking modeling using the mesh-free SPH method. Proceedings of 12th Australia-New Zeland Conference on Geomechanics. Wellington, New Zeland.Caicedo, B. (1991). Contribution à l’étude de la migration de l’eau dans les sols pendant le gel et le dégel. Thèse présentée pour l’obtention du grade de docteur, spécialité : mécanique des sols. Ecole Centrale de Paris, Paris, France. 108p.Caicedo, B. (2018). Geotechnical of roads: fundamentals. CRC Press.Caicedo, B. (2021). Geotechnical of roads: advanced analysis and modeling. CRC Press.Carman, P.C. (1956). Flow of gases through porous media. Academic Press Inc.Carvalho, J.C., Gitirana, G.F.N., Machado, S.L, Mascarenha, M.M.M., & Silva Filho, F.C. (2015). Solos não saturados no contexto geotécnico. Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica.Climate Change Institute, (Climate Reanalyzer, University of Maine). (2023). Accessed on July 11, 2023. <https://climatereanalyzer.org/wx/todays-weather/?var_id=prcp-mslp&ortho=3&wt=1>.Corte, A. & Higashi, A. (1964). Experimental research on desiccation cracks in soil. Research report 66. U.S. Army Materiel Command. Cold Regions Research & Engineering Laboratory. Hanover, New Hampshire.Côté, J. & Konrad, J.M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42(1), pp. 443-458.Coulomb, C.A. (1773). Application des règles de maxima et minima à quelques problèmes de statique relatifs à l’Arquitecture. Academie Royale Des Sciences, Mémoire de la Mathematique et de Physics, 7, pp. 343-382.Cui, Y. (2022). Soil-atmosphere interaction in earth structures. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), pp. 35-49.Davenport, A.G. (1960). Rationale for determining design wind velocities. ASCE Journal of the Structural Divisions,86(5), pp. 39-68.Dong, Y., McCartney, J.S., & Lu, N. (2015). Critical review of thermal conductivity models for unsaturated soils. Geotechnical and Geological Engineering, 33, pp. 207-221.Environmental Protection Agency of the US (EPA). (2022). Climate change indicators: heat waves. Accessed June 16th, 2023. <www.epa.gov/climate-indicators/climate-change-indicators-heat-waves>.Fredlund, D.G. & Rahardjo, H. (1993a). An overview of unsaturated soil behavior. Proceedings of ASCE Specialty Session Unsaturated Soil Properties, 31p.Fredlund, D.G. & Rahardjo, H. (1993b). Soil mechanics for unsaturated soils. John Wiley & Sons, Inc.Fredlund, D.G. & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(3), pp. 521-532.Fredlund, M.D., Zhang, J.M., Tran, D., & Fredlund, D.G. (2011). Coupling heat and moisture flow for the computation of actual evaporation. 14th Pan-Am CGS Canadian Geotechnical Conference, Toronto, Canada, 8p.Fredlund, D.G., Rahardjo, H., & Fredlund, M.D. (2012). Unsaturated soil mechanics in engineering practice. John Wiley & Sons, Inc.Fredlund, M.D., Tran, D., & Fredlund, D.G. (2015). The calculation of actual evaporation from an unsaturated soil surface. Proceedings of the 10th International Conference of Acid Rock Drainage & IMWA Annual Conference, Santiago, Chile, pp. 399-412p.Fry, J.J. (1977). Contribution à l’étude et à la pratique du compactage. PhD Thesis – École Centrale de Paris, Paris, France. 443p.Geirinhas, J.L., Russo, A., Libonati, R., Sousa, P., Miralles, D.G., & Trigo, R.M. (2021). Recent increasing frequency of compound summer drought and heatwaves in southeast Brazil. Environmental Research Letters, 16(3), 10p., 034036.Ghezzehei, T.A., Trautz, R.C., Finsterle, S., Cook, P.J., & Ahlers, C.F. (2004). Modeling coupled evaporation and seepage in ventilated cavities. Vadose Zone Journal, 3, pp. 806-818.Gitirana, G., Fredlund, M.D., & Fredlund, D.G. (2006). Numerical modelling of soil-atmosphere interaction for unsaturated surfaces. Proceedings of the 4th International Conference on Unsaturated soils, Carefree, Arizona, pp. 658-669.Granados, J. & Caicedo, B. (2023). Physical and numerical modelling of soil-atmosphere-structure interaction. UNSAT 2023, E3S Web of Conferences 382, 06002, 6p.Goddard Earth Observing System (GEOS, NASA). (2022). Accessed on July 13, 2022. <earthobservatory.nasa.gov/images/150083/heatwaves-and-fires-scorch-europe-africa-and-asia>.Haq, S.N., Khalil, H., Dewan, A., Sangal, A., Hayes, M., & Hammond, E. (2022). ‘Heat wave scorches Europe as UK reaches record-breaking temperatures.’ CNN.com. Accessed July 20, 2022. <edition.cnn.com/europe/live-news/uk-europe-heatwave-fires-news-071922-intl-gbr/index.html>Hatami, K., García, L.M., & Miller, G.A. (2010). Influence of moisture content on the pullout capacity of geotextile reinforcement in marginal soils. 61st Highway Geology Symposium, Oklahoma City, OK.Hendrikx, J. & Harper, A. (2013). Development of a national snow and ice monitoring network for New Zealand. Journal of Hydrology (New Zealand), 52(2), p. 83-96.Holmes, R.M. (1961). Estimation of soil moisture content using evaporation data. Proceedings of Hydrology Symposium, No. 2, Ottawa, Canada, pp. 184-196.Hurtado, G. (2012). Sequía meteorológica y sequía agrícola en Colombia: incidencia y tendencias. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia, 49p.IPCC. (2007). Historical Overview of Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 94-127.IPCC. (2021). Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33-144.Jabro, J. (2009). Water vapor diffusion through soil as affected by temperature and aggregate size. Transport in Porous Media, 77, pp. 417-428.Johansen, O. (1977). Thermal conductivity of soils. Technical report, Cold Regions Research and Engineering Lab. Hanover, NH.Jones, L.D. & Jefferson, I. (2012). Chapter C5: Expansive soils. Manual Series. Institution of Civil Engineers (ICE), 46p.Jones, S., Ramaldho da Silva, B., & Ni, V. (2022). ‘Thousands evacuated as heat causes wildfires in Europe and north Africa.’ The Guardian. July 15, 2022. www.theguardian.com/world/2022/jul/15/thousands-evacuated-as-heat-causes-wildfires-in-europe-and-north-africa.Kandalai, S., John, N. J., & Patel, A. (2023). Effects of climate change on geotechnical infrastructures – state of the art. Environmental Science and Pollution Research, 30, 16878-16904.Lakshmikantha, M.R. (2009). Experimental and theoretical analysis of cracking in drying soils. PhD Thesis – Universitat Politecnica de Catalunya, Barcelona, Spain. 391p.Lozada C., Caicedo B., & Thorel L. (2015). Effects of cracks and desiccation on the bearing capacity of soil deposits. Géotechnique Letters, 5(3), p. 112-117.Lozada C. (2016). Study of the soil atmosphere interaction and bearing capacity of a soil under desiccation. PhD Thesis – Universidad de los Andes, Bogotá, Colombia/École Centrale de Nantes-Université Nantes Angers Le Mans, Nantes, France. 275p.Lozada C., Caicedo B. & Thorel L. (2016). Improved climatic chamber for desiccation simulation. In E3S Web of Conferences, 3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”, 9, 6p.Lozada C., Caicedo B. & Thorel L. (2019). A new climatic chamber for studying soil-atmosphere interaction in physical models. In International Journal of Physical Modelling in Geotechnics, 19(6), pp. 286-304.Mainguy, M., Coussy, O., & Eymard, R. (1999). Modélisation des transferts hydriques isothermes en milieu poreux. Application au séchage des matériaux a base de ciment. Laboratoire Central des Ponts et Chausees. 130 p.Millares, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., & Dolman, A.J. (2011). Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15, pp. 453-469.Miller, C.J., Mi, H. & Yesiller, N. (1998). Experimental analysis of desiccation crack propagation in clay liners. Journal of the American Water Resources Association, 34(3), pp. 677-686.Miller, G.A., Hassanikhah, A. & Varsei, M. (2015). Desiccation crack depth and tensile strength in compacted soil. In Unsaturated Soil Mechanics from Theory to Practice: Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23-26 October 2015, pp. 79-87.Mohr, O. (1900). Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials? Zeit des Ver Deut Ing, 44, pp. 1524-1530.Monteith, J.L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, pp. 205-234.Morris, P.H., Graham, J. & Williams, D.J. (1992). Cracking in drying soils. Canadian Geotechnical Journal, 29(2), pp. 263-277.Murillo, C., (2006). Caracterización geotécnica de estructuras multicapas en centrífuga empleando ondas de superficie. PhD Thesis, Universidad de los Andes.National Aeronautics and Space Administration (NASA). (2005). What’s the difference between weather and climate? Accessed June 16th, 2023. <https://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html>.National Geographic Society. (2022). Weather of climate … what’s the difference? Accessed June 16th, 2023. <https://education.nationalgeographic.org/resource/weather-or-climate-whats-difference>.National Oceanic and Atmospheric Administration (NOAA). (2018). Accessed June 16th, 2023. <https://www.ncei.noaa.gov/news/weather-vs-climate>.National Oceanic and Atmospheric Administration (NOAA). (2023). Accessed June 22nd, 2023. <https://www.noaa.gov/jetstream/atmosphere>.Ng. C.W.W. & Menzies, B. (2007). Advanced unsaturated soil mechanics and engineering. CRC Press.North, G. R., Pyle, J. & Zhang, F. (Editors). (2015). Encyclopedia of Atmospheric Sciences, 2nd Edition.Omidi G., Thomas J., & Brown K. (1996). Effect of desiccation cracking on the hydraulic conductivity of compacted clay liner. Water Air Soil Pollutants, 89, pp. 91-103.Özgür, E. & Koçak, K. (2015). The effects of the atmospheric pressure on evaporation. Acta Geobalcanica, 1(1), 17-24.Pham, H.Q., Fredlund, D.G., & Barbour, S.L. (2002). A simple soil-water hysteresis model for predicting boundary wetting curve. Proceedings of the 55th Canadian Geotechnical and 3rd Joint IAH-CNC and CGS Groundwater Specialty Conferences, pp. 1261-1267.Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, 193, pp. 120-245.Pérez, L. (2021). Efecto de la temperatura en las curvas de compactación Proctor en la arcilla caolín. BSc Thesis – Universidad de los Andes, Bogotá, Colombia. 46p.Pérez, L. (2023). Modelación física del comportamiento de suelos expansivos en presencia de áreas impermeables superficiales mediante la cámara climática. MSc Thesis – Universidad de los Andes, Bogotá, Colombia. 38p.Peron, H., Laloui, L., Hu, L.-B., & Hueckel, T. (2012). Formation of drying crack patterns in soils: a deterministic approach. Acta Geotechnica (2013), 8, 215-221Peron, H., Laloui, L., & Hueckel, T. (2015). Experimental evidence in desiccation cracking. In Proceedings of Advanced Experimental Unsaturated Soil Mechanics. Trento, Italy, pp. 475-480.Pidwirny, M. & Jones, S. (2009). Chapter 6: Energy and matter, Earth-Sun geometry. Accessed June 23rd, 2003.Puzrin, A.M., Alonso, E.E., & Pinyol, N.M. (2010). Geomechanics of failures. Springer.Puzrin, A.M., Alonso, E.E., & Pinyol, N.M. (2010). Geomechanics of failures. Advanced topics. Springer.Rohwer, C. (1931). Evaporation from free water surfaces. Technical Bulleting No. 271 of the United States Department of Agriculture, Washington, D.C. in cooperation with Colorado Agricultural, 107p.Rosin-Paumier, S., Granados, J. & Caicedo, B. (2023). Soil-atmosphere interaction: cracking of a compacted soil under the effect of a thermo-hydric stress. UNSAT 2023, E3S Web of Conferences 382, 04009, 6p.Sanchez, M., Manzoli, O.L., & Guimares, L.J.N. (2014). Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Computer and Geotechnics, 62, pp. 27-39.Shirazi, S,M., Kazama, H., Salman, F.A., Othman, F. & Akib S. (2010). Permeability and swelling characteristics of bentonite. International Journal of the Physical Sciences, 5(11), pp. 1647-1659.Small, E.E., Badger, A.M., Abolafia-Rosenzweig, R., & Livneh, B. (2018). Estimating soil evaporation using drying rates determined from satellite-based soil moisture records. Remote Sensing, 10(12), 22 p.Song, W.K., Cui, Y.J., Tang, A.M., & Ding, W.Q. (2013). Development of a large-scale environmental chamber for investigating soil water evaporation. Geotechnical Testing Journal, 36(6), 11p.Sturrock, N.S. (1971). Localised boundary layer heat transfer from external building surfaces. In Ph.D. Thesis, University of Liverpool, Liverpool, UK.Suarez, J. (1998). Deslizamientos y estabilidad de taludes en zonas tropicales. Instituto de Investigaciones sobre Erosión y Deslizamientos, Ingeniería de Suelos Ltda - Publicaciones UIS.Take, W.A. & Bolton, M.D. (2002). An atmospheric chamber for the investigation of the effect of seasonal moisture changes on clay slopes. Proceedings of International Conference on Physical Modelling in Geotechnics. St. John’s, Newfoundland, Canada, pp. 765-770.Thomas, H.R., Vardon, P.J., & Li, Y. (2009). Coupled thermo-hydro-chemo-mechanical modeling for geoenvironmental phenomena. Proceedings of International Symposium on Geoenvironmental Engineering. Hangzhou, China, pp. 320-327.Tristancho, J., Caicedo, B., Thorel, L., & Obregón, N., (2012). Climatic chamber with centrifuge to simulate different weather conditions. Geotechnical Testing Journal,35(1), pp. 1-13.UCAR Office of Programs, The National Center for Atmospheric Research. (2003). Accessed June 22nd, 2023. <https://eo.ucar.edu/basics/wx_1_b.html>van Genutchen, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, pp. 892-898.Vardon, P.J. (2015). Climatic influence on geotechnical infrastructure: a review. Environmental Geotechnics, 2(EG3), p. 166-174.Vardon, P.J. (2019). Editorial: Soil-atmosphere interaction. Environmental Geotechnics, 6(6), p. 320-322.Villacreses, J.P., Granados, J.E., Caicedo, B., Torres-Rodas, P. & Yépez, F. (2021). Seismic and hydromechanical performance of rammed earth walls under changing environmental conditions. Construction and Building Materials, 300(4), 14p.Villar, M.V. & Lloret, A. (2004). Temperature influence on the mechanical behaviour of a compacted bentonite. Elsevier Geo-Engineering Book Series, 2, pp. 305-310.Wald, L. (2018). Basics in solar radiation at earth surface. Lecture notes at the Mines ParisTech, PSL Research University, Sophia Antipolis, France. 57p.Wilhite, D.A. & Glantz, M.H. (1985). Understanding the drought phenomenon: the role of definitions. Water International, 10(3), pp. 111-120.Wilson, G.W. (1990). Soil evaporative fluxes for geotechnical engineering problems. PhD Thesis – University of Saskatchewan, Saskatoon, Canada. 489p.Wilson, G.W., Fredlund, D.G., & Barbour S.L. (1994). Coupled soil-atmosphere modelling for soil evaporation. Canadian Geotechnical Journal, 31(2), pp. 151-161.Wilson, G.W., Fredlund, D.G., & Barbour S.L. (1997). The effect of soil suction on evaporative fluxes from soil surfaces. Canadian Geotechnical Journal, 34(4), pp. 145-155.World Development Indicators – World Bank (WDI). (2022). Accessed July 11, 2023<https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators>World Meteorological Organization (WMO). (1985). Casebook on operational assessment of areal evaporation. Operational Hydrology Report No. 22. WMO-No. 635. Geneva, Switzerland.World Meteorological Organization (WMO). (2015). International Glossary of Hydrology. WMO-No. 385. Geneva, Switzerland.Xue, X., Han, S., Guo, D., Zhao, Z., Zhou, B., & Li, F. (2022). Study of the convective heat transfer coefficient of different building envelope exterior surfaces. Buildings, 12(6), 860.Yahaya, S., Jikan, S., Badarulzaman, N., & Adamu, A. (2017). Chemical composition and particle size analysis of kaolin. Path of Science, 3(10), pp. 1001-1004.Yavuzturk, C., Ksaibati, K., & Chiasson, A.D. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17(4), pp. 465-475.Zhen, L. (2022). China heatwave brings record high temperatures to Shangai and other cities. South China Morning Post. Accessed July 14th, 2022. <https://www.scmp.com/news/china/politics/article/3185316/china-heatwave-brings-record-high-temperatures-shanghai-and>.201728053Publicationhttps://scholar.google.es/citations?user=9Mm7xv4AAAAJvirtual::162-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246379virtual::162-176fcc284-15ff-46ea-8bd7-c7f7cf3cb821virtual::162-176fcc284-15ff-46ea-8bd7-c7f7cf3cb821virtual::162-1ORIGINALPhysical and Numerical Study of Soil-Atmosphere.pdfPhysical and Numerical Study of Soil-Atmosphere.pdfapplication/pdf26370065https://repositorio.uniandes.edu.co/bitstreams/515368f9-b19b-4e74-a847-ce33326aedf1/download49e054fb3a127ba6e95b5ab93727615dMD52autorizacion tesis firmada.pdfautorizacion tesis firmada.pdfHIDEapplication/pdf263629https://repositorio.uniandes.edu.co/bitstreams/cc45cb4f-d985-45ce-b417-2ee43fda068f/download76c2b6fd3def0de0058ad935825d3fd2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/d458840d-9ec3-4041-9b9d-96ff48587cc9/download934f4ca17e109e0a05eaeaba504d7ce4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/a4d99b40-890a-4ef8-87b2-00b2665e0990/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTPhysical and Numerical Study of Soil-Atmosphere.pdf.txtPhysical and Numerical Study of Soil-Atmosphere.pdf.txtExtracted texttext/plain100376https://repositorio.uniandes.edu.co/bitstreams/35b5dbbb-eadc-4d53-8b88-5fcba65407d8/downloadc04e48768291f801faecfa2b74c69fbfMD55autorizacion tesis firmada.pdf.txtautorizacion tesis firmada.pdf.txtExtracted texttext/plain2112https://repositorio.uniandes.edu.co/bitstreams/badfb4cc-8d64-4c24-b0fc-420df179eece/downloada9a4343bd7183a22fc5e13919e1068ecMD57THUMBNAILPhysical and Numerical Study of Soil-Atmosphere.pdf.jpgPhysical and Numerical Study of Soil-Atmosphere.pdf.jpgGenerated Thumbnailimage/jpeg5529https://repositorio.uniandes.edu.co/bitstreams/a28cb559-77df-4134-a38d-f7cf91a838f7/download477c4930170be4fab7df99edd3de35feMD56autorizacion tesis firmada.pdf.jpgautorizacion tesis firmada.pdf.jpgGenerated Thumbnailimage/jpeg11114https://repositorio.uniandes.edu.co/bitstreams/8951ddc4-a93c-423d-8165-a5a7b7453ff2/downloadb571e75b47319c60411b44aa6d6693b9MD581992/73499oai:repositorio.uniandes.edu.co:1992/734992024-08-26 15:15:47.121http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |