Inteligencia artificial para detectar corrupción en la administración pública municipal de Colombia

This research evaluates the application of machine learning algorithms for the early detection of corruption in the Colombian municipal administration. Two approaches are considered to achieve the objective: (i) An evaluation of supervised machine learning for the prediction of variables related to...

Full description

Autores:
Mojica Muñoz, Kevin Steven
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/50908
Acceso en línea:
http://hdl.handle.net/1992/50908
Palabra clave:
Corrupción administrativa
Aprendizaje automático (Inteligencia artificial)
Administración pública
Economía
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:This research evaluates the application of machine learning algorithms for the early detection of corruption in the Colombian municipal administration. Two approaches are considered to achieve the objective: (i) An evaluation of supervised machine learning for the prediction of variables related to corruption and, (ii) an evaluation of unsupervised learning for the segmentation of relative risk of corruption. The results show that, despite the acceptable results of predictions, unsupervised machine learning is emerging as the most useful tool for the early detection of municipal corruption in Colombia. Based on these findings, I created a Relative Risk of Municipal Corruption Index for the period 2020-2023. This index should be useful for the control bodies to target the investigation and prevention efforts in corruption.