Deep learning in data analysis for the classification and selection of biomass valorization routes

The industry has a high contrast between waste production and profits. Because of it, the use of biomass is an important process. However, its process is long overdue considering the time to extract the biomass, the characterization, and finally the long and privileged search to find ideas in the ro...

Full description

Autores:
Suárez Díaz, Yuli Natalia
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/58621
Acceso en línea:
http://hdl.handle.net/1992/58621
Palabra clave:
Deep learning
Biomass
Protocol
Biomasa
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_080e2a354a24637a22170f182a7aa070
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/58621
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Deep learning in data analysis for the classification and selection of biomass valorization routes
dc.title.alternative.none.fl_str_mv Deep learning en análisis de datos para la clasificación y selección de rutas de valorización de biomasa
title Deep learning in data analysis for the classification and selection of biomass valorization routes
spellingShingle Deep learning in data analysis for the classification and selection of biomass valorization routes
Deep learning
Biomass
Protocol
Biomasa
Ingeniería
title_short Deep learning in data analysis for the classification and selection of biomass valorization routes
title_full Deep learning in data analysis for the classification and selection of biomass valorization routes
title_fullStr Deep learning in data analysis for the classification and selection of biomass valorization routes
title_full_unstemmed Deep learning in data analysis for the classification and selection of biomass valorization routes
title_sort Deep learning in data analysis for the classification and selection of biomass valorization routes
dc.creator.fl_str_mv Suárez Díaz, Yuli Natalia
dc.contributor.advisor.none.fl_str_mv Sierra Ramírez, Rocío
Durán Aranguren, Daniel David
dc.contributor.author.none.fl_str_mv Suárez Díaz, Yuli Natalia
dc.subject.keyword.none.fl_str_mv Deep learning
Biomass
Protocol
topic Deep learning
Biomass
Protocol
Biomasa
Ingeniería
dc.subject.armarc.none.fl_str_mv Biomasa
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description The industry has a high contrast between waste production and profits. Because of it, the use of biomass is an important process. However, its process is long overdue considering the time to extract the biomass, the characterization, and finally the long and privileged search to find ideas in the routes of use. The present work gives the opportunity to have consolidated the principal information about the uses of principal biomass and, after it, obtain a general view of each type of biomass for the characterization protocol used (NREL, PA, or UA). Finally, it has three excellent machine learning models that allow the categorization of each biomass into different groups, made from the unsupervised learning of K-means, deeply studied to make it as unbiased as possible. The models have more than 90% excellence in their process, so they are reliable to the industry and academic community. Its thesis shows the real relationship between the use of new technologies and the chemical process, which so far has very few and only requires an analytical view.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-08T21:14:24Z
dc.date.available.none.fl_str_mv 2022-07-08T21:14:24Z
dc.date.issued.none.fl_str_mv 2022-06-09
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/58621
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/58621
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Bailey, D. H., & Lopez de Prado, M. (2012). Balanced baskets: a new approach to trading and hedging risks. The Journal of Investment Strategies, 1(4). https://doi.org/10.21314/jois.2012.010
Brownlee, J. (2019). How to Choose Loss Functions When Training Deep Learning Neural Networks. Machine Learning Mastery.
Darrell M. West, & Christian Lansang. (2018, July). Global manufacturing scorecard: How the US compares to 18 other nations. Brookings.
Definition of Biomass. (2018). In Biomass Gasification, Pyrolysis and Torrefaction (pp. 497-499). Elsevier. https://doi.org/10.1016/b978-0-12-812992-0.00024-8
Delua, J. (2021). Supervised vs. Unsupervised Learning: What's the Difference? IBM Analytics, Data Science/Machine Learning.
Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop, 1.
García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117(PARTB). https://doi.org/10.1016/j.fuel.2013.08.049
GAYOSO A, J., & GUERRA C, J. (2005). Contenido de carbono en la biomasa aérea de bosques nativos en Chile. Bosque (Valdivia), 26(2). https://doi.org/10.4067/s0717-92002005000200005 37
Huang, W., Peng, Y., Ge, Y., & Kong, W. (2021). A new Kmeans clustering model and its generalization achieved by joint spectral embedding and rotation. PeerJ Computer Science, 7. https://doi.org/10.7717/PEERJ-CS.450
Maithani, M. (2021). Guide To Tensorflow Keras Optimizers. Analytics India Magazine.
Maksimuk, Y., Antonava, Z., Krouk, V., Korsakova, A., & Kursevich, V. (2021). Prediction of higher heating value (HHV) based on the structural composition for biomass. Fuel, 299. https://doi.org/10.1016/j.fuel.2021.120860
Mansor, A. M., Lim, J. S., Ani, F. N., Hashim, H., & Ho, W. S. (2019). Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering Transactions, 72. https://doi.org/10.3303/CET1972014
Passos, H., Freire, M. G., & Coutinho, J. A. P. (2014). Ionic liquid solutions as extractive solvents for value-added compounds from biomass. In Green Chemistry (Vol. 16, Issue 12). https://doi.org/10.1039/c4gc00236a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12.
Rajendra, P., Kumari, M., Rani, S., Dogra, N., Boadh, R., Kumar, A., & Dahiya, M. (2022). Impact of artificial intelligence on civilization: Future perspectives. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.01.113
Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. Eurasip Journal on Wireless Communications and Networking, 2021(1). https://doi.org/10.1186/s13638-021-01910-w
The State of Food Security and Nutrition in the World 2021. (2021). In The State of Food Security and Nutrition in the World 2021. FAO, IFAD, UNICEF, WFP and WHO. https://doi.org/10.4060/cb4474en
Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. In Biofuel Research Journal (Vol. 6, Issue 2, pp. 962-979). Green Wave Publishing of Canada. https://doi.org/10.18331/BRJ2019.6.2.3
Vassilev, S. v., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. In Fuel (Vol. 89, Issue 5). https://doi.org/10.1016/j.fuel.2009.10.022
Wongkaew, M., Kittiwachana, S., Phuangsaijai, N., Tinpovong, B., Tiyayon, C., Pusadee, T., Chuttong, B., Sringarm, K., Bhat, F. M., Sommano, S. R., & Cheewangkoon, R. (2021). Fruit characteristics, peel nutritional compositions, and their relationships with mango peel pectin quality. Plants, 10(6). https://doi.org/10.3390/plants10061148
Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series, 1168(2). https://doi.org/10.1088/1742-6596/1168/2/022022
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 38 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Química y de Alimentos
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/b3fa9f0a-d1bb-4296-b2a3-c2b215b33e8f/download
https://repositorio.uniandes.edu.co/bitstreams/42899e67-ecb3-47e6-8392-899dce4b851c/download
https://repositorio.uniandes.edu.co/bitstreams/20b945bd-745d-480e-98ca-9f3df9f074b3/download
https://repositorio.uniandes.edu.co/bitstreams/cc240c79-cb92-4ebc-bb1f-6d9fd0fb21eb/download
https://repositorio.uniandes.edu.co/bitstreams/9e4db406-8876-43dc-bbd9-58f9c2abb41f/download
https://repositorio.uniandes.edu.co/bitstreams/402efe9e-8ad4-488b-b77e-91bd16a838e9/download
https://repositorio.uniandes.edu.co/bitstreams/eb747696-e457-4065-9c20-3d612c6beaec/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
0f86261a1bbcde5f4c02f76e41cd08d1
624179a319867d60b498d802c464872d
b41eec95fcaa8d7cb3ef97547fbd22af
ecbc7f8008f5daf700a1264ebb8290e8
138a84a1ad93ebb979587f4eb24414be
349042312510058e700599d176c7d338
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133926123077632
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Ramírez, Rocío76e7ff14-1374-4e6a-9728-ec0aa20f4245600Durán Aranguren, Daniel Davida720a2ef-7685-4d01-a809-c04d98fa31b5600Suárez Díaz, Yuli Natalia2e7fa9d8-e349-4274-9330-3ea56b90fdc76002022-07-08T21:14:24Z2022-07-08T21:14:24Z2022-06-09http://hdl.handle.net/1992/58621instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The industry has a high contrast between waste production and profits. Because of it, the use of biomass is an important process. However, its process is long overdue considering the time to extract the biomass, the characterization, and finally the long and privileged search to find ideas in the routes of use. The present work gives the opportunity to have consolidated the principal information about the uses of principal biomass and, after it, obtain a general view of each type of biomass for the characterization protocol used (NREL, PA, or UA). Finally, it has three excellent machine learning models that allow the categorization of each biomass into different groups, made from the unsupervised learning of K-means, deeply studied to make it as unbiased as possible. The models have more than 90% excellence in their process, so they are reliable to the industry and academic community. Its thesis shows the real relationship between the use of new technologies and the chemical process, which so far has very few and only requires an analytical view.Ingeniero QuímicoPregrado38 páginasapplication/pdfengUniversidad de los AndesIngeniería QuímicaFacultad de IngenieríaDepartamento de Ingeniería Química y de AlimentosDeep learning in data analysis for the classification and selection of biomass valorization routesDeep learning en análisis de datos para la clasificación y selección de rutas de valorización de biomasaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDeep learningBiomassProtocolBiomasaIngenieríaBailey, D. H., & Lopez de Prado, M. (2012). Balanced baskets: a new approach to trading and hedging risks. The Journal of Investment Strategies, 1(4). https://doi.org/10.21314/jois.2012.010Brownlee, J. (2019). How to Choose Loss Functions When Training Deep Learning Neural Networks. Machine Learning Mastery.Darrell M. West, & Christian Lansang. (2018, July). Global manufacturing scorecard: How the US compares to 18 other nations. Brookings.Definition of Biomass. (2018). In Biomass Gasification, Pyrolysis and Torrefaction (pp. 497-499). Elsevier. https://doi.org/10.1016/b978-0-12-812992-0.00024-8Delua, J. (2021). Supervised vs. Unsupervised Learning: What's the Difference? IBM Analytics, Data Science/Machine Learning.Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop, 1.García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117(PARTB). https://doi.org/10.1016/j.fuel.2013.08.049GAYOSO A, J., & GUERRA C, J. (2005). Contenido de carbono en la biomasa aérea de bosques nativos en Chile. Bosque (Valdivia), 26(2). https://doi.org/10.4067/s0717-92002005000200005 37Huang, W., Peng, Y., Ge, Y., & Kong, W. (2021). A new Kmeans clustering model and its generalization achieved by joint spectral embedding and rotation. PeerJ Computer Science, 7. https://doi.org/10.7717/PEERJ-CS.450Maithani, M. (2021). Guide To Tensorflow Keras Optimizers. Analytics India Magazine.Maksimuk, Y., Antonava, Z., Krouk, V., Korsakova, A., & Kursevich, V. (2021). Prediction of higher heating value (HHV) based on the structural composition for biomass. Fuel, 299. https://doi.org/10.1016/j.fuel.2021.120860Mansor, A. M., Lim, J. S., Ani, F. N., Hashim, H., & Ho, W. S. (2019). Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering Transactions, 72. https://doi.org/10.3303/CET1972014Passos, H., Freire, M. G., & Coutinho, J. A. P. (2014). Ionic liquid solutions as extractive solvents for value-added compounds from biomass. In Green Chemistry (Vol. 16, Issue 12). https://doi.org/10.1039/c4gc00236aPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12.Rajendra, P., Kumari, M., Rani, S., Dogra, N., Boadh, R., Kumar, A., & Dahiya, M. (2022). Impact of artificial intelligence on civilization: Future perspectives. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.01.113Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. Eurasip Journal on Wireless Communications and Networking, 2021(1). https://doi.org/10.1186/s13638-021-01910-wThe State of Food Security and Nutrition in the World 2021. (2021). In The State of Food Security and Nutrition in the World 2021. FAO, IFAD, UNICEF, WFP and WHO. https://doi.org/10.4060/cb4474enTursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. In Biofuel Research Journal (Vol. 6, Issue 2, pp. 962-979). Green Wave Publishing of Canada. https://doi.org/10.18331/BRJ2019.6.2.3Vassilev, S. v., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. In Fuel (Vol. 89, Issue 5). https://doi.org/10.1016/j.fuel.2009.10.022Wongkaew, M., Kittiwachana, S., Phuangsaijai, N., Tinpovong, B., Tiyayon, C., Pusadee, T., Chuttong, B., Sringarm, K., Bhat, F. M., Sommano, S. R., & Cheewangkoon, R. (2021). Fruit characteristics, peel nutritional compositions, and their relationships with mango peel pectin quality. Plants, 10(6). https://doi.org/10.3390/plants10061148Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series, 1168(2). https://doi.org/10.1088/1742-6596/1168/2/022022201715123PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/b3fa9f0a-d1bb-4296-b2a3-c2b215b33e8f/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTTesis Final (1).docx (1).pdf.txtTesis Final (1).docx (1).pdf.txtExtracted texttext/plain40382https://repositorio.uniandes.edu.co/bitstreams/42899e67-ecb3-47e6-8392-899dce4b851c/download0f86261a1bbcde5f4c02f76e41cd08d1MD54Formato autorizacion Firmado DD[53] (1).pdf.txtFormato autorizacion Firmado DD[53] (1).pdf.txtExtracted texttext/plain1416https://repositorio.uniandes.edu.co/bitstreams/20b945bd-745d-480e-98ca-9f3df9f074b3/download624179a319867d60b498d802c464872dMD56THUMBNAILTesis Final (1).docx (1).pdf.jpgTesis Final (1).docx (1).pdf.jpgIM Thumbnailimage/jpeg5679https://repositorio.uniandes.edu.co/bitstreams/cc240c79-cb92-4ebc-bb1f-6d9fd0fb21eb/downloadb41eec95fcaa8d7cb3ef97547fbd22afMD55Formato autorizacion Firmado DD[53] (1).pdf.jpgFormato autorizacion Firmado DD[53] (1).pdf.jpgIM Thumbnailimage/jpeg16391https://repositorio.uniandes.edu.co/bitstreams/9e4db406-8876-43dc-bbd9-58f9c2abb41f/downloadecbc7f8008f5daf700a1264ebb8290e8MD57ORIGINALTesis Final (1).docx (1).pdfTesis Final (1).docx (1).pdfapplication/pdf1306933https://repositorio.uniandes.edu.co/bitstreams/402efe9e-8ad4-488b-b77e-91bd16a838e9/download138a84a1ad93ebb979587f4eb24414beMD52Formato autorizacion Firmado DD[53] (1).pdfFormato autorizacion Firmado DD[53] (1).pdfHIDEapplication/pdf347589https://repositorio.uniandes.edu.co/bitstreams/eb747696-e457-4065-9c20-3d612c6beaec/download349042312510058e700599d176c7d338MD531992/58621oai:repositorio.uniandes.edu.co:1992/586212023-10-10 17:14:05.638http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==