Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)

El vanadio es un metal usado en la industria para la fabricación de aceros, pinturas, catalizadores, entre otros. La mala disposición de residuos que contiene el metal hace que la concentración de vanadio en matrices ambientales como suelo y agua incremente y desencadene problemas incluso a la salud...

Full description

Autores:
Ramírez Arias, Johann Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73616
Acceso en línea:
https://hdl.handle.net/1992/73616
Palabra clave:
Slurry sampling
Calibración multienergy
Modificador de matriz
Vanadio
Absorción atómica
Química
Rights
openAccess
License
Attribution-ShareAlike 4.0 International
id UNIANDES2_062d557332e98d142086bd34021d7ac8
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73616
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
title Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
spellingShingle Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
Slurry sampling
Calibración multienergy
Modificador de matriz
Vanadio
Absorción atómica
Química
title_short Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
title_full Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
title_fullStr Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
title_full_unstemmed Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
title_sort Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)
dc.creator.fl_str_mv Ramírez Arias, Johann Camilo
dc.contributor.advisor.none.fl_str_mv Rivas Hernández, Ricardo Eusebio
dc.contributor.author.none.fl_str_mv Ramírez Arias, Johann Camilo
dc.contributor.jury.none.fl_str_mv Portilla Salinas, Jaime Antonio
Miscione, Gian Pietro
Ochoa, Yony Román
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.none.fl_str_mv Slurry sampling
Calibración multienergy
Modificador de matriz
Vanadio
Absorción atómica
topic Slurry sampling
Calibración multienergy
Modificador de matriz
Vanadio
Absorción atómica
Química
dc.subject.themes.spa.fl_str_mv Química
description El vanadio es un metal usado en la industria para la fabricación de aceros, pinturas, catalizadores, entre otros. La mala disposición de residuos que contiene el metal hace que la concentración de vanadio en matrices ambientales como suelo y agua incremente y desencadene problemas incluso a la salud humana. La espectroscopia de absorción atómica de fuente continua de alta resolución (HR-CS-ETAAS) es una técnica precisa y sensible para determinar vanadio debido a su alta especificidad y bajos límites de detección. Sin embargo, la formación de carburos de vanadio en el horno de grafito puede afectar la sensibilidad del método. Ante esto, los modificadores de matriz se plantean como solución, ya que, evitan la formación de carburos y aumenta la volatilidad del metal. La técnica de slurry sampling evita la digestión de las muestras mediante la formación de una suspensión sólida de facil preparación y “verde”. Por último, la calibración multienergy, al usar dos soluciones que cuentan con la muestra (50% v/v muestra – 50% v/v estándar y 50% v/v muestra – 50% v/v blanco) reduce el efecto matriz a comparación de métodos tradicionales de calibración. Se propone el desarrollo de un método para la determinación de vanadio usando la técnica de slurry sampling y calibración multienergy por espectroscopia de absorción atómica electrotermica de fuente continua de alta resolución (HR-CS-ETAAS). Se optimizaron las condiciones instrumentales del equipo y preparación del slurry, se encontraron las lineas de absorción que se usaron para hacer la calibración multienergy y se verificó el método mediante el uso de un material de referencia certificado (CRM) y muestras reales y se comparó con métodos tradicionales de calibración con el fin de observar la existencia de efecto matriz.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-11
dc.date.accessioned.none.fl_str_mv 2024-01-30T16:56:46Z
dc.date.available.none.fl_str_mv 2024-01-30T16:56:46Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73616
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73616
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv PYRZYSKA, K. Determination of Vanadium Species in Environmental Samples. Talanta 2004, 64 (4), 823–829. https://doi.org/10.1016/j.talanta.2004.05.007.
Larsson, M. Vanadium Is Soils. Soil Science, Swedish University of Agricultural Sciences, 2014.
Khan, S.; Kazi, T. G.; Afridi, H. I.; Kolachi, N. F.; Ullah, N.; Dev, K. Speciation of Vanadium in Coal Mining, Industrial, and Agricultural Soil Samples Using Different Extractants and Heating Systems. J AOAC Int 2013, 96 (1), 186–189. https://doi.org/10.5740/jaoacint.11-499.
Adachi, A.; Asai, K.; Koyama, Y.; Matsumoto, Y.; Okano, T. Subacute Vanadium Toxicity in Rats. Journal of Health Science 2000, 46 (6), 503–508. https://doi.org/10.1248/jhs.46.503.
Willsky, G. R.; Goldfine, A. B.; Kostyniak, P. J.; McNeill, J. H.; Yang, L. Q.; Khan, H. R.; Crans, D. C. Effect of Vanadium(IV) Compounds in the Treatment of Diabetes: In Vivo and in Vitro Studies with Vanadyl Sulfate and Bis(Maltolato)Oxovandium(IV). J Inorg Biochem 2001, 85 (1), 33–42. https://doi.org/10.1016/S0162-0134(00)00226-9.
D’Cruz, O. J.; Dong, Y.; Uckun, F. M. Potent Dual Anti-HIV and Spermicidal Activities of Novel Oxovanadium(V) Complexes with Thiourea Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Biochem Biophys Res Commun 2003, 302 (2), 253–264. https://doi.org/10.1016/S0006-291X(03)00161-X.
Chen, Z. L.; Owens, G. Trends in Speciation Analysis of Vanadium in Environmental Samples and Biological Fluids—A Review. Anal Chim Acta 2008, 607 (1), 1–14. https://doi.org/10.1016/j.aca.2007.11.013.
Panichev, N.; Mandiwana, K.; Moema, D.; Molatlhegi, R.; Ngobeni, P. Distribution of Vanadium(V) Species between Soil and Plants in the Vicinity of Vanadium Mine. J Hazard Mater 2006, 137 (2), 649–653. https://doi.org/10.1016/j.jhazmat.2006.03.006.
US.EPA. IRIS Assessment Plan for Oral Exposure to Vanadium and Compounds (Scoping and Problem Formulation Materials); 2020. https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?de
Abbaspour, A.; Mirzajani, R. Application of Spectral β-Correction Method and Partial Least Squares for Simultaneous Determination of V(IV) and V(V) in Surfactant Media. Spectrochim Acta A Mol Biomol Spectrosc 2006, 64 (3), 646–652. https://doi.org/10.1016/j.saa.2005.07.069.
Cole, P. C.; Eckert, J. M.; Williams, K. L. The Determination of Dissolved and Particulate Vanadium in Sea Water by X-Ray Fluorescence Spectrometry. Anal Chim Acta 1983, 153, 61–67. https://doi.org/10.1016/S0003-2670(00)85488-4.
Sakai, Y.; Ohshita, K.; Koshimizu, S.; Tomura, K. Geochemical Study of Trace Vanadium in Water by Preconcentrational Neutron Activation Analysis. J Radioanal Nucl Chem 1997, 216 (2), 203–212. https://doi.org/10.1007/BF02033779.
Sugiyama, M.; Tamada, T.; Hori, T. Liquid Chromatography — Catalytic Analysis Detection for Highly Sensitive and Automated Fractional Determination of Vanadium(IV) and -(V). Anal Chim Acta 2001, 431 (1), 141–148. https://doi.org/10.1016/S0003-2670(00)01314-3.
Wann, C.-C.; Jiang, S.-J. Determination of Vanadium Species in Water Samples by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Anal Chim Acta 1997, 357 (3), 211–218. https://doi.org/10.1016/S0003-2670(97)00570-9.
Greenway, G. M.; Wolfbauer, G. On-Line Determination of Vanadium by Adsorptive Stripping Voltammetry. Anal Chim Acta 1995, 312 (1), 15–25. https://doi.org/10.1016/0003-2670(95)00195-6.
Wuilloud, R. G.; Wuilloud, J. C.; Olsina, R. A.; Martinez, L. D. Speciation and Preconcentration of Vanadium(v) and Vanadium(Iv) in Water Samples by Flow Injection-Inductively Coupled Plasma Optical Emission Spectrometry and Ultrasonic Nebulization. Analyst 2001, 126 (5), 715–719. https://doi.org/10.1039/b009705p.
Nixon, D. E.; Neubauer, K. R.; Eckdahl, S. J.; Butz, J. A.; Burritt, M. F. Evaluation of a Tunable Bandpass Reaction Cell for an Inductively Coupled Plasma Mass Spectrometer for the Determination of Chromium and Vanadium in Serum and Urine. Spectrochim Acta Part B At Spectrosc 2002, 57 (5), 951–966. https://doi.org/10.1016/S0584-8547(02)00029-0.
Güçer, S.; Yaman, M. Determination of Vanadium in Vegetable Matter by Flame Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 1992, 7 (2), 179–182. https://doi.org/10.1039/JA9920700179. Mandiwana, K. L.; Panichev, N. Speciation Analysis of Plants in the Determination of V(V) by ETAAS. Talanta 2006, 70 (5), 1153–1156. https://doi.org/10.1016/j.talanta.2006.03.010.
Zhao, L.; Zhu, X.; Feng, K.; Wang, B. Speciation Analysis of Inorganic Vanadium (V(IV)/V(V)) by Graphite Furnace Atomic Absorption Spectrometry Following Ion-Exchange Separation. Int J Environ Anal Chem 2006, 86 (12), 931–939. https://doi.org/10.1080/03067310600687633.
Zhu, X.; Zhu, Z.; Wu, S. Determination of Trace Vanadium in Soil by Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectroscopy. Microchimica Acta 2008, 161 (1–2), 143–148. https://doi.org/10.1007/s00604-007-0762-7.
Nakamoto, Y.; Ishimaru, T.; Endo, N.; Matsusaki, K. Determination of Vanadium in Heavy Oils by Atomic Absorption Spectrometry Using a Graphite Furnace Coated with Tungsten. Analytical Sciences 2004, 20 (4), 739–741. https://doi.org/10.2116/analsci.20.739.
Saavedra, Y.; Fernandez, P.; Gonzalez, A. Determination of Vanadium in Mussels by Electrothermal Atomic Absorption Spectrometry without Chemical Modifiers. Anal Bioanal Chem 2004, 379 (1), 72–76. https://doi.org/10.1007/s00216-003-2463-3.
Damin, I. C. F.; Vale, M. G. R.; Silva, M. M.; Welz, B.; Lepri, F. G.; dos Santos, W. N. L.; Ferreira, S. L. C. Palladium as Chemical Modifier for the Stabilization of Volatile Nickel and Vanadium Compounds in Crude Oil Using Graphite Furnace Atomic Absorption Spectrometry. J Anal At Spectrom 2005, 20 (12), 1332. https://doi.org/10.1039/b508099a.
Resano, M.; Aramendía, M.; Belarra, M. A. High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry for Direct Analysis of Solid Samples and Complex Materials: A Tutorial Review. J. Anal. At. Spectrom. 2014, 29 (12), 2229–2250. https://doi.org/10.1039/C4JA00176A.
Resano, M.; Flórez, M. R.; García-Ruiz, E. High-Resolution Continuum Source Atomic Absorption Spectrometry for the Simultaneous or Sequential Monitoring of Multiple Lines. A Critical Review of Current Possibilities. Spectrochim Acta Part B At Spectrosc 2013, 88, 85–97. https://doi.org/10.1016/j.sab.2013.06.004.
Welz, B.; Borges, D. L. G.; Lepri, F. G.; Vale, M. G. R.; Heitmann, U. High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry — An Analytical and Diagnostic Tool for Trace Analysis. Spectrochim Acta Part B At Spectrosc 2007, 62 (9), 873–883. https://doi.org/10.1016/j.sab.2007.03.009.
Welz, B.; Vale, M. G. R.; Borges, D. L. G.; Heitmann, U. Progress in Direct Solid Sampling Analysis Using Line Source and High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Anal Bioanal Chem 2007, 389 (7–8), 2085–2095. https://doi.org/10.1007/s00216-007-1555-x.
Macháčková, L.; Žemberyová, M. The Selection of a Chemical Modifier for Vanadium Determination in Various Types of Natural Waters by Electrothermal Atomic Absorption Spectrometry. Int J Environ Anal Chem 2012, 92 (4), 405–416. https://doi.org/10.1080/03067319.2011.603076.
Manning, D. C.; Slavin, W. Factors Influencing the Atomization of Vanadium in Graphite Furnace AAS. Spectrochim Acta Part B At Spectrosc 1985, 40 (3), 461–473. https://doi.org/10.1016/0584-8547(85)80085-9.
Thomaidis, N. S.; Piperaki, E. A. Comparison of Chemical Modifiers for the Determination of Vanadium in Water and Oil Samples by Electrothermal Atomization Atomic Absorption Spectrometry. Analyst 1996, 121 (2), 111. https://doi.org/10.1039/an9962100111.
Matsusaki, K.; Nomi, M.; Higa, M.; Sata, T. Determination of Vanadium, Chromium and Molybdenum by Atomic Absorption Spectrometry Using a Graphite Furnace Coated with Boron. Analytical Sciences 1999, 15 (2), 145–151. https://doi.org/10.2116/analsci.15.145.
Filik, H.; Aksu, D. Determination of Vanadium in Food Samples by Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectroscopy. Food Anal Methods 2012, 5 (3), 359–365. https://doi.org/10.1007/s12161-011-9254-9.
Pantano, P.; Sneddon, J. Effect of Atomization Surface on the Quantitation of Vanadium by Electrothermal Atomization Atomic Absorption Spectrometry. Appl Spectrosc 1989, 43 (3), 504–511. https://doi.org/10.1366/0003702894202887.
Chakraborty, R.; Das, A. K. Determination of Vanadium by ETAAS Using Chromium Nitrate as Chemical Modifier. Fresenius J Anal Chem 1994, 349 (10–11), 774–775. https://doi.org/10.1007/BF00325657.
Fernandes, K. G.; Nogueira, A. R. A.; Gomes Neto, J. A.; Nóbrega, J. A. Determination of Vanadium in Urine by Electrothermal Atomic Absorption Spectrometry Using Hot Injection and Preconcentration into the Graphite Tube. J Braz Chem Soc 2004, 15 (5), 676–681. https://doi.org/10.1590/S0103-50532004000500011.
Dobrowolski, R.; Adamczyk, A.; Otto, M. Determination of Vanadium in Soils and Sediments by the Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry Using Permanent Modifiers. Talanta 2013, 113, 19–25. https://doi.org/10.1016/j.talanta.2013.03.085.
Miller-Ihli, N. J. Slurry Sample Preparation for Simultaneous Multi-Element Graphite Furnace Atomic Absorption Spectrometry. J Anal At Spectrom 1988, 3 (1), 73. https://doi.org/10.1039/ja9880300073.
Campillo, N.; López-García, I.; Viñas, P.; Arnau-Jerez, I.; Hernández-Córdoba, M. Determination of Vanadium, Molybdenum and Chromium in Soils, Sediments and Sludges by Electrothermal Atomic Absorption Spectrometry with Slurry Sample Introduction. J. Anal. At. Spectrom. 2002, 17 (10), 1429–1433. https://doi.org/10.1039/B205699B.
Felipe-Sotelo, M.; Carlosena, A.; Andrade, J. M.; Cal-Prieto, M. J.; Fernández, E.; Prada, D. Slurry-Based Procedures to Determine Chromium, Nickel and Vanadium in Complex Matrices by ETAAS. Microchemical Journal 2005, 81 (2), 217–224. https://doi.org/10.1016/j.microc.2005.05.002.
Mierzwa, J.; Sun, Y.-C.; Yang, M.-H. Determination of Chromium, Manganese and Vanadium in Sediments and Soils by Modifier—Free Slurry Sampling Electrothermal Atomic Absorption Spectrometry. Spectrochim Acta Part B At Spectrosc 1998, 53 (1), 63–69. https://doi.org/10.1016/S0584-8547(97)00119-5.
Vassileva, E.; Baeten, H.; Hoenig, M. Discussion of Parameters Associated with the Determination of Arsenic by Electrothermal Atomic Absorption Spectrometry in Slurried Environmental Samples. Fresenius J Anal Chem 2001, 369 (2), 159–165. https://doi.org/10.1007/s002160000632.
Silva, M. Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry: Determination of Trace Metals in Mineral Coal. Talanta 1999, 50 (5), 1035–1043. https://doi.org/10.1016/S0039-9140(99)00216-7.
Vieira, A. L.; Gonçalves, D. A.; Virgilio, A.; Ferreira, E. C.; Jones, B. T.; Donati, G. L.; Gomes Neto, J. A. Multi-Energy Calibration for the Determination of Non-Metals by High-Resolution Continuum Source Molecular Absorption Spectrometry. J Anal At Spectrom 2019, 34 (5), 972–978. https://doi.org/10.1039/C9JA00006B.
Virgilio, A.; Gonçalves, D. A.; McSweeney, T.; Gomes Neto, J. A.; Nóbrega, J. A.; Donati, G. L. Multi-Energy Calibration Applied to Atomic Spectrometry. Anal Chim Acta 2017, 982, 31–36. https://doi.org/10.1016/j.aca.2017.06.040.
Babos, D. V.; Virgilio, A.; Costa, V. C.; Donati, G. L.; Pereira-Filho, E. R. Multi-Energy Calibration (MEC) Applied to Laser-Induced Breakdown Spectroscopy (LIBS). J Anal At Spectrom 2018, 33 (10), 1753–1762. https://doi.org/10.1039/C8JA00109J.
Garde, R.; Nakadi, F. V.; García-Ruiz, E.; Resano, M. Introducing Multi-Energy Ratios as an Alternative to Multi-Energy Calibration for Br Determination via High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometry. A Case Study. J Anal At Spectrom 2020, 35 (11), 2606–2619. https://doi.org/10.1039/D0JA00359J.
Machado, R. C.; Silva, A. B. S.; Donati, G. L.; Nogueira, A. R. A. Multi-Energy Calibration as a Strategy for Elemental Analysis of Fertilizers by Microwave-Induced Plasma Optical Emission Spectrometry. J Anal At Spectrom 2018, 33 (7), 1168–1172. https://doi.org/10.1039/C8JA00077H.
Alencar, M. C.; Gonçalves, D. A.; Nicolodelli, G.; Oliveira, S. L.; Donati, G. L.; Caires, A. R. L. Evaluating the Applicability of Multi-Energy Calibration as an Alternative Method for Quantitative Molecular Spectroscopy Analysis. Spectrochim Acta A Mol Biomol Spectrosc 2019, 221, 117221. https://doi.org/10.1016/j.saa.2019.117221.
Van Loon, J. C. Analytical Atomic Absorption Spectroscopy: Selected Methods, 1st ed.; Academic Press, Inc.: London, 1980.
Matousek, J. P.; Powell, H. K. J. Halogen Assisted Volatilization in Electrothermal Atomic Absorption Spectroscopy: Reduction of Memory Effects from Refractory Carbides. Spectrochim Acta Part B At Spectrosc 1986, 41 (12), 1347–1355. https://doi.org/10.1016/0584-8547(86)80010-6.
Zhu, X.; Alexandratos, S. D. Determination of Trace Levels of Mercury in Aqueous Solutions by Inductively Coupled Plasma Atomic Emission Spectrometry: Elimination of the ‘Memory Effect.’ Microchemical Journal 2007, 86 (1), 37–41. https://doi.org/10.1016/j.microc.2006.09.004.
Tominaga, M.; Bansho, K.; Umezaki, Y. The Electrothermal Atomic Absorption Spectrometric Determination of Lead, Manganese, Vanadium and Molybdenum in Sea Water with Ascorbic Acid to Reduce Matrix Effects. Anal Chim Acta 1985, 169, 171–177. https://doi.org/10.1016/S0003-2670(00)86219-4.
Advanced Chemistry Development, Inc. Percepta Platform - PhysChem Module. ACD Labs: Toronto 2022. https://doi.org/www.acdlabs.com.
Ho, C.-Y.; Jiang, S.-J. Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry for Determination of Vanadium and Chromium in Soils. Spectrochim Acta Part B At Spectrosc 2003, 58 (1), 63–70. https://doi.org/10.1016/S0584-8547(02)00233-1.
Souza, A. L.; Ferreira da Silva, F.; Kelmer, G. A. R.; Oliveira, P. V. A Green Method for the Simultaneous Determination of Cd and Pb in Soil and Sediment by Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry. Analytical Methods 2013, 5 (8), 2059. https://doi.org/10.1039/c3ay26547a.
Barros, A. I.; Pinheiro, F. C.; Nóbrega, J. A. Calibration Strategies to Correct for Matrix Effects in Direct Analysis of Urine by ICP OES: Internal Standardization and Multi-Energy Calibration. Analytical Methods 2019, 11 (27), 3401–3409. https://doi.org/10.1039/C9AY00907H.
Soares, S.; Rocha, F. R. P. Multi-Energy Calibration to Circumvent Matrix Effects in the Determination of Biodiesel Quality Parameters by UV–Vis Spectrophotometry. Talanta 2020, 209, 120584. https://doi.org/10.1016/j.talanta.2019.120584.
Spiegel, M. R.; Schiller, J. J.; Srinivasan, R. A. Teoría y Problemas de Probabilidad y Estadística, 2nd ed.; McGraw-Hill: Ciudad de México, 2003.
dc.rights.en.fl_str_mv Attribution-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 37 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Química
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Química
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/b7648b03-4e1e-4f7b-ac00-15439e91e5c8/download
https://repositorio.uniandes.edu.co/bitstreams/d0db148c-e49d-4ce5-b6a3-760a281faa81/download
https://repositorio.uniandes.edu.co/bitstreams/450797fd-741d-4177-9d80-7abd2d19bad5/download
https://repositorio.uniandes.edu.co/bitstreams/a4bae85f-e1b4-4032-b032-022b20bf7e56/download
https://repositorio.uniandes.edu.co/bitstreams/cb76dcae-cffd-49b9-8a4a-7b92208b85a6/download
https://repositorio.uniandes.edu.co/bitstreams/bc5fc688-e759-4f73-b582-927ee8013427/download
https://repositorio.uniandes.edu.co/bitstreams/9b7bcc47-8ec8-49d1-99d5-db7be3a3dd58/download
https://repositorio.uniandes.edu.co/bitstreams/fec75acd-6568-45e6-bc3d-c68e0260d5d7/download
bitstream.checksum.fl_str_mv 84a900c9dd4b2a10095a94649e1ce116
ae9e573a68e7f92501b6913cc846c39f
cef0b7358a234ad312dedd4b5625e650
ed34e6e791fbd842baf3224cb2876d57
3fb383316ae5cb7aa355ee424da5449b
5dc48b716aa4b9b1a9f99f7fccbeb563
8c507ae352e14eec2a7dc564264478ab
39193e7fb229a8759c5aecd0c3cbf5de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111902370234368
spelling Rivas Hernández, Ricardo Eusebiovirtual::250-1Ramírez Arias, Johann CamiloPortilla Salinas, Jaime Antoniovirtual::251-1Miscione, Gian Pietrovirtual::252-1Ochoa, Yony RománFacultad de Ciencias2024-01-30T16:56:46Z2024-01-30T16:56:46Z2023-12-11https://hdl.handle.net/1992/73616instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El vanadio es un metal usado en la industria para la fabricación de aceros, pinturas, catalizadores, entre otros. La mala disposición de residuos que contiene el metal hace que la concentración de vanadio en matrices ambientales como suelo y agua incremente y desencadene problemas incluso a la salud humana. La espectroscopia de absorción atómica de fuente continua de alta resolución (HR-CS-ETAAS) es una técnica precisa y sensible para determinar vanadio debido a su alta especificidad y bajos límites de detección. Sin embargo, la formación de carburos de vanadio en el horno de grafito puede afectar la sensibilidad del método. Ante esto, los modificadores de matriz se plantean como solución, ya que, evitan la formación de carburos y aumenta la volatilidad del metal. La técnica de slurry sampling evita la digestión de las muestras mediante la formación de una suspensión sólida de facil preparación y “verde”. Por último, la calibración multienergy, al usar dos soluciones que cuentan con la muestra (50% v/v muestra – 50% v/v estándar y 50% v/v muestra – 50% v/v blanco) reduce el efecto matriz a comparación de métodos tradicionales de calibración. Se propone el desarrollo de un método para la determinación de vanadio usando la técnica de slurry sampling y calibración multienergy por espectroscopia de absorción atómica electrotermica de fuente continua de alta resolución (HR-CS-ETAAS). Se optimizaron las condiciones instrumentales del equipo y preparación del slurry, se encontraron las lineas de absorción que se usaron para hacer la calibración multienergy y se verificó el método mediante el uso de un material de referencia certificado (CRM) y muestras reales y se comparó con métodos tradicionales de calibración con el fin de observar la existencia de efecto matriz.QuímicoPregradoQuímica Analítica Aplicada37 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Desarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución (HR-CS-ETAAS)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSlurry samplingCalibración multienergyModificador de matrizVanadioAbsorción atómicaQuímicaPYRZYSKA, K. Determination of Vanadium Species in Environmental Samples. Talanta 2004, 64 (4), 823–829. https://doi.org/10.1016/j.talanta.2004.05.007.Larsson, M. Vanadium Is Soils. Soil Science, Swedish University of Agricultural Sciences, 2014.Khan, S.; Kazi, T. G.; Afridi, H. I.; Kolachi, N. F.; Ullah, N.; Dev, K. Speciation of Vanadium in Coal Mining, Industrial, and Agricultural Soil Samples Using Different Extractants and Heating Systems. J AOAC Int 2013, 96 (1), 186–189. https://doi.org/10.5740/jaoacint.11-499.Adachi, A.; Asai, K.; Koyama, Y.; Matsumoto, Y.; Okano, T. Subacute Vanadium Toxicity in Rats. Journal of Health Science 2000, 46 (6), 503–508. https://doi.org/10.1248/jhs.46.503.Willsky, G. R.; Goldfine, A. B.; Kostyniak, P. J.; McNeill, J. H.; Yang, L. Q.; Khan, H. R.; Crans, D. C. Effect of Vanadium(IV) Compounds in the Treatment of Diabetes: In Vivo and in Vitro Studies with Vanadyl Sulfate and Bis(Maltolato)Oxovandium(IV). J Inorg Biochem 2001, 85 (1), 33–42. https://doi.org/10.1016/S0162-0134(00)00226-9.D’Cruz, O. J.; Dong, Y.; Uckun, F. M. Potent Dual Anti-HIV and Spermicidal Activities of Novel Oxovanadium(V) Complexes with Thiourea Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Biochem Biophys Res Commun 2003, 302 (2), 253–264. https://doi.org/10.1016/S0006-291X(03)00161-X.Chen, Z. L.; Owens, G. Trends in Speciation Analysis of Vanadium in Environmental Samples and Biological Fluids—A Review. Anal Chim Acta 2008, 607 (1), 1–14. https://doi.org/10.1016/j.aca.2007.11.013.Panichev, N.; Mandiwana, K.; Moema, D.; Molatlhegi, R.; Ngobeni, P. Distribution of Vanadium(V) Species between Soil and Plants in the Vicinity of Vanadium Mine. J Hazard Mater 2006, 137 (2), 649–653. https://doi.org/10.1016/j.jhazmat.2006.03.006.US.EPA. IRIS Assessment Plan for Oral Exposure to Vanadium and Compounds (Scoping and Problem Formulation Materials); 2020. https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deAbbaspour, A.; Mirzajani, R. Application of Spectral β-Correction Method and Partial Least Squares for Simultaneous Determination of V(IV) and V(V) in Surfactant Media. Spectrochim Acta A Mol Biomol Spectrosc 2006, 64 (3), 646–652. https://doi.org/10.1016/j.saa.2005.07.069.Cole, P. C.; Eckert, J. M.; Williams, K. L. The Determination of Dissolved and Particulate Vanadium in Sea Water by X-Ray Fluorescence Spectrometry. Anal Chim Acta 1983, 153, 61–67. https://doi.org/10.1016/S0003-2670(00)85488-4.Sakai, Y.; Ohshita, K.; Koshimizu, S.; Tomura, K. Geochemical Study of Trace Vanadium in Water by Preconcentrational Neutron Activation Analysis. J Radioanal Nucl Chem 1997, 216 (2), 203–212. https://doi.org/10.1007/BF02033779.Sugiyama, M.; Tamada, T.; Hori, T. Liquid Chromatography — Catalytic Analysis Detection for Highly Sensitive and Automated Fractional Determination of Vanadium(IV) and -(V). Anal Chim Acta 2001, 431 (1), 141–148. https://doi.org/10.1016/S0003-2670(00)01314-3.Wann, C.-C.; Jiang, S.-J. Determination of Vanadium Species in Water Samples by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Anal Chim Acta 1997, 357 (3), 211–218. https://doi.org/10.1016/S0003-2670(97)00570-9.Greenway, G. M.; Wolfbauer, G. On-Line Determination of Vanadium by Adsorptive Stripping Voltammetry. Anal Chim Acta 1995, 312 (1), 15–25. https://doi.org/10.1016/0003-2670(95)00195-6.Wuilloud, R. G.; Wuilloud, J. C.; Olsina, R. A.; Martinez, L. D. Speciation and Preconcentration of Vanadium(v) and Vanadium(Iv) in Water Samples by Flow Injection-Inductively Coupled Plasma Optical Emission Spectrometry and Ultrasonic Nebulization. Analyst 2001, 126 (5), 715–719. https://doi.org/10.1039/b009705p.Nixon, D. E.; Neubauer, K. R.; Eckdahl, S. J.; Butz, J. A.; Burritt, M. F. Evaluation of a Tunable Bandpass Reaction Cell for an Inductively Coupled Plasma Mass Spectrometer for the Determination of Chromium and Vanadium in Serum and Urine. Spectrochim Acta Part B At Spectrosc 2002, 57 (5), 951–966. https://doi.org/10.1016/S0584-8547(02)00029-0.Güçer, S.; Yaman, M. Determination of Vanadium in Vegetable Matter by Flame Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 1992, 7 (2), 179–182. https://doi.org/10.1039/JA9920700179. Mandiwana, K. L.; Panichev, N. Speciation Analysis of Plants in the Determination of V(V) by ETAAS. Talanta 2006, 70 (5), 1153–1156. https://doi.org/10.1016/j.talanta.2006.03.010.Zhao, L.; Zhu, X.; Feng, K.; Wang, B. Speciation Analysis of Inorganic Vanadium (V(IV)/V(V)) by Graphite Furnace Atomic Absorption Spectrometry Following Ion-Exchange Separation. Int J Environ Anal Chem 2006, 86 (12), 931–939. https://doi.org/10.1080/03067310600687633.Zhu, X.; Zhu, Z.; Wu, S. Determination of Trace Vanadium in Soil by Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectroscopy. Microchimica Acta 2008, 161 (1–2), 143–148. https://doi.org/10.1007/s00604-007-0762-7.Nakamoto, Y.; Ishimaru, T.; Endo, N.; Matsusaki, K. Determination of Vanadium in Heavy Oils by Atomic Absorption Spectrometry Using a Graphite Furnace Coated with Tungsten. Analytical Sciences 2004, 20 (4), 739–741. https://doi.org/10.2116/analsci.20.739.Saavedra, Y.; Fernandez, P.; Gonzalez, A. Determination of Vanadium in Mussels by Electrothermal Atomic Absorption Spectrometry without Chemical Modifiers. Anal Bioanal Chem 2004, 379 (1), 72–76. https://doi.org/10.1007/s00216-003-2463-3.Damin, I. C. F.; Vale, M. G. R.; Silva, M. M.; Welz, B.; Lepri, F. G.; dos Santos, W. N. L.; Ferreira, S. L. C. Palladium as Chemical Modifier for the Stabilization of Volatile Nickel and Vanadium Compounds in Crude Oil Using Graphite Furnace Atomic Absorption Spectrometry. J Anal At Spectrom 2005, 20 (12), 1332. https://doi.org/10.1039/b508099a.Resano, M.; Aramendía, M.; Belarra, M. A. High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry for Direct Analysis of Solid Samples and Complex Materials: A Tutorial Review. J. Anal. At. Spectrom. 2014, 29 (12), 2229–2250. https://doi.org/10.1039/C4JA00176A.Resano, M.; Flórez, M. R.; García-Ruiz, E. High-Resolution Continuum Source Atomic Absorption Spectrometry for the Simultaneous or Sequential Monitoring of Multiple Lines. A Critical Review of Current Possibilities. Spectrochim Acta Part B At Spectrosc 2013, 88, 85–97. https://doi.org/10.1016/j.sab.2013.06.004.Welz, B.; Borges, D. L. G.; Lepri, F. G.; Vale, M. G. R.; Heitmann, U. High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry — An Analytical and Diagnostic Tool for Trace Analysis. Spectrochim Acta Part B At Spectrosc 2007, 62 (9), 873–883. https://doi.org/10.1016/j.sab.2007.03.009.Welz, B.; Vale, M. G. R.; Borges, D. L. G.; Heitmann, U. Progress in Direct Solid Sampling Analysis Using Line Source and High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Anal Bioanal Chem 2007, 389 (7–8), 2085–2095. https://doi.org/10.1007/s00216-007-1555-x.Macháčková, L.; Žemberyová, M. The Selection of a Chemical Modifier for Vanadium Determination in Various Types of Natural Waters by Electrothermal Atomic Absorption Spectrometry. Int J Environ Anal Chem 2012, 92 (4), 405–416. https://doi.org/10.1080/03067319.2011.603076.Manning, D. C.; Slavin, W. Factors Influencing the Atomization of Vanadium in Graphite Furnace AAS. Spectrochim Acta Part B At Spectrosc 1985, 40 (3), 461–473. https://doi.org/10.1016/0584-8547(85)80085-9.Thomaidis, N. S.; Piperaki, E. A. Comparison of Chemical Modifiers for the Determination of Vanadium in Water and Oil Samples by Electrothermal Atomization Atomic Absorption Spectrometry. Analyst 1996, 121 (2), 111. https://doi.org/10.1039/an9962100111.Matsusaki, K.; Nomi, M.; Higa, M.; Sata, T. Determination of Vanadium, Chromium and Molybdenum by Atomic Absorption Spectrometry Using a Graphite Furnace Coated with Boron. Analytical Sciences 1999, 15 (2), 145–151. https://doi.org/10.2116/analsci.15.145.Filik, H.; Aksu, D. Determination of Vanadium in Food Samples by Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectroscopy. Food Anal Methods 2012, 5 (3), 359–365. https://doi.org/10.1007/s12161-011-9254-9.Pantano, P.; Sneddon, J. Effect of Atomization Surface on the Quantitation of Vanadium by Electrothermal Atomization Atomic Absorption Spectrometry. Appl Spectrosc 1989, 43 (3), 504–511. https://doi.org/10.1366/0003702894202887.Chakraborty, R.; Das, A. K. Determination of Vanadium by ETAAS Using Chromium Nitrate as Chemical Modifier. Fresenius J Anal Chem 1994, 349 (10–11), 774–775. https://doi.org/10.1007/BF00325657.Fernandes, K. G.; Nogueira, A. R. A.; Gomes Neto, J. A.; Nóbrega, J. A. Determination of Vanadium in Urine by Electrothermal Atomic Absorption Spectrometry Using Hot Injection and Preconcentration into the Graphite Tube. J Braz Chem Soc 2004, 15 (5), 676–681. https://doi.org/10.1590/S0103-50532004000500011.Dobrowolski, R.; Adamczyk, A.; Otto, M. Determination of Vanadium in Soils and Sediments by the Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry Using Permanent Modifiers. Talanta 2013, 113, 19–25. https://doi.org/10.1016/j.talanta.2013.03.085.Miller-Ihli, N. J. Slurry Sample Preparation for Simultaneous Multi-Element Graphite Furnace Atomic Absorption Spectrometry. J Anal At Spectrom 1988, 3 (1), 73. https://doi.org/10.1039/ja9880300073.Campillo, N.; López-García, I.; Viñas, P.; Arnau-Jerez, I.; Hernández-Córdoba, M. Determination of Vanadium, Molybdenum and Chromium in Soils, Sediments and Sludges by Electrothermal Atomic Absorption Spectrometry with Slurry Sample Introduction. J. Anal. At. Spectrom. 2002, 17 (10), 1429–1433. https://doi.org/10.1039/B205699B.Felipe-Sotelo, M.; Carlosena, A.; Andrade, J. M.; Cal-Prieto, M. J.; Fernández, E.; Prada, D. Slurry-Based Procedures to Determine Chromium, Nickel and Vanadium in Complex Matrices by ETAAS. Microchemical Journal 2005, 81 (2), 217–224. https://doi.org/10.1016/j.microc.2005.05.002.Mierzwa, J.; Sun, Y.-C.; Yang, M.-H. Determination of Chromium, Manganese and Vanadium in Sediments and Soils by Modifier—Free Slurry Sampling Electrothermal Atomic Absorption Spectrometry. Spectrochim Acta Part B At Spectrosc 1998, 53 (1), 63–69. https://doi.org/10.1016/S0584-8547(97)00119-5.Vassileva, E.; Baeten, H.; Hoenig, M. Discussion of Parameters Associated with the Determination of Arsenic by Electrothermal Atomic Absorption Spectrometry in Slurried Environmental Samples. Fresenius J Anal Chem 2001, 369 (2), 159–165. https://doi.org/10.1007/s002160000632.Silva, M. Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry: Determination of Trace Metals in Mineral Coal. Talanta 1999, 50 (5), 1035–1043. https://doi.org/10.1016/S0039-9140(99)00216-7.Vieira, A. L.; Gonçalves, D. A.; Virgilio, A.; Ferreira, E. C.; Jones, B. T.; Donati, G. L.; Gomes Neto, J. A. Multi-Energy Calibration for the Determination of Non-Metals by High-Resolution Continuum Source Molecular Absorption Spectrometry. J Anal At Spectrom 2019, 34 (5), 972–978. https://doi.org/10.1039/C9JA00006B.Virgilio, A.; Gonçalves, D. A.; McSweeney, T.; Gomes Neto, J. A.; Nóbrega, J. A.; Donati, G. L. Multi-Energy Calibration Applied to Atomic Spectrometry. Anal Chim Acta 2017, 982, 31–36. https://doi.org/10.1016/j.aca.2017.06.040.Babos, D. V.; Virgilio, A.; Costa, V. C.; Donati, G. L.; Pereira-Filho, E. R. Multi-Energy Calibration (MEC) Applied to Laser-Induced Breakdown Spectroscopy (LIBS). J Anal At Spectrom 2018, 33 (10), 1753–1762. https://doi.org/10.1039/C8JA00109J.Garde, R.; Nakadi, F. V.; García-Ruiz, E.; Resano, M. Introducing Multi-Energy Ratios as an Alternative to Multi-Energy Calibration for Br Determination via High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometry. A Case Study. J Anal At Spectrom 2020, 35 (11), 2606–2619. https://doi.org/10.1039/D0JA00359J.Machado, R. C.; Silva, A. B. S.; Donati, G. L.; Nogueira, A. R. A. Multi-Energy Calibration as a Strategy for Elemental Analysis of Fertilizers by Microwave-Induced Plasma Optical Emission Spectrometry. J Anal At Spectrom 2018, 33 (7), 1168–1172. https://doi.org/10.1039/C8JA00077H.Alencar, M. C.; Gonçalves, D. A.; Nicolodelli, G.; Oliveira, S. L.; Donati, G. L.; Caires, A. R. L. Evaluating the Applicability of Multi-Energy Calibration as an Alternative Method for Quantitative Molecular Spectroscopy Analysis. Spectrochim Acta A Mol Biomol Spectrosc 2019, 221, 117221. https://doi.org/10.1016/j.saa.2019.117221.Van Loon, J. C. Analytical Atomic Absorption Spectroscopy: Selected Methods, 1st ed.; Academic Press, Inc.: London, 1980.Matousek, J. P.; Powell, H. K. J. Halogen Assisted Volatilization in Electrothermal Atomic Absorption Spectroscopy: Reduction of Memory Effects from Refractory Carbides. Spectrochim Acta Part B At Spectrosc 1986, 41 (12), 1347–1355. https://doi.org/10.1016/0584-8547(86)80010-6.Zhu, X.; Alexandratos, S. D. Determination of Trace Levels of Mercury in Aqueous Solutions by Inductively Coupled Plasma Atomic Emission Spectrometry: Elimination of the ‘Memory Effect.’ Microchemical Journal 2007, 86 (1), 37–41. https://doi.org/10.1016/j.microc.2006.09.004.Tominaga, M.; Bansho, K.; Umezaki, Y. The Electrothermal Atomic Absorption Spectrometric Determination of Lead, Manganese, Vanadium and Molybdenum in Sea Water with Ascorbic Acid to Reduce Matrix Effects. Anal Chim Acta 1985, 169, 171–177. https://doi.org/10.1016/S0003-2670(00)86219-4.Advanced Chemistry Development, Inc. Percepta Platform - PhysChem Module. ACD Labs: Toronto 2022. https://doi.org/www.acdlabs.com.Ho, C.-Y.; Jiang, S.-J. Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry for Determination of Vanadium and Chromium in Soils. Spectrochim Acta Part B At Spectrosc 2003, 58 (1), 63–70. https://doi.org/10.1016/S0584-8547(02)00233-1.Souza, A. L.; Ferreira da Silva, F.; Kelmer, G. A. R.; Oliveira, P. V. A Green Method for the Simultaneous Determination of Cd and Pb in Soil and Sediment by Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry. Analytical Methods 2013, 5 (8), 2059. https://doi.org/10.1039/c3ay26547a.Barros, A. I.; Pinheiro, F. C.; Nóbrega, J. A. Calibration Strategies to Correct for Matrix Effects in Direct Analysis of Urine by ICP OES: Internal Standardization and Multi-Energy Calibration. Analytical Methods 2019, 11 (27), 3401–3409. https://doi.org/10.1039/C9AY00907H.Soares, S.; Rocha, F. R. P. Multi-Energy Calibration to Circumvent Matrix Effects in the Determination of Biodiesel Quality Parameters by UV–Vis Spectrophotometry. Talanta 2020, 209, 120584. https://doi.org/10.1016/j.talanta.2019.120584.Spiegel, M. R.; Schiller, J. J.; Srinivasan, R. A. Teoría y Problemas de Probabilidad y Estadística, 2nd ed.; McGraw-Hill: Ciudad de México, 2003.201922966Publicationhttps://scholar.google.es/citations?user=KAejHIcAAAAJvirtual::250-1https://scholar.google.es/citations?user=-j4-Do4AAAAJvirtual::252-10000-0003-1273-0409virtual::250-10000-0003-2262-9179virtual::252-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000370380virtual::251-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001610008virtual::252-1024fb45a-e509-46b5-bc93-786e746abd35virtual::250-1024fb45a-e509-46b5-bc93-786e746abd35virtual::250-115cce969-be9e-4320-94bc-85afca78cca4virtual::251-161fd9fc5-9109-431d-97ae-4b0552a4df5cvirtual::252-115cce969-be9e-4320-94bc-85afca78cca4virtual::251-161fd9fc5-9109-431d-97ae-4b0552a4df5cvirtual::252-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/b7648b03-4e1e-4f7b-ac00-15439e91e5c8/download84a900c9dd4b2a10095a94649e1ce116MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d0db148c-e49d-4ce5-b6a3-760a281faa81/downloadae9e573a68e7f92501b6913cc846c39fMD53ORIGINALDesarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución.pdfDesarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución.pdfapplication/pdf725912https://repositorio.uniandes.edu.co/bitstreams/450797fd-741d-4177-9d80-7abd2d19bad5/downloadcef0b7358a234ad312dedd4b5625e650MD55Autorizacion tesis.pdfAutorizacion tesis.pdfHIDEapplication/pdf271798https://repositorio.uniandes.edu.co/bitstreams/a4bae85f-e1b4-4032-b032-022b20bf7e56/downloaded34e6e791fbd842baf3224cb2876d57MD54TEXTDesarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución.pdf.txtDesarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución.pdf.txtExtracted texttext/plain62893https://repositorio.uniandes.edu.co/bitstreams/cb76dcae-cffd-49b9-8a4a-7b92208b85a6/download3fb383316ae5cb7aa355ee424da5449bMD56Autorizacion tesis.pdf.txtAutorizacion tesis.pdf.txtExtracted texttext/plain2154https://repositorio.uniandes.edu.co/bitstreams/bc5fc688-e759-4f73-b582-927ee8013427/download5dc48b716aa4b9b1a9f99f7fccbeb563MD58THUMBNAILDesarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución.pdf.jpgDesarrollo de un método analítico para la determinación de vanadio en suelos mediante Slurry Sampling y Calibración Multienergy con espectroscopia de absorción atómica electrotérmica de fuente continua de alta resolución.pdf.jpgGenerated Thumbnailimage/jpeg7690https://repositorio.uniandes.edu.co/bitstreams/9b7bcc47-8ec8-49d1-99d5-db7be3a3dd58/download8c507ae352e14eec2a7dc564264478abMD57Autorizacion tesis.pdf.jpgAutorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10886https://repositorio.uniandes.edu.co/bitstreams/fec75acd-6568-45e6-bc3d-c68e0260d5d7/download39193e7fb229a8759c5aecd0c3cbf5deMD591992/73616oai:repositorio.uniandes.edu.co:1992/736162024-02-16 15:13:33.044http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K