4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes
En este documento se presentan los resultados del trabajo de investigación de Doctorado en Ciencias-Química titulado "4-formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes", desarrollado en el Grupo de Investigación de Com...
- Autores:
-
Aranzazu Giraldo, Sandra Lorena
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/60021
- Acceso en línea:
- http://hdl.handle.net/1992/60021
- Palabra clave:
- Pirazoles
Pirazolo[1,5-a]pirimidinas
Antifúngicos
Química
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_06129004da7e1405d4301b605f32d26a |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/60021 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
title |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
spellingShingle |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes Pirazoles Pirazolo[1,5-a]pirimidinas Antifúngicos Química |
title_short |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
title_full |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
title_fullStr |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
title_full_unstemmed |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
title_sort |
4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes |
dc.creator.fl_str_mv |
Aranzazu Giraldo, Sandra Lorena |
dc.contributor.advisor.none.fl_str_mv |
Portilla Salinas, Jaime Antonio |
dc.contributor.author.none.fl_str_mv |
Aranzazu Giraldo, Sandra Lorena |
dc.contributor.jury.none.fl_str_mv |
Gamba Sánchez, Diego Alexander Altarejos Caballero, Joaquín Cuervo Prado, Paola Andrea |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Grupo de Investigación en Compuestos Biorgánicos (GICOBIORG) |
dc.subject.keyword.none.fl_str_mv |
Pirazoles Pirazolo[1,5-a]pirimidinas Antifúngicos |
topic |
Pirazoles Pirazolo[1,5-a]pirimidinas Antifúngicos Química |
dc.subject.themes.es_CO.fl_str_mv |
Química |
description |
En este documento se presentan los resultados del trabajo de investigación de Doctorado en Ciencias-Química titulado "4-formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes", desarrollado en el Grupo de Investigación de Compuestos Biorgánicos (GICOBIORG) de la Universidad de Los Andes, bajo la dirección del Dr. Jaime Antonio Portilla Salinas. Adicionalmente, se lograron hacer estudios de actividad antifúngica en el Grupo de Investigación Celular y Molecular de Microorganismos Patógenos de la Universidad de los Andes que dirige la Dra. Adriana Marcela Celis Ramírez. Los capítulos que conforman este manuscrito son siete. El primero, la conceptualización y los antecedentes generales y del grupo de investigación; el segundo, el planteamiento del problema que fue la principal motivación para llevar a cabo la investigación; el tercero, los objetivos; el cuarto, los resultados y discusión de la síntesis, actividad antifúngica y estudios fotofísicos; el quinto, conclusiones; el sexto; perspectivas; el séptimo la sección experimental; y por último la bibliografía. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-23T13:58:15Z |
dc.date.available.none.fl_str_mv |
2022-08-23T13:58:15Z |
dc.date.issued.none.fl_str_mv |
2022-05-25 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/60021 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/60021 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/60021 |
identifier_str_mv |
10.57784/1992/60021 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Eicher, T.; Hauptmann, S.; Speicher, A. Pyrazole. In The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications; 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2003; pp 179-184. Joule, J. A. ; Mills, K. 1,2 - Azoles: Pyrazoles, Isothiazoles, Isoxazoles: Reactions and Synthesis. In Heterocyclic Chemistry; 5th ed.; John Wiley & Sons Ltd, 2010; pp 485-501. Castillo, J. C.; Portilla, J. Recent Advances in the Synthesis of New Pyrazole Derivatives. Targets Heterocycl. Syst. 2018, 22 (18), 194-223. https://doi.org/10.17374/targets.2019.22.194. Ortiz, M.-C.; Portilla, J. Access to Five-Membered N-Heteroaromatic Compounds: Current Appoach Based on Microwave-Assisted Synthesis. Targets Heterocycl. Syst. 2021, 25, 436-462. https://doi.org/10.17374/targets.2022.25.436. Devi, N.; Shankar, R.; Singh, V. 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-Fused/Substituted Frameworks. J. Heterocycl. Chem. 2018, 55 (2), 373-390. https://doi.org/10.1002/jhet.3045. Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance. Eur. J. Med. Chem. 2013, 69, 735-753. https://doi.org/10.1016/j.ejmech.2013.08.053. Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. Chem. Rev. 2011, 111 (11), 6984-7034. https://doi.org/10.1021/cr2000459. Brown, A. W. Recent Developments in the Chemistry of Pyrazoles. In Advances in Heterocyclic Chemistry; 1rst. Edition; Elsevier Inc., 2018; Vol. 126, pp 55-107. https://doi.org/10.1016/bs.aihch.2018.02.001. Xiao, J. J.; Liao, M.; Chu, M. J.; Ren, Z. L.; Zhang, X.; Lv, X. H.; Cao, H. Q. Design, Synthesis and Anti-Tobacco Mosaic Virus (TMV) Activity of 5-Chloro-n-(4-Cyano-1-Aryl-1H-Pyrazol-5-Yl)-1-Aryl-3-Methyl-1H-Pyrazole-4-Carboxamide Derivatives. Molecules 2015, 20 (1), 807-821. https://doi.org/10.3390/molecules20010807. Lv, X. H.; Ren, Z. L.; Li, D. D.; Ruan, B. F.; Li, Q. S.; Chu, M. J.; Ai, C. Y.; Liu, D. H.; Mo, K.; Cao, H. Q. Discovery of Novel Double Pyrazole Schiff Base Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents. Chinese Chem. Lett. 2017, 28 (2), 377-382. https://doi.org/10.1016/j.cclet.2016.10.029. Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23 (1), 1-86. https://doi.org/10.3390/molecules23010134. Matos, I.; Pérez-Mayoral, E.; Soriano, E.; Zukal, A.; Martín-Aranda, R. M.; López-Peinado, A. J.; Fonseca, I.; Cejka, J. Experimental and Theoretical Study of Pyrazole N-Alkylation Catalyzed by Basic Modified Molecular Sieves. Chem. Eng. J. 2010, 161 (3), 377-383. https://doi.org/10.1016/j.cej.2009.09.040. Gonda, Z.; Novák, Z. Transition-Metal-Free N-Arylation of Pyrazoles with Diaryliodonium Salts. Chem. - A Eur. J. 2015, 21 (47), 16801-16806. https://doi.org/10.1002/chem.201502995. Zhao, J.; Li, P.; Xia, C.; Lei, A. Direct YN-Acylation of Azoles via a Metal-Free Catalyzed Oxidative Cross-Coupling Strategy. Chem. Commun. 2014, 50 (36), 4751-4754. https://doi.org/10.1039/c4cc01587h. Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Comparative Study of Various Pyrazole-Based Anions: A Promising Family of Ionic Derivatives as Insensitive Energetic Materials. Chem. - An Asian J. 2017, 12 (3), 378-384. https://doi.org/10.1002/asia.201601615. Orrego-Hernández, J.; Cobo, J.; Portilla, J. Chemoselective Synthesis of 5-Alkylamino-1H-Pyrazole-4-Carbaldehydes by Cesium- and Copper-Mediated Amination. European J. Org. Chem. 2015, 23, 5064-5069. https://doi.org/10.1002/ejoc.201500505. Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of Pyrazole Derivatives Possessing Anticancer Activity: Current Status. Synth. Commun. 2014, 44 (11), 1521-1578. https://doi.org/10.1080/00397911.2013.828757. Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)Pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. J. Org. Chem. 2017, 82 (24), 13376-13385. https://doi.org/10.1021/acs.joc.7b02460. Orrego-Hernández, J.; Cobo, J.; Portilla, J. Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS Omega 2019, 4 (15), 16689-16700. https://doi.org/10.1021/acsomega.9b02796. Ghosh, K.; Nayek, N.; Das, S.; Biswas, N.; Sinha, S. Design and Synthesis of Ferrocene-Tethered Pyrazolines and Pyrazoles: Photophysical Studies, Protein-Binding Behavior with Bovine Serum Albumin, and Antiproliferative Activity against MDA-MB-231 Triple Negative Breast Cancer Cells. Appl. Organomet. Chem. 2021, 35 (7), 1-10. https://doi.org/10.1002/aoc.6248. Tigreros, A.; Portilla, J. Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Curr. Chinese Sci. 2021, 1 (2), 197-206. https://doi.org/10.2174/2210298101999201208211116. Li, M.; Liu, C. L.; Yang, J. I. C.; Zhang, J. B. O.; Li, Z. N.; Zhang, H.; Li, Z. M. Synthesis and Biological Activity of New (E)-[alfa]-(Methoxyimino) Benzeneacetate Derivatives Containing a Substituted Pyrazole Ring. J. Agric. Food Chem. 2010, 58 (5), 2664-2667. https://doi.org/10.1021/jf9026348. Ouyang, G.; Cai, X. J.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y.; Zeng, S. Synthesis and Antiviral Activities of Pyrazole Derivatives Containing an Oxime Moiety. J. Agric. Food Chem. 2008, 56 (21), 10160-10167. https://doi.org/10.1021/jf802489e. Lv, X. H.; Xiao, J. J.; Ren, Z. L.; Chu, M. J.; Wang, P.; Meng, X. F.; Li, D. D.; Cao, H. Q. Design, Synthesis and Insecticidal Activities of N-(4-Cyano-1-Phenyl-1H-Pyrazol-5-Yl)-1,3-Diphenyl-1H-Pyrazole-4-Carboxamide Derivatives. RSC Adv. 2015, 5, 55179-55185. https://doi.org/10.1039/c5ra09286h. Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16-41. https://doi.org/10.1039/c6nj03181a. Restrepo-Acevedo, A.; Osorio, N.; Giraldo-López, L. E.; D'Vries, R. F.; Zacchino, S.; Abonia, R.; Le Lagadec, R.; Cuenú-Cabezas, F. Synthesis and Antifungal Activity of Nitrophenyl-Pyrazole Substituted Schiff Bases. J. Mol. Struct. 2022, 1253, 132289. https://doi.org/10.1016/j.molstruc.2021.132289. Nidhar, M.; Khanam, S.; Sonker, P.; Gupta, P. Bioorganic Chemistry Click Inspired Novel Pyrazole-Triazole-Persulfonimide & Pyrazole-Triazole-Aryl Derivatives ; Design , Synthesis , DPP-4 Inhibitor with Potential Anti-Diabetic Agents. Bioorg. Chem. 2022, 120, 105586. https://doi.org/10.1016/j.bioorg.2021.105586. Khan, M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The Therapeutic Voyage of Pyrazole and Its Analogs: A Review. Eur. J. Med. Chem. 2016, 120, 170-201. https://doi.org/10.1016/j.ejmech.2016.04.077. Küçükgüzel, G.; Senkardes, S. Recent Advances in Bioactive Pyrazoles. Eur. J. Med. Chem. 2015, 97, 786-815. https://doi.org/10.1016/j.ejmech.2014.11.059. Faria, J. V.; Vegi, P. F.; Miguita, A. G. C.; dos Santos, M. S.; Boechat, N.; Bernardino, A. M. R. Recently Reported Biological Activities of Pyrazole Compounds. Bioorganic Med. Chem. 2017, 25 (21), 5891-5903. https://doi.org/10.1016/j.bmc.2017.09.035. Doddaramappa, S. D.; Lokanatha Rai, K. M.; Srikantamurthy, N.; Chandra; Chethan, J. Novel 5-Functionalized-Pyrazoles: Synthesis, Characterization and Pharmacological Screening. Bioorganic Med. Chem. Lett. 2015, 25 (17), 3671-3675. https://doi.org/10.1016/j.bmcl.2015.06.050. Bhavanarushi, S.; Luo, Z. Bin; Bharath, G.; Rani, J. V.; Khan, I.; Xu, Y.; Liu, B.; Xie, J. F(1H-Pyrazol-4-Yl)Methylene-Hydrazide Derivatives: Synthesis and Antimicrobial Activity. J. Heterocycl. Chem. 2020, 57 (2), 751-760. https://doi.org/10.1002/jhet.3816. Jadhav, S. B.; Fatema, S.; Sanap, G.; Farooqui, M. Antitubercular Activity and Synergistic Study of Novel Pyrazole Derivatives. J. Heterocycl. Chem. 2018, 55 (7), 1634-1644. https://doi.org/10.1002/jhet.3198. Silva, V. L. M.; Elguero, J.; Silva, A. M. S. Current Progress on Antioxidants Incorporating the Pyrazole Core. Eur. J. Med. Chem. 2018, 156, 394-429. https://doi.org/10.1016/j.ejmech.2018.07.007. He, L. L.; Qi, Q.; Wang, X.; Li, Y.; Zhu, Y.; Wang, X. F.; Xu, L. Synthesis of Two Novel Pyrazolo[1,5-a]Pyrimidine Compounds with Antibacterial Activity and Biophysical Insights into Their Interactions with Plasma Protein. Bioorg. Chem. 2020, 99, 1-10. https://doi.org/10.1016/j.bioorg.2020.103833. Frizzo, C. P.; Scapin, E.; Campos, P. T.; Moreira, D. N.; Martins, M. A. P. Molecular Structure of Pyrazolo[1,5-a]Pyrimidines: X-Ray Diffractometry and Theoretical Study. J. Mol. Struct. 2009, 933 (1-3), 142-147. https://doi.org/10.1016/j.molstruc.2009.06.010. Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine-Triphenylamine Systems. Dye. Pigment. 2021, 184, 108730. https://doi.org/10.1016/j.dyepig.2020.108730. Portilla, J.; Quiroga, J.; Cobo, J.; Low, J. N.; Glidewell, C. 7-Amino-2-Tert-Butyl-5-Methylpyrazolo[1,5-a]Pyrimidine: A Three-Dimensional Framework Structure Built from Two N - H...N Hydrogen Bonds. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007, 63 (1), 26-28. https://doi.org/10.1107/S0108270106044817. Salem, M. A.; Helal, M. H.; Gouda, M. A.; Abd EL-Gawad, H. H.; Shehab, M. A. M.; El-Khalafawy, A. Recent Synthetic Methodologies for Pyrazolo[1,5-a]Pyrimidine. Synth. Commun. 2019, 49 (14), 1750-1776. https://doi.org/10.1080/00397911.2019.1604967. Portilla, J.; Quiroga, J.; Nogueras, M.; Cobo, J. Regioselective Synthesis of Fused Pyrazolo[1,5-a]Pyrimidines by Reaction of 5-Amino-1H-Pyrazoles and [beta]-Dicarbonyl Compounds Containing Five-Membered Rings. Tetrahedron 2012, 68 (4), 988-994. https://doi.org/10.1016/j.tet.2011.12.001. Al-Azmi, A. Pyrazolo[1,5-a]Pyrimidines: A Close Look into Their Synthesis and Applications. Curr. Org. Chem. 2019, 23 (6), 721-743. https://doi.org/10.2174/1385272823666190410145238. Arias-Gómez, A.; Godoy, A.; Portilla, J. Functional Pyrazolo[1,5-a]Pyrimidines: Current Approaches in Synthetic Transformations and Uses As an Antitumor Scaffold. Molecules 2021, 26 (9), 2708. https://doi.org/10.3390/molecules26092708. Gregg, B. T.; Tymoshenko, D. O.; Razzano, D. A.; Johnson, M. R. Pyrazolo[1,5-a]Pyrimidines. Identification of the Privileged Structure and Combinatorial Synthesis of 3-(Hetero)Arylpyrazolo[1,5-a]Pyrimidine-6- Carboxamides. J. Comb. Chem. 2007, 9 (3), 507-512. https://doi.org/10.1021/cc0700039. Saikia, P.; Gogoi, S.; Boruah, R. C. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]Pyrimidines. J. Org. Chem. 2015, 80 (13), 6885-6889. https://doi.org/10.1021/acs.joc.5b00933. Ma, Y.; Chen, Y.; Lv, L.; Li, Z. Regioselective Synthesis of Emission Color-Tunable Pyrazolo[1,5-a]Pyrimidines with [beta],[berta]-Difluoro Peroxides as 1,3-Bis-Electrophiles. Adv. Synth. Catal. 2021, 363 (13), 3233-3239. https://doi.org/10.1002/adsc.202100298. Castillo, J. C.; Rosero, H. A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5-a] Pyrimidines through a One-Pot Sequence. RSC Adv. 2017, 7 (45), 28483-28488. https://doi.org/10.1039/c7ra04336h. Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem. 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571. Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a ]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain. Chem. Eng. 2021, 9 (36), 12058-12069. https://doi.org/10.1021/acssuschemeng.1c01689. Elnagdi, M. H.; Elmoghayar, M. R. H.; Elgemeie, G. E. H. Chemistry of Pyrazolopyrimidines. Adv. Heterocycl. Chem. 1987, 41 (C), 319-376. https://doi.org/10.1016/S0065-2725(08)60164-6. Weiss, M; Xheng, X. Irak Degraders and Uses Thereof. WO2021158634A1, 2021. Tsai, P. C.; Wang, I. J. Synthesis and Solvatochromic Properties of 3,6-Bis-Hetarylazo Dyes Derived from Pyrazolo[1,5-a]Pyrimidine. Dye. Pigment. 2008, 76 (3), 575-581. https://doi.org/10.1016/j.dyepig.2007.01.005. Golubev, P.; Karpova, E. A.; Pankova, A. S.; Sorokina, M.; Kuznetsov, M. A. Regioselective Synthesis of 7-(Trimethylsilylethynyl)Pyrazolo[1,5-a]Pyrimidines via Reaction of Pyrazolamines with Enynones. J. Org. Chem. 2016, 81 (22), 11268-11275. https://doi.org/10.1021/acs.joc.6b02217. Tigreros, A.; Rosero, H. A.; Castillo, J. C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395-401. https://doi.org/10.1016/j.talanta.2018.12.100. Saqub, H.; Proetsch-Gugerbauer, H.; Bezrookove, V.; Nosrati, M.; Vaquero, E. M.; de Semir, D.; Ice, R. J.; McAllister, S.; Soroceanu, L.; Kashani-Sabet, M.; Osorio, R.; Dar, A. A. Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Suppresses Cholangiocarcinoma Growth by Targeting CDK2/5/9. Sci. Rep. 2020, 10 (1), 1-13. https://doi.org/10.1038/s41598-020-75578-5. Gumus, A.; Bozdag, M.; Angeli, A.; Peat, T. S.; Carta, F.; Supuran, C. T.; Selleri, S. Privileged Scaffolds in Medicinal Chemistry: Studies on Pyrazolo[1,5-a]Pyrimidines on Sulfonamide Containing Carbonic Anhydrase Inhibitors. Bioorganic Med. Chem. Lett. 2021, 49, 128309. https://doi.org/10.1016/j.bmcl.2021.128309. Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G. D. Pyrazolopyrimidines as Anticancer Agents: A Review on Structural and Target-Based Approaches. Eur. J. Med. Chem. 2021, 225, 113781. https://doi.org/10.1016/j.ejmech.2021.113781. Dwyer, M. P.; Keertikar, K.; Paruch, K.; Alvarez, C.; Labroli, M.; Poker, C.; Fischmann, T. O.; Mayer-Ezell, R.; Bond, R.; Wang, Y.; Azevedo, R.; Guzi, T. J. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based Pim Inhibitors: A Template-Based Approach. Bioorganic Med. Chem. Lett. 2013, 23 (22), 6178-6182. https://doi.org/10.1016/j.bmcl.2013.08.110. Zhang, Y.; Liu, Y.; Zhou, Y.; Zhang, Q.; Han, T.; Tang, C.; Fan, W. Pyrazolo[1,5-a]Pyrimidine Based Trk Inhibitors: Design, Synthesis, Biological Activity Evaluation. Bioorganic Med. Chem. Lett. 2021, 31, 127712. https://doi.org/10.1016/j.bmcl.2020.127712. Ismail, N. S. M.; Ali, G. M. E.; Ibrahim, D. A.; Elmetwali, A. M. Medicinal Attributes of Pyrazolo[1,5-a]Pyrimidine Based Scaffold Derivatives Targeting Kinases as Anticancer Agents. Futur. J. Pharm. Sci. 2016, 2 (2), 60-70. https://doi.org/10.1016/j.fjps.2016.08.004. Liu, R.; Zhang, S.; Huang, M.; Guo, Z.; Li, L.; Li, M.; Wu, L.; Guan, Q.; Zhang, W. Design, Synthesis and Bioevaluation of 2,7-Diaryl-Pyrazolo[1,5-a]Pyrimidines as Tubulin Polymerization Inhibitors. Bioorg. Chem. 2021, 115, 105220. https://doi.org/10.1016/j.bioorg.2021.105220. El-Sayed, E. H.; Fadda, A. A.; El-Saadaney, A. M. Synthesis and Antimicrobial Evaluation of Some New Pyrazolo[1,5-a]Pyrimidine and Pyrazolo[1,5-c]Triazine Derivatives Containing Sulfathiazole Moiety. Acta Chim. Slov. 2020, 67 (4), 1024-1034. https://doi.org/10.17344/acsi.2019.5007. Deshmukh, S.; Dingore, K.; Gaikwad, V.; Jachak, M. An Efficient Synthesis of Pyrazolo[1,5-a]Pyrimidines and Evaluation of Their Antimicrobial Activity. J. Chem. Sci. 2016, 128 (9), 1459-1468. https://doi.org/10.1007/s12039-016-1141-x. Sayed, A. Z.; Aboul-Fetouh, M. S.; Nassar, H. S. Synthesis, Biological Activity and Dyeing Performance of Some Novel Azo Disperse Dyes Incorporating Pyrazolo[1,5-a]Pyrimidines for Dyeing of Polyester Fabrics. J. Mol. Struct. 2012, 1010, 146-151. https://doi.org/10.1016/j.molstruc.2011.11.046. Hassan, A. S.; Morsy, N. M.; Awad, H. M.; Ragab, A. Synthesis, Molecular Docking, and in Silico ADME Prediction of Some Fused Pyrazolo[1,5-a]Pyrimidine and Pyrazole Derivatives as Potential Antimicrobial Agents. J. Iran. Chem. Soc. 2022, 19 (2), 521-545. https://doi.org/10.1007/s13738-021-02319-4. Tian, Y.; Du, D.; Rai, D.; Wang, L.; Liu, H.; Zhan, P.; De Clercq, E.; Pannecouque, C.; Liu, X. Fused Heterocyclic Compounds Bearing Bridgehead Nitrogen as Potent HIV-1 NNRTIs. Part 1: Design, Synthesis and Biological Evaluation of Novel 5,7-Disubstituted Pyrazolo[1,5-a]Pyrimidine Derivatives. Bioorganic Med. Chem. 2014, 22 (7), 2052-2059. https://doi.org/10.1016/j.bmc.2014.02.029. Gu, Y. Q.; Shen, W. Y.; Zhou, Y.; Chen, S. F.; Mi, Y.; Long, B. F.; Young, D. J.; Hu, F. L. A Pyrazolopyrimidine Based Fluorescent Probe for the Detection of Cu2+ and Ni2+ and Its Application in Living Cells. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019, 209, 141-149. https://doi.org/10.1016/j.saa.2018.10.030. Yang, X. Z.; Sun, R.; Guo, X.; Wei, X. R.; Gao, J.; Xu, Y. J.; Ge, J. F. The Application of Bioactive Pyrazolopyrimidine Unit for the Construction of Fluorescent Biomarkers. Dye. Pigment. 2020, 173, 107878. https://doi.org/10.1016/j.dyepig.2019.107878. Shimizu, S.; Ogata, M. Fluoride- or Alkoxide-Induced Reaction of 1-[(Trimethylsilyl)Methyl]Azoles with Carbonyl Compounds. J. Org. Chem. 1986, 51 (20), 3897-3900. https://doi.org/10.1021/jo00370a028. Lassalas, P.; Claraz, A.; Tran, G.; Vors, J. P.; Tsuchiya, T.; Coqueron, P. Y.; Cossy, J. Selective Generation of (1H-1,2,4-Triazol-1-Yl)Methyl Carbanion and Condensation with Carbonyl Compounds. European J. Org. Chem. 2017, 46, 6991-6996. https://doi.org/10.1002/ejoc.201701278. Tan, L.; Tao, Y.; Wang, T.; Zou, F.; Zhang, S.; Kou, Q.; Niu, A.; Chen, Q.; Chu, W.; Chen, X.; Wang, H.; Yang, Y. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections. J. Med. Chem. 2017, 60 (7), 2669-2684. https://doi.org/10.1021/acs.jmedchem.6b01261. Fisher, R.; Grondal, C.; Heil, M.; Wroblowsky, H.-J.; Gesing, E.; Funke, C.; Franken, E.-M.; Malsam, O.; Voerste, A.; Gorgens, U.; Murata, T. Anthranilic Diamide Derivatives. US0160222, 2012. Bieliauskas, A.; Krikstolaityte, S.; Holzer, W.; Sackus, A. Ring-Closing Metathesis as a Key Step to Construct the 2, 6-Dihydropyrano[2, 3-c]Pyrazole Ring System. Arkivoc 2018, 2018 (5), 296-307. https://doi.org/10.24820/ark.5550190.p010.407. Ford Anthony; Chen Wei; Carter David; Yu Jiaxin. Beta Adrenergic Agonist and Methods of Using the Same. US2020024948W, 2020. Friggeri, L.; Hargrove, T. Y.; Rachakonda, G.; Blobaum, A. L.; Fisher, P.; De Oliveira, G. M.; Da Silva, C. F.; Soeiro, M. D. N. C.; Nes, W. D.; Lindsley, C. W.; Villalta, F.; Guengerich, F. P.; Lepesheva, G. I. Sterol 14[alfa]-Demethylase Structure-Based Optimization of Drug Candidates for Human Infections with the Protozoan Trypanosomatidae. J. Med. Chem. 2018, 61 (23), 10910-10921. https://doi.org/10.1021/acs.jmedchem.8b01671. Sui, Y. F.; Ansari, M. F.; Fang, B.; Zhang, S. L.; Zhou, C. H. Discovery of Novel Purinylthiazolylethanone Derivatives as Anti-Candida Albicans Agents through Possible Multifaceted Mechanisms. Eur. J. Med. Chem. 2021, 221, 113557. https://doi.org/10.1016/j.ejmech.2021.113557. Vargas-Oviedo, D.; Portilla, J.; Macías, M. A. Influence of the Haloaryl Moiety over the Molecular Packing in N-Phenacylbenzimidazoles Crystallizing in the Same Space Group. J. Mol. Struct. 2021, 1230, 129869. https://doi.org/10.1016/j.molstruc.2020.129869. Vargas-Oviedo, D.; Butassi, E.; Zacchino, S.; Portilla, J. Eco-Friendly Synthesis and Antifungal Evaluation of N-Substituted Benzimidazoles. Monatshefte fur Chemie 2020, 151 (4), 575-588. https://doi.org/10.1007/s00706-020-02575-9. Elejalde-Cadena, N. R.; García-Olave, M.; Figueroa, D.; Vidossich, P.; Miscione, G. Pietro; Portilla, J. Influence of Steric Effect on the Pseudo-Multicomponent Synthesis of N-Aroylmethyl-4-Arylimidazoles. Molecules 2022, 27 (4), 1165. https://doi.org/10.3390/molecules27041165. Elejalde, N. R.; Macías, M.; Castillo, J. C.; Sortino, M.; Svetaz, L.; Zacchino, S.; Portilla, J. Synthesis and in Vitro Antifungal Evaluation of Novel N-Substituted 4-Aryl-2-Methylimidazoles. ChemistrySelect 2018, 3 (18), 5220-5227. https://doi.org/10.1002/slct.201801238. Elejalde, N. R.; Butassi, E.; Zacchino, S.; Macías, M. A.; Portilla, J. Intermolecular Interaction Energies and Molecular Conformations in N -Substituted 4-Aryl-2-Methylimidazoles with Promising in Vitro Antifungal Activity. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 1-12. https://doi.org/10.1107/S2052520619013271. Orrego-Hernández, J. Síntesis de Nuevos 1-(2-Piridil)Pirazoles Fusionados y Sustituidos Con Grupos de Diferente Naturaleza Electrónica y de Conjugación (Pi)-Extendida, 2018. Macías, M. A.; Elejalde, N. R.; Butassi, E.; Zacchino, S.; Portilla, J. Studies via X-Ray Analysis on Intermolecular Interactions and Energy Frameworks Based on the Effects of Substituents of Three 4-Aryl-2-Methyl-1H-Imidazoles of Different Electronic Nature and Their in Vitro Antifungal Evaluation. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74 (11), 1447-1458. https://doi.org/10.1107/S2053229618014109. Tigreros, A.; Aranzazu, S. L.; Bravo, N. F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-: A] Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10 (65), 39542-39552. https://doi.org/10.1039/d0ra07716j. Samaranayake, L.; Fakhruddin, K. S. Pandemics Past, Present, and Future. J. Am. Dent. Assoc. 2021, 152 (12), 972-980. https://doi.org/10.1016/j.adaj.2021.09.008. Sarmah, P.; Dan, M. M.; Adapa, D.; Tk, S. A Review on Common Pathogenic Microorganisms and Their Impact on Human Health. Electron. J. Biol. 2018, 14 (1), 50-58. Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Molecular Mechanisms in Candida Albicans and Beyond. Chem. Rev. 2021, 121 (6), 3390-3411. https://doi.org/10.1021/acs.chemrev.0c00199. Ji, C.; Liu, N.; Tu, J.; Li, Z.; Han, G.; Li, J.; Sheng, C. Drug Repurposing of Haloperidol: Discovery of New Benzocyclane Derivatives as Potent Antifungal Agents against Cryptococcosis and Candidiasis. ACS Infect. Dis. 2020, 6 (5), 768-786. https://doi.org/10.1021/acsinfecdis.9b00197. Campoy, S.; Adrio, J. L. Antifungals. Biochem. Pharmacol. 2017, 133, 86-96. https://doi.org/10.1016/j.bcp.2016.11.019. Kathiravan, M. K.; Salake, A. B.; Chothe, A. S.; Dudhe, P. B.; Watode, R. P.; Mukta, M. S.; Gadhwe, S. The Biology and Chemistry of Antifungal Agents: A Review. Bioorganic Med. Chem. 2012, 20 (19), 5678-5698. https://doi.org/10.1016/j.bmc.2012.04.045. Revie, N. M.; Iyer, K. R.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Curr. Opin. Microbiol. 2018, 45, 70-76. https://doi.org/10.1016/j.mib.2018.02.005. Wu, S.; Wang, Y.; Liu, N.; Dong, G.; Sheng, C. Tackling Fungal Resistance by Biofilm Inhibitors. J. Med. Chem. 2017, 60 (6), 2193-2211. https://doi.org/10.1021/acs.jmedchem.6b01203. Sanglard, D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3, 1-10. https://doi.org/10.3389/fmed.2016.00011. Nicola, A. M.; Albuquerque, P.; Paes, H. C.; Fernandes, L.; Costa, F. F.; Kioshima, E. S.; Abadio, A. K. R.; Bocca, A. L.; Felipe, M. S. Antifungal Drugs: New Insights in Research & Development. Pharmacol. Ther. 2019, 195, 21-38. https://doi.org/10.1016/j.pharmthera.2018.10.008. H. Zhou, C.; Wang, Y. Recent Researches in Triazole Compounds as Medicinal Drugs. Curr. Med. Chem. 2012, 19 (2), 239-280. https://doi.org/10.2174/092986712803414213. Emami, S.; Ghobadi, E.; Saednia, S.; Hashemi, S. M. Current Advances of Triazole Alcohols Derived from Fluconazole: Design, in Vitro and in Silico Studies. Eur. J. Med. Chem. 2019, 170, 173-194. https://doi.org/10.1016/j.ejmech.2019.03.020. Mushtaq, A.; Baseer, A.; Zaidi, S. S.; Waseem Khan, M.; Batool, S.; Elahi, E.; Aman, W.; Naeem, M.; Din, F. ud. Fluconazole-Loaded Thermosensitive System: In Vitro Release, Pharmacokinetics and Safety Study. J. Drug Deliv. Sci. Technol. 2022, 67, 102972. https://doi.org/10.1016/j.jddst.2021.102972. Papich, M. G. Fluconazole. In Papich Handbook of Veterinary Drugs; Papich, M. G. B. T., Ed.; W.B. Saunders: St. Louis (MO), 2021; pp 373-375. https://doi.org/10.1016/B978-0-323-70957-6.00219-3. Elejalde-Cadena, N. R. Síntesis de Nuevos Imidazoles Con Potencial Actividad Antifúngica, 2016. Vargas-Oviedo, D. Estudio de La Síntesis de Nuevos 1-(2-Aril-2-Hidroxietil)Bencimidazoles Como Potenciales Agentes Antifúngicos, 2018. Vaitkien, S.; Daugelavicius, R.; Sychrová, H.; Kodedová, M. Styrylpyridinium Derivatives as New Potent Antifungal Drugs and Fluorescence Probes. Front. Microbiol. 2020, 11, 1-14. https://doi.org/10.3389/fmicb.2020.02077. Baibek, A.; Üçüncü, M.; Short, B.; Ramage, G.; Lilienkampf, A.; Bradley, M. Dyeing Fungi: Amphotericin B Based Fluorescent Probes for Multiplexed Imaging. Chem. Commun. 2021, 57 (15), 1899-1902. https://doi.org/10.1039/d0cc08177a. Jaber, Q. Z.; Benhamou, R. I.; Herzog, I. M.; Ben Baruch, B.; Fridman, M. Cationic Amphiphiles Induce Macromolecule Denaturation and Organelle Decomposition in Pathogenic Yeast. Angew. Chemie - Int. Ed. 2018, 57 (50), 16391-16395. https://doi.org/10.1002/anie.201809410. Jaber, Q. Z.; Bibi, M.; Ksiezopolska, E.; Gabaldon, T.; Berman, J.; Fridman, M. Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. ACS Cent. Sci. 2020, 6 (10), 1698-1712. https://doi.org/10.1021/acscentsci.0c00813. Loh, B. S.; Ang, W. H. "Illuminating" Echinocandins' Mechanism of Action. ACS Cent. Sci. 2020, 6 (10), 1651-1653. https://doi.org/10.1021/acscentsci.0c01222. Benhamou, R. I.; Bibi, M.; Berman, J.; Fridman, M. Localizing Antifungal Drugs to the Correct Organelle Can Markedly Enhance Their Efficacy. Angew. Chemie - Int. Ed. 2018, 57 (21), 6230-6235. https://doi.org/10.1002/anie.201802509. Leitão, M. I. P. S.; Rama Raju, B.; Cerqueira, N. M. F. S. A.; Sousa, M. J.; Gonçalves, M. S. T. Benzo[a]Phenoxazinium Chlorides: Synthesis, Antifungal Activity, in Silico Studies and Evaluation as Fluorescent Probes. Bioorg. Chem. 2020, 98, 103730. https://doi.org/10.1016/j.bioorg.2020.103730. Benhamou, R. I.; Bibi, M.; Steinbuch, K. B.; Engel, H.; Levin, M.; Roichman, Y.; Berman, J.; Fridman, M. Real-Time Imaging of the Azole Class of Antifungal Drugs in Live Candida Cells. ACS Chem. Biol. 2017, 12 (7), 1769-1777. https://doi.org/10.1021/acschembio.7b00339. Benhamou, R. I.; Jaber, Q. Z.; Herzog, I. M.; Roichman, Y.; Fridman, M. Fluorescent Tracking of the Endoplasmic Reticulum in Live Pathogenic Fungal Cells. ACS Chem. Biol. 2018, 13 (12), 3325-3332. https://doi.org/10.1021/acschembio.8b00782. Mykhailiuk, P. K. Fluorinated Pyrazoles: From Synthesis to Applications. Chem. Rev. 2021, 121 (3), 1670-1715. https://doi.org/10.1021/acs.chemrev.0c01015. Verma, R.; Verma, S. K.; Rakesh, K. P.; Girish, Y. R.; Ashrafizadeh, M.; Sharath Kumar, K. S.; Rangappa, K. S. Pyrazole-Based Analogs as Potential Antibacterial Agents against Methicillin-Resistance Staphylococcus Aureus (MRSA) and Its SAR Elucidation. Eur. J. Med. Chem. 2021, 212, 113134. https://doi.org/10.1016/j.ejmech.2020.113134. Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G. A.; Thapliyal, N.; Palakollu, V. N. An Insight on Synthetic and Medicinal Aspects of Pyrazolo[1,5-a]Pyrimidine Scaffold. Eur. J. Med. Chem. 2017, 126, 298-352. https://doi.org/10.1016/j.ejmech.2016.11.019. Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693-19712. https://doi.org/10.1039/d0ra02394a. Ford, M. C.; Ho, P. S. Computational Tools to Model Halogen Bonds in Medicinal Chemistry. J. Med. Chem. 2016, 59 (5), 1655-1670. https://doi.org/10.1021/acs.jmedchem.5b00997. Jeschke, P. Latest Generation of Halogen-Containing Pesticides. Pest Manag. Sci. 2017, 73 (6), 1053-1066. https://doi.org/10.1002/ps.4540. Vargas-Oviedo, D.; Charris-Molina, A.; Portilla, J. Efficient Access to O-Phenylendiamines and Their Use in the Synthesis of a 1,2-Dialkyl-5-Trifluoromethylbenzimidazoles Library Under Microwave Conditions. ChemistrySelect 2017, 2 (13). https://doi.org/10.1002/slct.201700623. Zhu, Y. F.; Wei, B. Le; Wei, J. J.; Wang, W. Q.; Song, W. Bin; Xuan, L. J. Synthesis of Pyrazolones and Pyrazoles via Pd-Catalyzed Aerobic Oxidative Dehydrogenation. Tetrahedron Lett. 2019, 60 (17), 1202-1205. https://doi.org/10.1016/j.tetlet.2019.03.063. Eissenstat, M. A.; Kuo, G.-H.; Desai, R. C.; Hlasta, D. J.; Court, J. J. 2-(Pyrazol-5-Yl-Oxymethyl)-1,2-Benzisothiazol-3 (2H)-One 1, 1-Dioxides and Compositions and Method of Use Thereof. US5750550 (A), 1998. Singh, S. P.; Kumar, D.; Batra, H.; Naithani, R.; Rozas, I.; Elguero, J. The Reaction between Hydrazines and [beta]-Dicarbonyl Compounds: Proposal for a Mechanism. Can. J. Chem. 2000, 78 (8), 1109-1120. https://doi.org/10.1139/v00-104. Su, W.; Weng, Y.; Jiang, L.; Yang, Y.; Zhao, L.; Chen, Z.; Li, Z.; Li, J. Recent Progress in the Use of Vilsmeier-Type Reagents. Org. Prep. Proced. Int. 2010, 42 (6), 503-555. https://doi.org/10.1080/00304948.2010.513911. Mewshaw, R. E. Vilsmeier Reagents: Preparation of b-Halo-a,Beta-Unsaturated Ketones. Tetrahedron Lett. 1989, 3 (29), 3753-3756. Aranzazu, S.; Tigreros, A.; Arias-g, A.; Zapata-rivera, J.; Portilla, J. Sandra-L. Aranzazu, Alexis Tigreros, Andres Arias-G ó Mez, Jhon Zapata-Rivera, and Jaime Portilla *. J. Org. Chem. 2022, 87, 9839-9850. https://doi.org/10.1021/acs.joc.2c00881. Shimizu, S.; Ogata, M. Reaction of N-[(Trimethylsilyl)Methyl]Azinones. J. Org. Chem. 1988, 53 (21), 5160-5163. https://doi.org/10.1021/jo00256a052. Bank, S.; Sturges, J. S.; Heyer, D.; Bushweller, C. H. Stabilization of Carbanions by Silicon. Restricted Aryl Rotation in the 4-Methyl-4'-Trimethylsilyldiphenylmethyl Anion. J. Am. Chem. Soc. 1980, 102 (11), 3982-3984. https://doi.org/10.1021/ja00531a067. Brown, C. A.; Hubbard, J. L. 1-(Trimethylsily)Benzene Oxides: Synthesis, Aromatization, and Reactions of Carbanions from Desilylation. J. Org. Chem. 1979, 44 (3), 468-470. https://doi.org/https://doi.org/10.1021/jo01317a043. Zhang, F.; Bai, Y.; Yang, X.; Li, J.; Peng, J. N-Heterocyclic Carbene Platinum Complexes Functionalized with a Polyether Chain and Silyl Group: Synthesis and Application as a Catalyst for Hydrosilylation. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192 (12), 1271-1278. https://doi.org/10.1080/10426507.2017.1321647. Malunavar, S. S.; Sutar, S. M.; Prabhala, P.; Savanur, H. M.; Kalkhambkar, R. G.; Aridoss, G.; Laali, K. K. Facile Synthesis of Libraries of Functionalized Cyclopropanes and Oxiranes Using Ionic Liquids - A New Approach to the Classical Corey-Chaykovsky Reaction. Tetrahedron Lett. 2021, 81, 153339. https://doi.org/10.1016/j.tetlet.2021.153339. Wang, Z. Corey-Chaykovsky Epoxidation. In Comprehensive Organic Name Reactions and Reagents; 2010; pp 713-716. https://doi.org/10.1002/9780470638859.conrr156. Oost, R.; Neuhaus, J. D.; Merad, J.; Maulide, N. Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis. In Modern Ylide Chemistry. Structure and Bonding, vol 177; Gessner V., Ed.; Springer, Cham., 2017; pp 73-115. https://doi.org/10.1007/430_2017_14. Mondal, M.; Chen, S.; Kerrigan, N. J. Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. Molecules 2018, 23 (4), 1-29. https://doi.org/10.3390/molecules23040738. Kavanagh, S. A.; Piccinini, A.; Fleming, E. M.; Connon, S. J. Urea Derivatives Are Highly Active Catalysts for the Base-Mediated Generation of Terminal Epoxides from Aldehydes and Trimethylsulfonium Iodide. Org. Biomol. Chem. 2008, 6 (8), 1339-1343. https://doi.org/10.1039/b719767e. Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Experimental Investigation into the Mechanism of the Epoxidation of Aldehydes with Sulfur Ylides. Org. Lett. 2007, 9 (26), 5481-5484. https://doi.org/10.1021/ol702300d. Volatron, F; Eisenstein, O. Wittig vs. Corey-Chaykovsky Reaction. A Theoretical Study of the Reactivity of Phosphonium Methylide and Sulfonium Methylide with Formaldehyde. J. Am. Chem. Soc. 1987, 109 (1), 1-14. https://doi.org/10.1109/jaiee.1924.6537213. Yoshinaga, H.; Masumoto, S.; Koyama, K.; Kinomura, N.; Matsumoto, Y.; Kato, T.; Baba, S.; Matsumoto, K.; Horisawa, T.; Oki, H.; Yabuuchi, K.; Kodo, T. Discovery of SMP-304, a Novel Benzylpiperidine Derivative with Serotonin Transporter Inhibitory Activity and 5-HT1Aweak Partial Agonistic Activity Showing the Antidepressant-like Effect. Bioorganic Med. Chem. 2017, 25 (1), 293-304. https://doi.org/10.1016/j.bmc.2016.10.034. Bentley, T. W.; Jones, R. V. H.; Larder, H.; Lock, S. J. Solvents as Phase Transfer Catalysts . Reaction of Trimethylsulfonium Iodide and Solid Potassium Hydroxide in Acetonitrile Leading to an Epoxide of Benzophenone. J. Chem. Soc., Perkin Trans 1998, 2, 1407-1411. Shi, M.; Shen, Y. M. The Reactions of DMSO with Arylaldehydes in the Presence of Sodium Hydride. J. Chem. Res. - Part S 2002, No. 9, 422-427. https://doi.org/10.3184/030823402103172734. Peng, Y.; Yang, J. H.; Li, W. D. Z. Revisiting the Corey-Chaykovsky Reaction: The Solvent Effect and the Formation of [beta]-Hydroxy Methylthioethers. Tetrahedron 2006, 62 (6), 1209-1215. https://doi.org/10.1016/j.tet.2005.10.068. Baig, R. B. N.; Varma, R. S. Alternative Energy Input: Mechanochemical, Microwave and Ultrasound-Assisted Organic Synthesis. Chem. Soc. Rev. 2012, 41 (4), 1559-1584. https://doi.org/10.1039/c1cs15204a. Larhed, M.; Moberg, C.; Hallberg, A. Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry. Acc. Chem. Res. 2002, 35 (9), 717-727. https://doi.org/10.1021/ar010074v. Yu, H.; Deng, X.; Cao, S.; Xu, J. Practical Corey-Chaykovsky Epoxidation: Scope and Limitation. Lett. Org. Chem. 2011, 8 (7), 509-514. https://doi.org/10.2174/157017811796504954. Byrne, P. A. Introduction to the Wittig Reaction and Discussion of the Mechanism. In Investigation of Reactions Involving Pentacoordinate Intermediates: The Mechanism of the Wittig Reaction; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 1-56. https://doi.org/10.1007/978-3-642-32045-3_1. Byrne, P. A.; Gilheany, D. G. The Modern Interpretation of the Wittig Reaction Mechanism. Chem. Soc. Rev. 2013, 42 (16), 6670-6696. https://doi.org/10.1039/c3cs60105f. Kim, C.; Traylor, T. G.; Perrin, C. L. MCPBA Epoxidation of Alkenes: Reinvestigation of Correlation between Rate and Ionization Potential. J. Am. Chem. Soc. 1998, 120 (37), 9513-9516. https://doi.org/10.1021/ja981531e. Hussain, H.; Al-Harrasi, A.; Green, I. R.; Ahmed, I.; Abbas, G.; Rehman, N. U. Meta-Chloroperbenzoic Acid (MCPBA): A Versatile Reagent in Organic Synthesis. RSC Adv. 2014, 4 (25), 12882-12917. https://doi.org/10.1039/c3ra45702h. Shul'pin, G. B.; Loginov, D. A.; Shul'pina, L. S.; Ikonnikov, N. S.; Idrisov, V. O.; Vinogradov, M. M.; Osipov, S. N.; Nelyubina, Y. V.; Tyubaeva, P. M. Stereoselective Alkane Oxidation with Meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. Molecules 2016, 21 (11), 1-17. https://doi.org/10.3390/molecules21111593. Chen, L.; Zhao, B.; Fan, Z.; Liu, X.; Wu, Q.; Li, H.; Wang, H. Synthesis of Novel 3,4-Chloroisothiazole-Based Imidazoles as Fungicides and Evaluation of Their Mode of Action. J. Agric. Food Chem. 2018, 66 (28), 7319-7327. https://doi.org/10.1021/acs.jafc.8b02332. Ramkumar, N.; Nagarajan, R. A New Route to the Synthesis of Ellipticine Quinone from Isatin. Tetrahedron Lett. 2014, 55 (5), 1104-1106. https://doi.org/10.1016/j.tetlet.2013.12.098. Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Three-Membered Ring Heterocycles. In The Chemistry of Heterocycles; Elservier Ltd., 2019; pp 19-92. https://doi.org/10.1016/b978-0-08-101033-4.00003-6. Eicher, T.; Hauptmann, S.; Speicher, A. Three-Membered Heterocycles. In The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications; 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2003; pp 17-37. https://doi.org/10.1007/978-3-642-72276-9_6. He, F.; Wu, H.; Chen, J.; Su, W. Unexpectedly High Activity of Zn(OTf)2·6H2O in Catalytic Friedel-Crafts Acylation Reaction. Synth. Commun. 2008, 38 (2), 255-264. https://doi.org/10.1080/00397910701750292. Wu, X. T.; Xiao, E. K.; Ma, F.; Yin, J.; Wang, J.; Chen, P.; Jiang, Y. J. Substrate-Controlled Regiodivergent Synthesis of Fluoroacylated Carbazoles via Friedel-Crafts Acylation. J. Org. Chem. 2021, 86 (9), 6734-6743. https://doi.org/10.1021/acs.joc.1c00473. Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel - Crafts Acylation Reactions. Chem. Rev. 2011, 111 (3), PR181-PR214. https://doi.org/10.1021/cr040695c. Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angew. Chemie - Int. Ed. 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150. Banerjee, B. Recent Developments on Ultrasound Assisted Catalyst-Free Organic Synthesis. Ultrason. Sonochem. 2017, 35, 1-14. https://doi.org/10.1016/j.ultsonch.2016.09.023. Tong, J.; Zhan, Y.; Li, J.; Liu, P.; Sun, P. One-Pot Synthesis of C3-Alkylated Imidazopyridines from [alfa]-Bromocarbonyls under Photoredox Conditions. European J. Org. Chem. 2021, 2021 (32), 4541-4545. https://doi.org/10.1002/ejoc.202100922. Huang, X.; Zhang, T. Multicomponent Reactions of Pyridines, [alfa]-Bromo Carbonyl Compounds and Silylaryl Triflates as Aryne Precursors: A Facile One-Pot Synthesis of Pyrido[2,1-a]Isoindoles. Tetrahedron Lett. 2009, 50 (2), 208-211. https://doi.org/10.1016/j.tetlet.2008.10.118. Kong, M.; Zhou, X.; Chen, Q.; Zhang, F.; Zhao, Y. Efficient Synthesis of Novel Indolizine C-Nucleoside Analogues via Coupling of Sugar Alkynes, Pyridines and [alfa]-Bromo Carbonyl Compounds in One Pot. Carbohydr. Res. 2021, 505 (March), 108337. https://doi.org/10.1016/j.carres.2021.108337. Saikia, I.; Borah, A. J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116 (12), 6837-7042. https://doi.org/10.1021/acs.chemrev.5b00400. Vekariya, R. H.; Patel, H. D. Synthesis of [alfa]-Bromocarbonyl Compounds: Recent Advances. Tetrahedron 2014, 70 (26), 3949-3961. https://doi.org/10.1016/j.tet.2014.04.027. Choi, T.; Ma, E. Simple and Regioselective Bromination of 5,6-Disubstituted-Indan-1-Ones with Br2 under Acidic and Basic Conditions. Molecules 2007, 12 (1), 74-85. https://doi.org/10.3390/12010074. Hoffman, R. V; Weiner, W. S.; Maslouh, N. Highly Stereoselective Synthesis of Anti -N-Protected- r -Amino Epoxides. J. Org. Chem. 2001, 66, 5790-5795. Khan, A. T.; Ali, M. A.; Goswami, P.; Choudhury, L. H. A Mild and Regioselective Method for [alfa]-Bromination of [neto]-Keto Esters and 1,3-Diketones Using Bromodimethylsulfonium Bromide (BDMS). J. Org. Chem. 2006, 71 (23), 8961-8963. https://doi.org/10.1021/jo061501r. Kim, M.; Jung, Y.; Kim, I. Domino Knoevenagel Condensation/Intramolecular Aldol Cyclization Route to Diverse Indolizines with Densely Functionalized Pyridine Units. J. Org. Chem. 2013, 78 (20), 10395-10404. https://doi.org/10.1021/jo401801j. Martínez González, S.; Hernández, A. I.; Álvarez, R. M.; Rodríguez, A.; Ramos-Lima, F.; Bischoff, J. R.; Albarrán, M. I.; Cebriá, A.; Hernández-Encinas, E.; García-Arocha, J.; Cebrián, D.; Blanco-Aparicio, C.; Pastor, J. Identification of Novel PI3K Inhibitors through a Scaffold Hopping Strategy. Bioorganic Med. Chem. Lett. 2017, 27 (21), 4794-4799. https://doi.org/10.1016/j.bmcl.2017.09.059. Gerstenberger, B. S.; Ambler, C.; Arnold, E. P.; Banker, M. E.; Brown, M. F.; Clark, J. D.; Dermenci, A.; Dowty, M. E.; Fensome, A.; Fish, S.; Hayward, M. M.; Hegen, M.; Hollingshead, B. D.; Knafels, J. D.; Lin, D. W.; Lin, T. H.; Owen, D. R.; Saiah, E.; Sharma, R.; Vajdos, F. F.; Xing, L.; Yang, X.; Yang, X.; Wright, S. W. Discovery of Tyrosine Kinase 2 (TYK2) Inhibitor (PF-06826647) for the Treatment of Autoimmune Diseases. J. Med. Chem. 2020, 63 (22), 13561-13577. https://doi.org/10.1021/acs.jmedchem.0c00948. Xuan, Q.; Kong, W.; Song, Q. Copper(I)-Catalyzed Chemoselective Reduction of Benzofuran-2-Yl Ketones to Alcohols with B2pin2 via a Domino-Borylation-Protodeboronation Strategy. J. Org. Chem. 2017, 82 (14), 7602-7607. https://doi.org/10.1021/acs.joc.7b00596. Mao, Z.; Gu, H.; Lin, X. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts 2021, 11, 1078. https://doi.org/https://doi.org/10.3390/catal11091078. Dolusic, E.; Larrieu, P.; Blanc, S.; Sapunaric, F.; Norberg, B.; Moineaux, L.; Colette, D.; Stroobant, V.; Pilotte, L.; Colau, D.; Ferain, T.; Fraser, G.; Galeni, M.; Frre, J. M.; Masereel, B.; Van Den Eynde, B.; Wouters, J.; Frédérick, R. Indol-2-Yl Ethanones as Novel Indoleamine 2,3-Dioxygenase (IDO) Inhibitors. Bioorganic Med. Chem. 2011, 19 (4), 1550-1561. https://doi.org/10.1016/j.bmc.2010.12.032. Luo, G.; Chen, L.; Civiello, R.; Pin, S. S.; Xu, C.; Kostich, W.; Kelley, M.; Conway, C. M.; MacOr, J. E.; Dubowchik, G. M. Calcitonin Gene-Related Peptide (CGRP) Receptor Antagonists: Pyridine as a Replacement for a Core Amide Group. Bioorganic Med. Chem. Lett. 2012, 22 (8), 2917-2921. https://doi.org/10.1016/j.bmcl.2012.02.065. Wang, P.; Zhao, J. Z.; Li, H. F.; Liang, X. M.; Zhang, Y. L.; Da, C. S. Acid-Catalyzed Highly Diastereoselective and Effective Synthesis of 1,3-Disubstituted Tetrahydropyrano[3,4-b]Indoles. Tetrahedron Lett. 2017, 58 (2), 129-133. https://doi.org/10.1016/j.tetlet.2016.11.110. Li, Y. Y.; Yu, S. L.; Shen, W. Y.; Gao, J. X. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Acc. Chem. Res. 2015, 48 (9), 2587-2598. https://doi.org/10.1021/acs.accounts.5b00043. Wan, K. Y.; Sung, M. M. H.; Lough, A. J.; Morris, R. H. Half-Sandwich Ruthenium Catalyst Bearing an Enantiopure Primary Amine Tethered to an N-Heterocyclic Carbene for Ketone Hydrogenation. ACS Catal. 2017, 7 (10), 6827-6842. https://doi.org/10.1021/acscatal.7b02346. Kolcsár, V. J.; Fülöp, F.; Szollosi, G. Ruthenium(II)-Chitosan, an Enantioselective Catalyst for the Transfer Hydrogenation of N-Heterocyclic Ketones. ChemCatChem 2019, 11 (11), 2725-2731. https://doi.org/10.1002/cctc.201900363. Li, Y.; Yu, S.; Wu, X.; Xiao, J.; Shen, W.; Dong, Z.; Gao, J. Iron Catalyzed Asymmetric Hydrogenation of Ketones. J. Am. Chem. Soc. 2014, 136 (10), 4031-4039. https://doi.org/10.1021/ja5003636. Yigit, B.; Isik, Y.; Barut Celepci, D.; Evren, E.; Yigit, M.; Gürbüz, N.; Özdemir, I. Ruthenium(II) Complexes Bearing N-Heterocyclic Carbene Ligands with Wingtip Groups and Their Catalytic Activity in the Transfer Hydrogenation of Ketones. Inorganica Chim. Acta 2020, 499, 119199. https://doi.org/10.1016/j.ica.2019.119199. Zhou, J.; Xu, G.; Ni, Y. Stereochemistry in Asymmetric Reduction of Bulky-Bulky Ketones by Alcohol Dehydrogenases. ACS Catal. 2020, 10 (19), 10954-10966. https://doi.org/10.1021/acscatal.0c02646. Koesoema, A. A.; Standley, D. M.; Senda, T.; Matsuda, T. Impact and Relevance of Alcohol Dehydrogenase Enantioselectivities on Biotechnological Applications. Appl. Microbiol. Biotechnol. 2020, 104 (7), 2897-2909. https://doi.org/10.1007/s00253-020-10440-2. Sun, Z.; Lonsdale, R.; Ilie, A.; Li, G.; Zhou, J.; Reetz, M. T. Catalytic Asymmetric Reduction of Difficult-to-Reduce Ketones: Triple-Code Saturation Mutagenesis of an Alcohol Dehydrogenase. ACS Catal. 2016, 6 (3), 1598-1605. https://doi.org/10.1021/acscatal.5b02752. Jagadale, S.; Chavan, A.; Shinde, A.; Sisode, V.; Bobade, V. D.; Mhaske, P. C. Synthesis and Antimicrobial Evaluation of New Thiazolyl-1,2,3-Triazolyl-Alcohol Derivatives. Med. Chem. Res. 2020, 29 (6), 989-999. https://doi.org/10.1007/s00044-020-02540-5. Jagadale, S.; Bhoye, M.; Nandurkar, Y.; Bobade, V. D.; Mhaske, P. C. Synthesis, Characterization and Antimicrobial Screening of New Pyrazolyl-1,2,3-Triazolyl-Thiazolyl-Ethanol Derivatives. Phosphorus, Sulfur Silicon Relat. Elem. 2020, 196 (5), 513-520. https://doi.org/10.1080/10426507.2020.1860984. De Amici, M.; Conti, P.; Dallanoce, C.; Kassi, L.; Castellano, S.; Stefancich, G.; De Micheli, C. Synthesis and Pharmacological Characterization of New Analogs of Broxaterol. Med. Chem. Res. 2000, 10 (2), 69-80. Pemán, J.; Martín-Mazuelos, E.; Rubio Calvo, M. C. Métodos Estandarizados Por El CLSI Para El Estudio de La Sensibilidad a Los Antifúngicos. Rev. Iberoam. Micol. 2010, 15, 1-24. Nozue, S.; Habuchi, S.; Piwon, H. The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS Nanosci. Au 2022. https://doi.org/10.1021/acsnanoscienceau.1c00038. Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal. Chem. 2018, 90 (1), 533-555. https://doi.org/10.1021/acs.analchem.7b04234. Kim, H. M.; Cho, B. R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115 (11), 5014-5055. https://doi.org/10.1021/cr5004425. Purohit, V. B.; Karad, S. C.; Patel, K. H.; Raval, D. K. Palladium N-Heterocyclic Carbene Catalyzed Regioselective C-H Halogenation of 1-Aryl-3-Methyl-1H-Pyrazol-5(4H)-Ones Using N-Halosuccinimides (NXS). Catal. Sci. Technol. 2015, 5 (6), 3113-3118. https://doi.org/10.1039/c5cy00137d. Krau, J.; Unterreitmeier, D. Preparation and Antibacterial Activity of 3-Methyl-1-p-Substituted Phenylpyrazole-5-Thiol. Arch. Pharm. (Weinheim). 2002, 335 (2-3), 99-103. https://doi.org/10.1002/1521-4184(200203)335:2/3<99::AID-ARDP99>3.0.CO;2-2. Rassu, G.; Zambrano, V.; Pinna, L.; Curti, C.; Battistini, L.; Sartori, A.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Direct and Enantioselective Vinylogous Michael Addition of [alfa]-Alkylidenepyrazolinones to Nitroolefins Catalyzed by Dual Cinchona Alkaloid Thioureas. Adv. Synth. Catal. 2014, 356 (10), 2330-2336. https://doi.org/10.1002/adsc.201300964. Nayak, M.; Batchu, H.; Batra, S. Straightforward Copper-Catalyzed Synthesis of Pyrrolopyrazoles from Halogenated Pyrazolecarbaldehydes. Tetrahedron Lett. 2012, 53 (32), 4206-4208. https://doi.org/10.1016/j.tetlet.2012.05.148. Palka, B.; Di Capua, A.; Anzini, M.; Vilkauskaité, G.; Sackus, A.; Holzer, W. Synthesis of Trifluoromethyl-Substituted Pyrazolo[4,3-c]Pyridines - Sequential versus Multicomponent Reaction Approach. Beilstein J. Org. Chem. 2014, 10, 1759-1764. https://doi.org/10.3762/bjoc.10.183. Tang, Q.; Zhao, Y.; Du, X.; Chong, L.; Gong, P.; Guo, C. Design, Synthesis, and Structure-Activity Relationships of Novel 6,7-Disubstituted-4-Phenoxyquinoline Derivatives as Potential Antitumor Agents. Eur. J. Med. Chem. 2013, 69, 77-89. https://doi.org/10.1016/j.ejmech.2013.08.019. Mokhtar, M.; Saleh, T. S.; Basahel, S. N. Mg-Al Hydrotalcites as Efficient Catalysts for Aza-Michael Addition Reaction: A Green Protocol. J. Mol. Catal. A Chem. 2012, 353-354, 122-131. https://doi.org/10.1016/j.molcata.2011.11.015. |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
136 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Ciencias - Química |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Química |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/d1458170-39c6-4b27-81e4-6188b4eaa1b6/download https://repositorio.uniandes.edu.co/bitstreams/f401879c-a3b0-463e-b84f-49b529a54753/download https://repositorio.uniandes.edu.co/bitstreams/13001798-6b58-4b1c-8726-508c39557acd/download https://repositorio.uniandes.edu.co/bitstreams/42ba3741-9fd7-4d1e-9bbd-322e8ae251b4/download https://repositorio.uniandes.edu.co/bitstreams/150c94b7-2a8f-4ee2-9e0f-1ae841a76b67/download https://repositorio.uniandes.edu.co/bitstreams/76cb695a-7738-4728-adce-9ed84fe710f6/download https://repositorio.uniandes.edu.co/bitstreams/ff7fb8ca-7072-4a09-a65f-913b1996e51a/download |
bitstream.checksum.fl_str_mv |
615b23637daf70e68a32b509470d1f45 6ea5c250905a4605e6ec7d2703d9567e e3c5690868284442812b96a5f4562e31 4491fe1afb58beaaef41a73cf7ff2e27 5aa5c691a1ffe97abd12c2966efcb8d6 5b07d12845f8fdf97391f2b314fb8d6e f7de01cf5ab73c77fd4d0a3583a673ed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111968017383424 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Portilla Salinas, Jaime Antoniovirtual::20928-1Aranzazu Giraldo, Sandra Lorenaf3b4fecb-6420-4cad-b11a-05673397f322600Gamba Sánchez, Diego AlexanderAltarejos Caballero, JoaquínCuervo Prado, Paola AndreaGrupo de Investigación en Compuestos Biorgánicos (GICOBIORG)2022-08-23T13:58:15Z2022-08-23T13:58:15Z2022-05-25http://hdl.handle.net/1992/6002110.57784/1992/60021instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este documento se presentan los resultados del trabajo de investigación de Doctorado en Ciencias-Química titulado "4-formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentes", desarrollado en el Grupo de Investigación de Compuestos Biorgánicos (GICOBIORG) de la Universidad de Los Andes, bajo la dirección del Dr. Jaime Antonio Portilla Salinas. Adicionalmente, se lograron hacer estudios de actividad antifúngica en el Grupo de Investigación Celular y Molecular de Microorganismos Patógenos de la Universidad de los Andes que dirige la Dra. Adriana Marcela Celis Ramírez. Los capítulos que conforman este manuscrito son siete. El primero, la conceptualización y los antecedentes generales y del grupo de investigación; el segundo, el planteamiento del problema que fue la principal motivación para llevar a cabo la investigación; el tercero, los objetivos; el cuarto, los resultados y discusión de la síntesis, actividad antifúngica y estudios fotofísicos; el quinto, conclusiones; el sexto; perspectivas; el séptimo la sección experimental; y por último la bibliografía.El Ministerio de Ciencias Tecnología e Innovación (Minciencias) mediante la convocatoria 727 de 2015Doctor en Ciencias - QuímicaDoctoradoSíntesis orgánica, Fotofísica y actividad antifúngica136 páginasapplication/pdfspaUniversidad de los AndesDoctorado en Ciencias - QuímicaFacultad de CienciasDepartamento de Química4-Formilpirazoles y 3-formilpirazolo[1,5-a]pirimidinas como precursores de potenciales agentes antifúngicos fluorescentesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDPirazolesPirazolo[1,5-a]pirimidinasAntifúngicosQuímicaEicher, T.; Hauptmann, S.; Speicher, A. Pyrazole. In The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications; 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2003; pp 179-184.Joule, J. A. ; Mills, K. 1,2 - Azoles: Pyrazoles, Isothiazoles, Isoxazoles: Reactions and Synthesis. In Heterocyclic Chemistry; 5th ed.; John Wiley & Sons Ltd, 2010; pp 485-501.Castillo, J. C.; Portilla, J. Recent Advances in the Synthesis of New Pyrazole Derivatives. Targets Heterocycl. Syst. 2018, 22 (18), 194-223. https://doi.org/10.17374/targets.2019.22.194.Ortiz, M.-C.; Portilla, J. Access to Five-Membered N-Heteroaromatic Compounds: Current Appoach Based on Microwave-Assisted Synthesis. Targets Heterocycl. Syst. 2021, 25, 436-462. https://doi.org/10.17374/targets.2022.25.436.Devi, N.; Shankar, R.; Singh, V. 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-Fused/Substituted Frameworks. J. Heterocycl. Chem. 2018, 55 (2), 373-390. https://doi.org/10.1002/jhet.3045.Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance. Eur. J. Med. Chem. 2013, 69, 735-753. https://doi.org/10.1016/j.ejmech.2013.08.053.Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. Chem. Rev. 2011, 111 (11), 6984-7034. https://doi.org/10.1021/cr2000459.Brown, A. W. Recent Developments in the Chemistry of Pyrazoles. In Advances in Heterocyclic Chemistry; 1rst. Edition; Elsevier Inc., 2018; Vol. 126, pp 55-107. https://doi.org/10.1016/bs.aihch.2018.02.001.Xiao, J. J.; Liao, M.; Chu, M. J.; Ren, Z. L.; Zhang, X.; Lv, X. H.; Cao, H. Q. Design, Synthesis and Anti-Tobacco Mosaic Virus (TMV) Activity of 5-Chloro-n-(4-Cyano-1-Aryl-1H-Pyrazol-5-Yl)-1-Aryl-3-Methyl-1H-Pyrazole-4-Carboxamide Derivatives. Molecules 2015, 20 (1), 807-821. https://doi.org/10.3390/molecules20010807.Lv, X. H.; Ren, Z. L.; Li, D. D.; Ruan, B. F.; Li, Q. S.; Chu, M. J.; Ai, C. Y.; Liu, D. H.; Mo, K.; Cao, H. Q. Discovery of Novel Double Pyrazole Schiff Base Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents. Chinese Chem. Lett. 2017, 28 (2), 377-382. https://doi.org/10.1016/j.cclet.2016.10.029.Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23 (1), 1-86. https://doi.org/10.3390/molecules23010134.Matos, I.; Pérez-Mayoral, E.; Soriano, E.; Zukal, A.; Martín-Aranda, R. M.; López-Peinado, A. J.; Fonseca, I.; Cejka, J. Experimental and Theoretical Study of Pyrazole N-Alkylation Catalyzed by Basic Modified Molecular Sieves. Chem. Eng. J. 2010, 161 (3), 377-383. https://doi.org/10.1016/j.cej.2009.09.040.Gonda, Z.; Novák, Z. Transition-Metal-Free N-Arylation of Pyrazoles with Diaryliodonium Salts. Chem. - A Eur. J. 2015, 21 (47), 16801-16806. https://doi.org/10.1002/chem.201502995.Zhao, J.; Li, P.; Xia, C.; Lei, A. Direct YN-Acylation of Azoles via a Metal-Free Catalyzed Oxidative Cross-Coupling Strategy. Chem. Commun. 2014, 50 (36), 4751-4754. https://doi.org/10.1039/c4cc01587h.Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Comparative Study of Various Pyrazole-Based Anions: A Promising Family of Ionic Derivatives as Insensitive Energetic Materials. Chem. - An Asian J. 2017, 12 (3), 378-384. https://doi.org/10.1002/asia.201601615.Orrego-Hernández, J.; Cobo, J.; Portilla, J. Chemoselective Synthesis of 5-Alkylamino-1H-Pyrazole-4-Carbaldehydes by Cesium- and Copper-Mediated Amination. European J. Org. Chem. 2015, 23, 5064-5069. https://doi.org/10.1002/ejoc.201500505.Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of Pyrazole Derivatives Possessing Anticancer Activity: Current Status. Synth. Commun. 2014, 44 (11), 1521-1578. https://doi.org/10.1080/00397911.2013.828757.Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)Pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. J. Org. Chem. 2017, 82 (24), 13376-13385. https://doi.org/10.1021/acs.joc.7b02460.Orrego-Hernández, J.; Cobo, J.; Portilla, J. Synthesis, Photophysical Properties, and Metal-Ion Recognition Studies of Fluoroionophores Based on 1-(2-Pyridyl)-4-Styrylpyrazoles. ACS Omega 2019, 4 (15), 16689-16700. https://doi.org/10.1021/acsomega.9b02796.Ghosh, K.; Nayek, N.; Das, S.; Biswas, N.; Sinha, S. Design and Synthesis of Ferrocene-Tethered Pyrazolines and Pyrazoles: Photophysical Studies, Protein-Binding Behavior with Bovine Serum Albumin, and Antiproliferative Activity against MDA-MB-231 Triple Negative Breast Cancer Cells. Appl. Organomet. Chem. 2021, 35 (7), 1-10. https://doi.org/10.1002/aoc.6248.Tigreros, A.; Portilla, J. Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Curr. Chinese Sci. 2021, 1 (2), 197-206. https://doi.org/10.2174/2210298101999201208211116.Li, M.; Liu, C. L.; Yang, J. I. C.; Zhang, J. B. O.; Li, Z. N.; Zhang, H.; Li, Z. M. Synthesis and Biological Activity of New (E)-[alfa]-(Methoxyimino) Benzeneacetate Derivatives Containing a Substituted Pyrazole Ring. J. Agric. Food Chem. 2010, 58 (5), 2664-2667. https://doi.org/10.1021/jf9026348.Ouyang, G.; Cai, X. J.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y.; Zeng, S. Synthesis and Antiviral Activities of Pyrazole Derivatives Containing an Oxime Moiety. J. Agric. Food Chem. 2008, 56 (21), 10160-10167. https://doi.org/10.1021/jf802489e.Lv, X. H.; Xiao, J. J.; Ren, Z. L.; Chu, M. J.; Wang, P.; Meng, X. F.; Li, D. D.; Cao, H. Q. Design, Synthesis and Insecticidal Activities of N-(4-Cyano-1-Phenyl-1H-Pyrazol-5-Yl)-1,3-Diphenyl-1H-Pyrazole-4-Carboxamide Derivatives. RSC Adv. 2015, 5, 55179-55185. https://doi.org/10.1039/c5ra09286h.Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16-41. https://doi.org/10.1039/c6nj03181a.Restrepo-Acevedo, A.; Osorio, N.; Giraldo-López, L. E.; D'Vries, R. F.; Zacchino, S.; Abonia, R.; Le Lagadec, R.; Cuenú-Cabezas, F. Synthesis and Antifungal Activity of Nitrophenyl-Pyrazole Substituted Schiff Bases. J. Mol. Struct. 2022, 1253, 132289. https://doi.org/10.1016/j.molstruc.2021.132289.Nidhar, M.; Khanam, S.; Sonker, P.; Gupta, P. Bioorganic Chemistry Click Inspired Novel Pyrazole-Triazole-Persulfonimide & Pyrazole-Triazole-Aryl Derivatives ; Design , Synthesis , DPP-4 Inhibitor with Potential Anti-Diabetic Agents. Bioorg. Chem. 2022, 120, 105586. https://doi.org/10.1016/j.bioorg.2021.105586.Khan, M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The Therapeutic Voyage of Pyrazole and Its Analogs: A Review. Eur. J. Med. Chem. 2016, 120, 170-201. https://doi.org/10.1016/j.ejmech.2016.04.077.Küçükgüzel, G.; Senkardes, S. Recent Advances in Bioactive Pyrazoles. Eur. J. Med. Chem. 2015, 97, 786-815. https://doi.org/10.1016/j.ejmech.2014.11.059.Faria, J. V.; Vegi, P. F.; Miguita, A. G. C.; dos Santos, M. S.; Boechat, N.; Bernardino, A. M. R. Recently Reported Biological Activities of Pyrazole Compounds. Bioorganic Med. Chem. 2017, 25 (21), 5891-5903. https://doi.org/10.1016/j.bmc.2017.09.035.Doddaramappa, S. D.; Lokanatha Rai, K. M.; Srikantamurthy, N.; Chandra; Chethan, J. Novel 5-Functionalized-Pyrazoles: Synthesis, Characterization and Pharmacological Screening. Bioorganic Med. Chem. Lett. 2015, 25 (17), 3671-3675. https://doi.org/10.1016/j.bmcl.2015.06.050.Bhavanarushi, S.; Luo, Z. Bin; Bharath, G.; Rani, J. V.; Khan, I.; Xu, Y.; Liu, B.; Xie, J. F(1H-Pyrazol-4-Yl)Methylene-Hydrazide Derivatives: Synthesis and Antimicrobial Activity. J. Heterocycl. Chem. 2020, 57 (2), 751-760. https://doi.org/10.1002/jhet.3816.Jadhav, S. B.; Fatema, S.; Sanap, G.; Farooqui, M. Antitubercular Activity and Synergistic Study of Novel Pyrazole Derivatives. J. Heterocycl. Chem. 2018, 55 (7), 1634-1644. https://doi.org/10.1002/jhet.3198.Silva, V. L. M.; Elguero, J.; Silva, A. M. S. Current Progress on Antioxidants Incorporating the Pyrazole Core. Eur. J. Med. Chem. 2018, 156, 394-429. https://doi.org/10.1016/j.ejmech.2018.07.007.He, L. L.; Qi, Q.; Wang, X.; Li, Y.; Zhu, Y.; Wang, X. F.; Xu, L. Synthesis of Two Novel Pyrazolo[1,5-a]Pyrimidine Compounds with Antibacterial Activity and Biophysical Insights into Their Interactions with Plasma Protein. Bioorg. Chem. 2020, 99, 1-10. https://doi.org/10.1016/j.bioorg.2020.103833.Frizzo, C. P.; Scapin, E.; Campos, P. T.; Moreira, D. N.; Martins, M. A. P. Molecular Structure of Pyrazolo[1,5-a]Pyrimidines: X-Ray Diffractometry and Theoretical Study. J. Mol. Struct. 2009, 933 (1-3), 142-147. https://doi.org/10.1016/j.molstruc.2009.06.010.Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine-Triphenylamine Systems. Dye. Pigment. 2021, 184, 108730. https://doi.org/10.1016/j.dyepig.2020.108730.Portilla, J.; Quiroga, J.; Cobo, J.; Low, J. N.; Glidewell, C. 7-Amino-2-Tert-Butyl-5-Methylpyrazolo[1,5-a]Pyrimidine: A Three-Dimensional Framework Structure Built from Two N - H...N Hydrogen Bonds. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007, 63 (1), 26-28. https://doi.org/10.1107/S0108270106044817.Salem, M. A.; Helal, M. H.; Gouda, M. A.; Abd EL-Gawad, H. H.; Shehab, M. A. M.; El-Khalafawy, A. Recent Synthetic Methodologies for Pyrazolo[1,5-a]Pyrimidine. Synth. Commun. 2019, 49 (14), 1750-1776. https://doi.org/10.1080/00397911.2019.1604967.Portilla, J.; Quiroga, J.; Nogueras, M.; Cobo, J. Regioselective Synthesis of Fused Pyrazolo[1,5-a]Pyrimidines by Reaction of 5-Amino-1H-Pyrazoles and [beta]-Dicarbonyl Compounds Containing Five-Membered Rings. Tetrahedron 2012, 68 (4), 988-994. https://doi.org/10.1016/j.tet.2011.12.001.Al-Azmi, A. Pyrazolo[1,5-a]Pyrimidines: A Close Look into Their Synthesis and Applications. Curr. Org. Chem. 2019, 23 (6), 721-743. https://doi.org/10.2174/1385272823666190410145238.Arias-Gómez, A.; Godoy, A.; Portilla, J. Functional Pyrazolo[1,5-a]Pyrimidines: Current Approaches in Synthetic Transformations and Uses As an Antitumor Scaffold. Molecules 2021, 26 (9), 2708. https://doi.org/10.3390/molecules26092708.Gregg, B. T.; Tymoshenko, D. O.; Razzano, D. A.; Johnson, M. R. Pyrazolo[1,5-a]Pyrimidines. Identification of the Privileged Structure and Combinatorial Synthesis of 3-(Hetero)Arylpyrazolo[1,5-a]Pyrimidine-6- Carboxamides. J. Comb. Chem. 2007, 9 (3), 507-512. https://doi.org/10.1021/cc0700039.Saikia, P.; Gogoi, S.; Boruah, R. C. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]Pyrimidines. J. Org. Chem. 2015, 80 (13), 6885-6889. https://doi.org/10.1021/acs.joc.5b00933.Ma, Y.; Chen, Y.; Lv, L.; Li, Z. Regioselective Synthesis of Emission Color-Tunable Pyrazolo[1,5-a]Pyrimidines with [beta],[berta]-Difluoro Peroxides as 1,3-Bis-Electrophiles. Adv. Synth. Catal. 2021, 363 (13), 3233-3239. https://doi.org/10.1002/adsc.202100298.Castillo, J. C.; Rosero, H. A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5-a] Pyrimidines through a One-Pot Sequence. RSC Adv. 2017, 7 (45), 28483-28488. https://doi.org/10.1039/c7ra04336h.Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem. 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571.Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a ]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain. Chem. Eng. 2021, 9 (36), 12058-12069. https://doi.org/10.1021/acssuschemeng.1c01689.Elnagdi, M. H.; Elmoghayar, M. R. H.; Elgemeie, G. E. H. Chemistry of Pyrazolopyrimidines. Adv. Heterocycl. Chem. 1987, 41 (C), 319-376. https://doi.org/10.1016/S0065-2725(08)60164-6.Weiss, M; Xheng, X. Irak Degraders and Uses Thereof. WO2021158634A1, 2021.Tsai, P. C.; Wang, I. J. Synthesis and Solvatochromic Properties of 3,6-Bis-Hetarylazo Dyes Derived from Pyrazolo[1,5-a]Pyrimidine. Dye. Pigment. 2008, 76 (3), 575-581. https://doi.org/10.1016/j.dyepig.2007.01.005.Golubev, P.; Karpova, E. A.; Pankova, A. S.; Sorokina, M.; Kuznetsov, M. A. Regioselective Synthesis of 7-(Trimethylsilylethynyl)Pyrazolo[1,5-a]Pyrimidines via Reaction of Pyrazolamines with Enynones. J. Org. Chem. 2016, 81 (22), 11268-11275. https://doi.org/10.1021/acs.joc.6b02217.Tigreros, A.; Rosero, H. A.; Castillo, J. C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395-401. https://doi.org/10.1016/j.talanta.2018.12.100.Saqub, H.; Proetsch-Gugerbauer, H.; Bezrookove, V.; Nosrati, M.; Vaquero, E. M.; de Semir, D.; Ice, R. J.; McAllister, S.; Soroceanu, L.; Kashani-Sabet, M.; Osorio, R.; Dar, A. A. Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Suppresses Cholangiocarcinoma Growth by Targeting CDK2/5/9. Sci. Rep. 2020, 10 (1), 1-13. https://doi.org/10.1038/s41598-020-75578-5.Gumus, A.; Bozdag, M.; Angeli, A.; Peat, T. S.; Carta, F.; Supuran, C. T.; Selleri, S. Privileged Scaffolds in Medicinal Chemistry: Studies on Pyrazolo[1,5-a]Pyrimidines on Sulfonamide Containing Carbonic Anhydrase Inhibitors. Bioorganic Med. Chem. Lett. 2021, 49, 128309. https://doi.org/10.1016/j.bmcl.2021.128309.Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G. D. Pyrazolopyrimidines as Anticancer Agents: A Review on Structural and Target-Based Approaches. Eur. J. Med. Chem. 2021, 225, 113781. https://doi.org/10.1016/j.ejmech.2021.113781.Dwyer, M. P.; Keertikar, K.; Paruch, K.; Alvarez, C.; Labroli, M.; Poker, C.; Fischmann, T. O.; Mayer-Ezell, R.; Bond, R.; Wang, Y.; Azevedo, R.; Guzi, T. J. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based Pim Inhibitors: A Template-Based Approach. Bioorganic Med. Chem. Lett. 2013, 23 (22), 6178-6182. https://doi.org/10.1016/j.bmcl.2013.08.110.Zhang, Y.; Liu, Y.; Zhou, Y.; Zhang, Q.; Han, T.; Tang, C.; Fan, W. Pyrazolo[1,5-a]Pyrimidine Based Trk Inhibitors: Design, Synthesis, Biological Activity Evaluation. Bioorganic Med. Chem. Lett. 2021, 31, 127712. https://doi.org/10.1016/j.bmcl.2020.127712.Ismail, N. S. M.; Ali, G. M. E.; Ibrahim, D. A.; Elmetwali, A. M. Medicinal Attributes of Pyrazolo[1,5-a]Pyrimidine Based Scaffold Derivatives Targeting Kinases as Anticancer Agents. Futur. J. Pharm. Sci. 2016, 2 (2), 60-70. https://doi.org/10.1016/j.fjps.2016.08.004.Liu, R.; Zhang, S.; Huang, M.; Guo, Z.; Li, L.; Li, M.; Wu, L.; Guan, Q.; Zhang, W. Design, Synthesis and Bioevaluation of 2,7-Diaryl-Pyrazolo[1,5-a]Pyrimidines as Tubulin Polymerization Inhibitors. Bioorg. Chem. 2021, 115, 105220. https://doi.org/10.1016/j.bioorg.2021.105220.El-Sayed, E. H.; Fadda, A. A.; El-Saadaney, A. M. Synthesis and Antimicrobial Evaluation of Some New Pyrazolo[1,5-a]Pyrimidine and Pyrazolo[1,5-c]Triazine Derivatives Containing Sulfathiazole Moiety. Acta Chim. Slov. 2020, 67 (4), 1024-1034. https://doi.org/10.17344/acsi.2019.5007.Deshmukh, S.; Dingore, K.; Gaikwad, V.; Jachak, M. An Efficient Synthesis of Pyrazolo[1,5-a]Pyrimidines and Evaluation of Their Antimicrobial Activity. J. Chem. Sci. 2016, 128 (9), 1459-1468. https://doi.org/10.1007/s12039-016-1141-x.Sayed, A. Z.; Aboul-Fetouh, M. S.; Nassar, H. S. Synthesis, Biological Activity and Dyeing Performance of Some Novel Azo Disperse Dyes Incorporating Pyrazolo[1,5-a]Pyrimidines for Dyeing of Polyester Fabrics. J. Mol. Struct. 2012, 1010, 146-151. https://doi.org/10.1016/j.molstruc.2011.11.046.Hassan, A. S.; Morsy, N. M.; Awad, H. M.; Ragab, A. Synthesis, Molecular Docking, and in Silico ADME Prediction of Some Fused Pyrazolo[1,5-a]Pyrimidine and Pyrazole Derivatives as Potential Antimicrobial Agents. J. Iran. Chem. Soc. 2022, 19 (2), 521-545. https://doi.org/10.1007/s13738-021-02319-4.Tian, Y.; Du, D.; Rai, D.; Wang, L.; Liu, H.; Zhan, P.; De Clercq, E.; Pannecouque, C.; Liu, X. Fused Heterocyclic Compounds Bearing Bridgehead Nitrogen as Potent HIV-1 NNRTIs. Part 1: Design, Synthesis and Biological Evaluation of Novel 5,7-Disubstituted Pyrazolo[1,5-a]Pyrimidine Derivatives. Bioorganic Med. Chem. 2014, 22 (7), 2052-2059. https://doi.org/10.1016/j.bmc.2014.02.029.Gu, Y. Q.; Shen, W. Y.; Zhou, Y.; Chen, S. F.; Mi, Y.; Long, B. F.; Young, D. J.; Hu, F. L. A Pyrazolopyrimidine Based Fluorescent Probe for the Detection of Cu2+ and Ni2+ and Its Application in Living Cells. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2019, 209, 141-149. https://doi.org/10.1016/j.saa.2018.10.030.Yang, X. Z.; Sun, R.; Guo, X.; Wei, X. R.; Gao, J.; Xu, Y. J.; Ge, J. F. The Application of Bioactive Pyrazolopyrimidine Unit for the Construction of Fluorescent Biomarkers. Dye. Pigment. 2020, 173, 107878. https://doi.org/10.1016/j.dyepig.2019.107878.Shimizu, S.; Ogata, M. Fluoride- or Alkoxide-Induced Reaction of 1-[(Trimethylsilyl)Methyl]Azoles with Carbonyl Compounds. J. Org. Chem. 1986, 51 (20), 3897-3900. https://doi.org/10.1021/jo00370a028.Lassalas, P.; Claraz, A.; Tran, G.; Vors, J. P.; Tsuchiya, T.; Coqueron, P. Y.; Cossy, J. Selective Generation of (1H-1,2,4-Triazol-1-Yl)Methyl Carbanion and Condensation with Carbonyl Compounds. European J. Org. Chem. 2017, 46, 6991-6996. https://doi.org/10.1002/ejoc.201701278.Tan, L.; Tao, Y.; Wang, T.; Zou, F.; Zhang, S.; Kou, Q.; Niu, A.; Chen, Q.; Chu, W.; Chen, X.; Wang, H.; Yang, Y. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections. J. Med. Chem. 2017, 60 (7), 2669-2684. https://doi.org/10.1021/acs.jmedchem.6b01261.Fisher, R.; Grondal, C.; Heil, M.; Wroblowsky, H.-J.; Gesing, E.; Funke, C.; Franken, E.-M.; Malsam, O.; Voerste, A.; Gorgens, U.; Murata, T. Anthranilic Diamide Derivatives. US0160222, 2012.Bieliauskas, A.; Krikstolaityte, S.; Holzer, W.; Sackus, A. Ring-Closing Metathesis as a Key Step to Construct the 2, 6-Dihydropyrano[2, 3-c]Pyrazole Ring System. Arkivoc 2018, 2018 (5), 296-307. https://doi.org/10.24820/ark.5550190.p010.407.Ford Anthony; Chen Wei; Carter David; Yu Jiaxin. Beta Adrenergic Agonist and Methods of Using the Same. US2020024948W, 2020.Friggeri, L.; Hargrove, T. Y.; Rachakonda, G.; Blobaum, A. L.; Fisher, P.; De Oliveira, G. M.; Da Silva, C. F.; Soeiro, M. D. N. C.; Nes, W. D.; Lindsley, C. W.; Villalta, F.; Guengerich, F. P.; Lepesheva, G. I. Sterol 14[alfa]-Demethylase Structure-Based Optimization of Drug Candidates for Human Infections with the Protozoan Trypanosomatidae. J. Med. Chem. 2018, 61 (23), 10910-10921. https://doi.org/10.1021/acs.jmedchem.8b01671.Sui, Y. F.; Ansari, M. F.; Fang, B.; Zhang, S. L.; Zhou, C. H. Discovery of Novel Purinylthiazolylethanone Derivatives as Anti-Candida Albicans Agents through Possible Multifaceted Mechanisms. Eur. J. Med. Chem. 2021, 221, 113557. https://doi.org/10.1016/j.ejmech.2021.113557.Vargas-Oviedo, D.; Portilla, J.; Macías, M. A. Influence of the Haloaryl Moiety over the Molecular Packing in N-Phenacylbenzimidazoles Crystallizing in the Same Space Group. J. Mol. Struct. 2021, 1230, 129869. https://doi.org/10.1016/j.molstruc.2020.129869.Vargas-Oviedo, D.; Butassi, E.; Zacchino, S.; Portilla, J. Eco-Friendly Synthesis and Antifungal Evaluation of N-Substituted Benzimidazoles. Monatshefte fur Chemie 2020, 151 (4), 575-588. https://doi.org/10.1007/s00706-020-02575-9.Elejalde-Cadena, N. R.; García-Olave, M.; Figueroa, D.; Vidossich, P.; Miscione, G. Pietro; Portilla, J. Influence of Steric Effect on the Pseudo-Multicomponent Synthesis of N-Aroylmethyl-4-Arylimidazoles. Molecules 2022, 27 (4), 1165. https://doi.org/10.3390/molecules27041165.Elejalde, N. R.; Macías, M.; Castillo, J. C.; Sortino, M.; Svetaz, L.; Zacchino, S.; Portilla, J. Synthesis and in Vitro Antifungal Evaluation of Novel N-Substituted 4-Aryl-2-Methylimidazoles. ChemistrySelect 2018, 3 (18), 5220-5227. https://doi.org/10.1002/slct.201801238.Elejalde, N. R.; Butassi, E.; Zacchino, S.; Macías, M. A.; Portilla, J. Intermolecular Interaction Energies and Molecular Conformations in N -Substituted 4-Aryl-2-Methylimidazoles with Promising in Vitro Antifungal Activity. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 1-12. https://doi.org/10.1107/S2052520619013271.Orrego-Hernández, J. Síntesis de Nuevos 1-(2-Piridil)Pirazoles Fusionados y Sustituidos Con Grupos de Diferente Naturaleza Electrónica y de Conjugación (Pi)-Extendida, 2018.Macías, M. A.; Elejalde, N. R.; Butassi, E.; Zacchino, S.; Portilla, J. Studies via X-Ray Analysis on Intermolecular Interactions and Energy Frameworks Based on the Effects of Substituents of Three 4-Aryl-2-Methyl-1H-Imidazoles of Different Electronic Nature and Their in Vitro Antifungal Evaluation. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74 (11), 1447-1458. https://doi.org/10.1107/S2053229618014109.Tigreros, A.; Aranzazu, S. L.; Bravo, N. F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-: A] Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10 (65), 39542-39552. https://doi.org/10.1039/d0ra07716j.Samaranayake, L.; Fakhruddin, K. S. Pandemics Past, Present, and Future. J. Am. Dent. Assoc. 2021, 152 (12), 972-980. https://doi.org/10.1016/j.adaj.2021.09.008.Sarmah, P.; Dan, M. M.; Adapa, D.; Tk, S. A Review on Common Pathogenic Microorganisms and Their Impact on Human Health. Electron. J. Biol. 2018, 14 (1), 50-58.Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Molecular Mechanisms in Candida Albicans and Beyond. Chem. Rev. 2021, 121 (6), 3390-3411. https://doi.org/10.1021/acs.chemrev.0c00199.Ji, C.; Liu, N.; Tu, J.; Li, Z.; Han, G.; Li, J.; Sheng, C. Drug Repurposing of Haloperidol: Discovery of New Benzocyclane Derivatives as Potent Antifungal Agents against Cryptococcosis and Candidiasis. ACS Infect. Dis. 2020, 6 (5), 768-786. https://doi.org/10.1021/acsinfecdis.9b00197.Campoy, S.; Adrio, J. L. Antifungals. Biochem. Pharmacol. 2017, 133, 86-96. https://doi.org/10.1016/j.bcp.2016.11.019.Kathiravan, M. K.; Salake, A. B.; Chothe, A. S.; Dudhe, P. B.; Watode, R. P.; Mukta, M. S.; Gadhwe, S. The Biology and Chemistry of Antifungal Agents: A Review. Bioorganic Med. Chem. 2012, 20 (19), 5678-5698. https://doi.org/10.1016/j.bmc.2012.04.045.Revie, N. M.; Iyer, K. R.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Curr. Opin. Microbiol. 2018, 45, 70-76. https://doi.org/10.1016/j.mib.2018.02.005.Wu, S.; Wang, Y.; Liu, N.; Dong, G.; Sheng, C. Tackling Fungal Resistance by Biofilm Inhibitors. J. Med. Chem. 2017, 60 (6), 2193-2211. https://doi.org/10.1021/acs.jmedchem.6b01203.Sanglard, D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3, 1-10. https://doi.org/10.3389/fmed.2016.00011.Nicola, A. M.; Albuquerque, P.; Paes, H. C.; Fernandes, L.; Costa, F. F.; Kioshima, E. S.; Abadio, A. K. R.; Bocca, A. L.; Felipe, M. S. Antifungal Drugs: New Insights in Research & Development. Pharmacol. Ther. 2019, 195, 21-38. https://doi.org/10.1016/j.pharmthera.2018.10.008.H. Zhou, C.; Wang, Y. Recent Researches in Triazole Compounds as Medicinal Drugs. Curr. Med. Chem. 2012, 19 (2), 239-280. https://doi.org/10.2174/092986712803414213.Emami, S.; Ghobadi, E.; Saednia, S.; Hashemi, S. M. Current Advances of Triazole Alcohols Derived from Fluconazole: Design, in Vitro and in Silico Studies. Eur. J. Med. Chem. 2019, 170, 173-194. https://doi.org/10.1016/j.ejmech.2019.03.020.Mushtaq, A.; Baseer, A.; Zaidi, S. S.; Waseem Khan, M.; Batool, S.; Elahi, E.; Aman, W.; Naeem, M.; Din, F. ud. Fluconazole-Loaded Thermosensitive System: In Vitro Release, Pharmacokinetics and Safety Study. J. Drug Deliv. Sci. Technol. 2022, 67, 102972. https://doi.org/10.1016/j.jddst.2021.102972.Papich, M. G. Fluconazole. In Papich Handbook of Veterinary Drugs; Papich, M. G. B. T., Ed.; W.B. Saunders: St. Louis (MO), 2021; pp 373-375. https://doi.org/10.1016/B978-0-323-70957-6.00219-3.Elejalde-Cadena, N. R. Síntesis de Nuevos Imidazoles Con Potencial Actividad Antifúngica, 2016.Vargas-Oviedo, D. Estudio de La Síntesis de Nuevos 1-(2-Aril-2-Hidroxietil)Bencimidazoles Como Potenciales Agentes Antifúngicos, 2018.Vaitkien, S.; Daugelavicius, R.; Sychrová, H.; Kodedová, M. Styrylpyridinium Derivatives as New Potent Antifungal Drugs and Fluorescence Probes. Front. Microbiol. 2020, 11, 1-14. https://doi.org/10.3389/fmicb.2020.02077.Baibek, A.; Üçüncü, M.; Short, B.; Ramage, G.; Lilienkampf, A.; Bradley, M. Dyeing Fungi: Amphotericin B Based Fluorescent Probes for Multiplexed Imaging. Chem. Commun. 2021, 57 (15), 1899-1902. https://doi.org/10.1039/d0cc08177a.Jaber, Q. Z.; Benhamou, R. I.; Herzog, I. M.; Ben Baruch, B.; Fridman, M. Cationic Amphiphiles Induce Macromolecule Denaturation and Organelle Decomposition in Pathogenic Yeast. Angew. Chemie - Int. Ed. 2018, 57 (50), 16391-16395. https://doi.org/10.1002/anie.201809410.Jaber, Q. Z.; Bibi, M.; Ksiezopolska, E.; Gabaldon, T.; Berman, J.; Fridman, M. Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. ACS Cent. Sci. 2020, 6 (10), 1698-1712. https://doi.org/10.1021/acscentsci.0c00813.Loh, B. S.; Ang, W. H. "Illuminating" Echinocandins' Mechanism of Action. ACS Cent. Sci. 2020, 6 (10), 1651-1653. https://doi.org/10.1021/acscentsci.0c01222.Benhamou, R. I.; Bibi, M.; Berman, J.; Fridman, M. Localizing Antifungal Drugs to the Correct Organelle Can Markedly Enhance Their Efficacy. Angew. Chemie - Int. Ed. 2018, 57 (21), 6230-6235. https://doi.org/10.1002/anie.201802509.Leitão, M. I. P. S.; Rama Raju, B.; Cerqueira, N. M. F. S. A.; Sousa, M. J.; Gonçalves, M. S. T. Benzo[a]Phenoxazinium Chlorides: Synthesis, Antifungal Activity, in Silico Studies and Evaluation as Fluorescent Probes. Bioorg. Chem. 2020, 98, 103730. https://doi.org/10.1016/j.bioorg.2020.103730.Benhamou, R. I.; Bibi, M.; Steinbuch, K. B.; Engel, H.; Levin, M.; Roichman, Y.; Berman, J.; Fridman, M. Real-Time Imaging of the Azole Class of Antifungal Drugs in Live Candida Cells. ACS Chem. Biol. 2017, 12 (7), 1769-1777. https://doi.org/10.1021/acschembio.7b00339.Benhamou, R. I.; Jaber, Q. Z.; Herzog, I. M.; Roichman, Y.; Fridman, M. Fluorescent Tracking of the Endoplasmic Reticulum in Live Pathogenic Fungal Cells. ACS Chem. Biol. 2018, 13 (12), 3325-3332. https://doi.org/10.1021/acschembio.8b00782.Mykhailiuk, P. K. Fluorinated Pyrazoles: From Synthesis to Applications. Chem. Rev. 2021, 121 (3), 1670-1715. https://doi.org/10.1021/acs.chemrev.0c01015.Verma, R.; Verma, S. K.; Rakesh, K. P.; Girish, Y. R.; Ashrafizadeh, M.; Sharath Kumar, K. S.; Rangappa, K. S. Pyrazole-Based Analogs as Potential Antibacterial Agents against Methicillin-Resistance Staphylococcus Aureus (MRSA) and Its SAR Elucidation. Eur. J. Med. Chem. 2021, 212, 113134. https://doi.org/10.1016/j.ejmech.2020.113134.Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G. A.; Thapliyal, N.; Palakollu, V. N. An Insight on Synthetic and Medicinal Aspects of Pyrazolo[1,5-a]Pyrimidine Scaffold. Eur. J. Med. Chem. 2017, 126, 298-352. https://doi.org/10.1016/j.ejmech.2016.11.019.Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693-19712. https://doi.org/10.1039/d0ra02394a.Ford, M. C.; Ho, P. S. Computational Tools to Model Halogen Bonds in Medicinal Chemistry. J. Med. Chem. 2016, 59 (5), 1655-1670. https://doi.org/10.1021/acs.jmedchem.5b00997.Jeschke, P. Latest Generation of Halogen-Containing Pesticides. Pest Manag. Sci. 2017, 73 (6), 1053-1066. https://doi.org/10.1002/ps.4540.Vargas-Oviedo, D.; Charris-Molina, A.; Portilla, J. Efficient Access to O-Phenylendiamines and Their Use in the Synthesis of a 1,2-Dialkyl-5-Trifluoromethylbenzimidazoles Library Under Microwave Conditions. ChemistrySelect 2017, 2 (13). https://doi.org/10.1002/slct.201700623.Zhu, Y. F.; Wei, B. Le; Wei, J. J.; Wang, W. Q.; Song, W. Bin; Xuan, L. J. Synthesis of Pyrazolones and Pyrazoles via Pd-Catalyzed Aerobic Oxidative Dehydrogenation. Tetrahedron Lett. 2019, 60 (17), 1202-1205. https://doi.org/10.1016/j.tetlet.2019.03.063.Eissenstat, M. A.; Kuo, G.-H.; Desai, R. C.; Hlasta, D. J.; Court, J. J. 2-(Pyrazol-5-Yl-Oxymethyl)-1,2-Benzisothiazol-3 (2H)-One 1, 1-Dioxides and Compositions and Method of Use Thereof. US5750550 (A), 1998.Singh, S. P.; Kumar, D.; Batra, H.; Naithani, R.; Rozas, I.; Elguero, J. The Reaction between Hydrazines and [beta]-Dicarbonyl Compounds: Proposal for a Mechanism. Can. J. Chem. 2000, 78 (8), 1109-1120. https://doi.org/10.1139/v00-104.Su, W.; Weng, Y.; Jiang, L.; Yang, Y.; Zhao, L.; Chen, Z.; Li, Z.; Li, J. Recent Progress in the Use of Vilsmeier-Type Reagents. Org. Prep. Proced. Int. 2010, 42 (6), 503-555. https://doi.org/10.1080/00304948.2010.513911.Mewshaw, R. E. Vilsmeier Reagents: Preparation of b-Halo-a,Beta-Unsaturated Ketones. Tetrahedron Lett. 1989, 3 (29), 3753-3756.Aranzazu, S.; Tigreros, A.; Arias-g, A.; Zapata-rivera, J.; Portilla, J. Sandra-L. Aranzazu, Alexis Tigreros, Andres Arias-G ó Mez, Jhon Zapata-Rivera, and Jaime Portilla *. J. Org. Chem. 2022, 87, 9839-9850. https://doi.org/10.1021/acs.joc.2c00881.Shimizu, S.; Ogata, M. Reaction of N-[(Trimethylsilyl)Methyl]Azinones. J. Org. Chem. 1988, 53 (21), 5160-5163. https://doi.org/10.1021/jo00256a052.Bank, S.; Sturges, J. S.; Heyer, D.; Bushweller, C. H. Stabilization of Carbanions by Silicon. Restricted Aryl Rotation in the 4-Methyl-4'-Trimethylsilyldiphenylmethyl Anion. J. Am. Chem. Soc. 1980, 102 (11), 3982-3984. https://doi.org/10.1021/ja00531a067.Brown, C. A.; Hubbard, J. L. 1-(Trimethylsily)Benzene Oxides: Synthesis, Aromatization, and Reactions of Carbanions from Desilylation. J. Org. Chem. 1979, 44 (3), 468-470. https://doi.org/https://doi.org/10.1021/jo01317a043.Zhang, F.; Bai, Y.; Yang, X.; Li, J.; Peng, J. N-Heterocyclic Carbene Platinum Complexes Functionalized with a Polyether Chain and Silyl Group: Synthesis and Application as a Catalyst for Hydrosilylation. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192 (12), 1271-1278. https://doi.org/10.1080/10426507.2017.1321647.Malunavar, S. S.; Sutar, S. M.; Prabhala, P.; Savanur, H. M.; Kalkhambkar, R. G.; Aridoss, G.; Laali, K. K. Facile Synthesis of Libraries of Functionalized Cyclopropanes and Oxiranes Using Ionic Liquids - A New Approach to the Classical Corey-Chaykovsky Reaction. Tetrahedron Lett. 2021, 81, 153339. https://doi.org/10.1016/j.tetlet.2021.153339.Wang, Z. Corey-Chaykovsky Epoxidation. In Comprehensive Organic Name Reactions and Reagents; 2010; pp 713-716. https://doi.org/10.1002/9780470638859.conrr156.Oost, R.; Neuhaus, J. D.; Merad, J.; Maulide, N. Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis. In Modern Ylide Chemistry. Structure and Bonding, vol 177; Gessner V., Ed.; Springer, Cham., 2017; pp 73-115. https://doi.org/10.1007/430_2017_14.Mondal, M.; Chen, S.; Kerrigan, N. J. Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. Molecules 2018, 23 (4), 1-29. https://doi.org/10.3390/molecules23040738.Kavanagh, S. A.; Piccinini, A.; Fleming, E. M.; Connon, S. J. Urea Derivatives Are Highly Active Catalysts for the Base-Mediated Generation of Terminal Epoxides from Aldehydes and Trimethylsulfonium Iodide. Org. Biomol. Chem. 2008, 6 (8), 1339-1343. https://doi.org/10.1039/b719767e.Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Experimental Investigation into the Mechanism of the Epoxidation of Aldehydes with Sulfur Ylides. Org. Lett. 2007, 9 (26), 5481-5484. https://doi.org/10.1021/ol702300d.Volatron, F; Eisenstein, O. Wittig vs. Corey-Chaykovsky Reaction. A Theoretical Study of the Reactivity of Phosphonium Methylide and Sulfonium Methylide with Formaldehyde. J. Am. Chem. Soc. 1987, 109 (1), 1-14. https://doi.org/10.1109/jaiee.1924.6537213.Yoshinaga, H.; Masumoto, S.; Koyama, K.; Kinomura, N.; Matsumoto, Y.; Kato, T.; Baba, S.; Matsumoto, K.; Horisawa, T.; Oki, H.; Yabuuchi, K.; Kodo, T. Discovery of SMP-304, a Novel Benzylpiperidine Derivative with Serotonin Transporter Inhibitory Activity and 5-HT1Aweak Partial Agonistic Activity Showing the Antidepressant-like Effect. Bioorganic Med. Chem. 2017, 25 (1), 293-304. https://doi.org/10.1016/j.bmc.2016.10.034.Bentley, T. W.; Jones, R. V. H.; Larder, H.; Lock, S. J. Solvents as Phase Transfer Catalysts . Reaction of Trimethylsulfonium Iodide and Solid Potassium Hydroxide in Acetonitrile Leading to an Epoxide of Benzophenone. J. Chem. Soc., Perkin Trans 1998, 2, 1407-1411.Shi, M.; Shen, Y. M. The Reactions of DMSO with Arylaldehydes in the Presence of Sodium Hydride. J. Chem. Res. - Part S 2002, No. 9, 422-427. https://doi.org/10.3184/030823402103172734.Peng, Y.; Yang, J. H.; Li, W. D. Z. Revisiting the Corey-Chaykovsky Reaction: The Solvent Effect and the Formation of [beta]-Hydroxy Methylthioethers. Tetrahedron 2006, 62 (6), 1209-1215. https://doi.org/10.1016/j.tet.2005.10.068.Baig, R. B. N.; Varma, R. S. Alternative Energy Input: Mechanochemical, Microwave and Ultrasound-Assisted Organic Synthesis. Chem. Soc. Rev. 2012, 41 (4), 1559-1584. https://doi.org/10.1039/c1cs15204a.Larhed, M.; Moberg, C.; Hallberg, A. Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry. Acc. Chem. Res. 2002, 35 (9), 717-727. https://doi.org/10.1021/ar010074v.Yu, H.; Deng, X.; Cao, S.; Xu, J. Practical Corey-Chaykovsky Epoxidation: Scope and Limitation. Lett. Org. Chem. 2011, 8 (7), 509-514. https://doi.org/10.2174/157017811796504954.Byrne, P. A. Introduction to the Wittig Reaction and Discussion of the Mechanism. In Investigation of Reactions Involving Pentacoordinate Intermediates: The Mechanism of the Wittig Reaction; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 1-56. https://doi.org/10.1007/978-3-642-32045-3_1.Byrne, P. A.; Gilheany, D. G. The Modern Interpretation of the Wittig Reaction Mechanism. Chem. Soc. Rev. 2013, 42 (16), 6670-6696. https://doi.org/10.1039/c3cs60105f.Kim, C.; Traylor, T. G.; Perrin, C. L. MCPBA Epoxidation of Alkenes: Reinvestigation of Correlation between Rate and Ionization Potential. J. Am. Chem. Soc. 1998, 120 (37), 9513-9516. https://doi.org/10.1021/ja981531e.Hussain, H.; Al-Harrasi, A.; Green, I. R.; Ahmed, I.; Abbas, G.; Rehman, N. U. Meta-Chloroperbenzoic Acid (MCPBA): A Versatile Reagent in Organic Synthesis. RSC Adv. 2014, 4 (25), 12882-12917. https://doi.org/10.1039/c3ra45702h.Shul'pin, G. B.; Loginov, D. A.; Shul'pina, L. S.; Ikonnikov, N. S.; Idrisov, V. O.; Vinogradov, M. M.; Osipov, S. N.; Nelyubina, Y. V.; Tyubaeva, P. M. Stereoselective Alkane Oxidation with Meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. Molecules 2016, 21 (11), 1-17. https://doi.org/10.3390/molecules21111593.Chen, L.; Zhao, B.; Fan, Z.; Liu, X.; Wu, Q.; Li, H.; Wang, H. Synthesis of Novel 3,4-Chloroisothiazole-Based Imidazoles as Fungicides and Evaluation of Their Mode of Action. J. Agric. Food Chem. 2018, 66 (28), 7319-7327. https://doi.org/10.1021/acs.jafc.8b02332.Ramkumar, N.; Nagarajan, R. A New Route to the Synthesis of Ellipticine Quinone from Isatin. Tetrahedron Lett. 2014, 55 (5), 1104-1106. https://doi.org/10.1016/j.tetlet.2013.12.098.Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Three-Membered Ring Heterocycles. In The Chemistry of Heterocycles; Elservier Ltd., 2019; pp 19-92. https://doi.org/10.1016/b978-0-08-101033-4.00003-6.Eicher, T.; Hauptmann, S.; Speicher, A. Three-Membered Heterocycles. In The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications; 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2003; pp 17-37. https://doi.org/10.1007/978-3-642-72276-9_6.He, F.; Wu, H.; Chen, J.; Su, W. Unexpectedly High Activity of Zn(OTf)2·6H2O in Catalytic Friedel-Crafts Acylation Reaction. Synth. Commun. 2008, 38 (2), 255-264. https://doi.org/10.1080/00397910701750292.Wu, X. T.; Xiao, E. K.; Ma, F.; Yin, J.; Wang, J.; Chen, P.; Jiang, Y. J. Substrate-Controlled Regiodivergent Synthesis of Fluoroacylated Carbazoles via Friedel-Crafts Acylation. J. Org. Chem. 2021, 86 (9), 6734-6743. https://doi.org/10.1021/acs.joc.1c00473.Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel - Crafts Acylation Reactions. Chem. Rev. 2011, 111 (3), PR181-PR214. https://doi.org/10.1021/cr040695c.Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angew. Chemie - Int. Ed. 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150.Banerjee, B. Recent Developments on Ultrasound Assisted Catalyst-Free Organic Synthesis. Ultrason. Sonochem. 2017, 35, 1-14. https://doi.org/10.1016/j.ultsonch.2016.09.023.Tong, J.; Zhan, Y.; Li, J.; Liu, P.; Sun, P. One-Pot Synthesis of C3-Alkylated Imidazopyridines from [alfa]-Bromocarbonyls under Photoredox Conditions. European J. Org. Chem. 2021, 2021 (32), 4541-4545. https://doi.org/10.1002/ejoc.202100922.Huang, X.; Zhang, T. Multicomponent Reactions of Pyridines, [alfa]-Bromo Carbonyl Compounds and Silylaryl Triflates as Aryne Precursors: A Facile One-Pot Synthesis of Pyrido[2,1-a]Isoindoles. Tetrahedron Lett. 2009, 50 (2), 208-211. https://doi.org/10.1016/j.tetlet.2008.10.118.Kong, M.; Zhou, X.; Chen, Q.; Zhang, F.; Zhao, Y. Efficient Synthesis of Novel Indolizine C-Nucleoside Analogues via Coupling of Sugar Alkynes, Pyridines and [alfa]-Bromo Carbonyl Compounds in One Pot. Carbohydr. Res. 2021, 505 (March), 108337. https://doi.org/10.1016/j.carres.2021.108337.Saikia, I.; Borah, A. J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116 (12), 6837-7042. https://doi.org/10.1021/acs.chemrev.5b00400.Vekariya, R. H.; Patel, H. D. Synthesis of [alfa]-Bromocarbonyl Compounds: Recent Advances. Tetrahedron 2014, 70 (26), 3949-3961. https://doi.org/10.1016/j.tet.2014.04.027.Choi, T.; Ma, E. Simple and Regioselective Bromination of 5,6-Disubstituted-Indan-1-Ones with Br2 under Acidic and Basic Conditions. Molecules 2007, 12 (1), 74-85. https://doi.org/10.3390/12010074.Hoffman, R. V; Weiner, W. S.; Maslouh, N. Highly Stereoselective Synthesis of Anti -N-Protected- r -Amino Epoxides. J. Org. Chem. 2001, 66, 5790-5795.Khan, A. T.; Ali, M. A.; Goswami, P.; Choudhury, L. H. A Mild and Regioselective Method for [alfa]-Bromination of [neto]-Keto Esters and 1,3-Diketones Using Bromodimethylsulfonium Bromide (BDMS). J. Org. Chem. 2006, 71 (23), 8961-8963. https://doi.org/10.1021/jo061501r.Kim, M.; Jung, Y.; Kim, I. Domino Knoevenagel Condensation/Intramolecular Aldol Cyclization Route to Diverse Indolizines with Densely Functionalized Pyridine Units. J. Org. Chem. 2013, 78 (20), 10395-10404. https://doi.org/10.1021/jo401801j.Martínez González, S.; Hernández, A. I.; Álvarez, R. M.; Rodríguez, A.; Ramos-Lima, F.; Bischoff, J. R.; Albarrán, M. I.; Cebriá, A.; Hernández-Encinas, E.; García-Arocha, J.; Cebrián, D.; Blanco-Aparicio, C.; Pastor, J. Identification of Novel PI3K Inhibitors through a Scaffold Hopping Strategy. Bioorganic Med. Chem. Lett. 2017, 27 (21), 4794-4799. https://doi.org/10.1016/j.bmcl.2017.09.059.Gerstenberger, B. S.; Ambler, C.; Arnold, E. P.; Banker, M. E.; Brown, M. F.; Clark, J. D.; Dermenci, A.; Dowty, M. E.; Fensome, A.; Fish, S.; Hayward, M. M.; Hegen, M.; Hollingshead, B. D.; Knafels, J. D.; Lin, D. W.; Lin, T. H.; Owen, D. R.; Saiah, E.; Sharma, R.; Vajdos, F. F.; Xing, L.; Yang, X.; Yang, X.; Wright, S. W. Discovery of Tyrosine Kinase 2 (TYK2) Inhibitor (PF-06826647) for the Treatment of Autoimmune Diseases. J. Med. Chem. 2020, 63 (22), 13561-13577. https://doi.org/10.1021/acs.jmedchem.0c00948.Xuan, Q.; Kong, W.; Song, Q. Copper(I)-Catalyzed Chemoselective Reduction of Benzofuran-2-Yl Ketones to Alcohols with B2pin2 via a Domino-Borylation-Protodeboronation Strategy. J. Org. Chem. 2017, 82 (14), 7602-7607. https://doi.org/10.1021/acs.joc.7b00596.Mao, Z.; Gu, H.; Lin, X. Recent Advances of Pd/C-Catalyzed Reactions. Catalysts 2021, 11, 1078. https://doi.org/https://doi.org/10.3390/catal11091078.Dolusic, E.; Larrieu, P.; Blanc, S.; Sapunaric, F.; Norberg, B.; Moineaux, L.; Colette, D.; Stroobant, V.; Pilotte, L.; Colau, D.; Ferain, T.; Fraser, G.; Galeni, M.; Frre, J. M.; Masereel, B.; Van Den Eynde, B.; Wouters, J.; Frédérick, R. Indol-2-Yl Ethanones as Novel Indoleamine 2,3-Dioxygenase (IDO) Inhibitors. Bioorganic Med. Chem. 2011, 19 (4), 1550-1561. https://doi.org/10.1016/j.bmc.2010.12.032.Luo, G.; Chen, L.; Civiello, R.; Pin, S. S.; Xu, C.; Kostich, W.; Kelley, M.; Conway, C. M.; MacOr, J. E.; Dubowchik, G. M. Calcitonin Gene-Related Peptide (CGRP) Receptor Antagonists: Pyridine as a Replacement for a Core Amide Group. Bioorganic Med. Chem. Lett. 2012, 22 (8), 2917-2921. https://doi.org/10.1016/j.bmcl.2012.02.065.Wang, P.; Zhao, J. Z.; Li, H. F.; Liang, X. M.; Zhang, Y. L.; Da, C. S. Acid-Catalyzed Highly Diastereoselective and Effective Synthesis of 1,3-Disubstituted Tetrahydropyrano[3,4-b]Indoles. Tetrahedron Lett. 2017, 58 (2), 129-133. https://doi.org/10.1016/j.tetlet.2016.11.110.Li, Y. Y.; Yu, S. L.; Shen, W. Y.; Gao, J. X. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Acc. Chem. Res. 2015, 48 (9), 2587-2598. https://doi.org/10.1021/acs.accounts.5b00043.Wan, K. Y.; Sung, M. M. H.; Lough, A. J.; Morris, R. H. Half-Sandwich Ruthenium Catalyst Bearing an Enantiopure Primary Amine Tethered to an N-Heterocyclic Carbene for Ketone Hydrogenation. ACS Catal. 2017, 7 (10), 6827-6842. https://doi.org/10.1021/acscatal.7b02346.Kolcsár, V. J.; Fülöp, F.; Szollosi, G. Ruthenium(II)-Chitosan, an Enantioselective Catalyst for the Transfer Hydrogenation of N-Heterocyclic Ketones. ChemCatChem 2019, 11 (11), 2725-2731. https://doi.org/10.1002/cctc.201900363.Li, Y.; Yu, S.; Wu, X.; Xiao, J.; Shen, W.; Dong, Z.; Gao, J. Iron Catalyzed Asymmetric Hydrogenation of Ketones. J. Am. Chem. Soc. 2014, 136 (10), 4031-4039. https://doi.org/10.1021/ja5003636.Yigit, B.; Isik, Y.; Barut Celepci, D.; Evren, E.; Yigit, M.; Gürbüz, N.; Özdemir, I. Ruthenium(II) Complexes Bearing N-Heterocyclic Carbene Ligands with Wingtip Groups and Their Catalytic Activity in the Transfer Hydrogenation of Ketones. Inorganica Chim. Acta 2020, 499, 119199. https://doi.org/10.1016/j.ica.2019.119199.Zhou, J.; Xu, G.; Ni, Y. Stereochemistry in Asymmetric Reduction of Bulky-Bulky Ketones by Alcohol Dehydrogenases. ACS Catal. 2020, 10 (19), 10954-10966. https://doi.org/10.1021/acscatal.0c02646.Koesoema, A. A.; Standley, D. M.; Senda, T.; Matsuda, T. Impact and Relevance of Alcohol Dehydrogenase Enantioselectivities on Biotechnological Applications. Appl. Microbiol. Biotechnol. 2020, 104 (7), 2897-2909. https://doi.org/10.1007/s00253-020-10440-2.Sun, Z.; Lonsdale, R.; Ilie, A.; Li, G.; Zhou, J.; Reetz, M. T. Catalytic Asymmetric Reduction of Difficult-to-Reduce Ketones: Triple-Code Saturation Mutagenesis of an Alcohol Dehydrogenase. ACS Catal. 2016, 6 (3), 1598-1605. https://doi.org/10.1021/acscatal.5b02752.Jagadale, S.; Chavan, A.; Shinde, A.; Sisode, V.; Bobade, V. D.; Mhaske, P. C. Synthesis and Antimicrobial Evaluation of New Thiazolyl-1,2,3-Triazolyl-Alcohol Derivatives. Med. Chem. Res. 2020, 29 (6), 989-999. https://doi.org/10.1007/s00044-020-02540-5.Jagadale, S.; Bhoye, M.; Nandurkar, Y.; Bobade, V. D.; Mhaske, P. C. Synthesis, Characterization and Antimicrobial Screening of New Pyrazolyl-1,2,3-Triazolyl-Thiazolyl-Ethanol Derivatives. Phosphorus, Sulfur Silicon Relat. Elem. 2020, 196 (5), 513-520. https://doi.org/10.1080/10426507.2020.1860984.De Amici, M.; Conti, P.; Dallanoce, C.; Kassi, L.; Castellano, S.; Stefancich, G.; De Micheli, C. Synthesis and Pharmacological Characterization of New Analogs of Broxaterol. Med. Chem. Res. 2000, 10 (2), 69-80.Pemán, J.; Martín-Mazuelos, E.; Rubio Calvo, M. C. Métodos Estandarizados Por El CLSI Para El Estudio de La Sensibilidad a Los Antifúngicos. Rev. Iberoam. Micol. 2010, 15, 1-24.Nozue, S.; Habuchi, S.; Piwon, H. The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS Nanosci. Au 2022. https://doi.org/10.1021/acsnanoscienceau.1c00038.Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal. Chem. 2018, 90 (1), 533-555. https://doi.org/10.1021/acs.analchem.7b04234.Kim, H. M.; Cho, B. R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115 (11), 5014-5055. https://doi.org/10.1021/cr5004425.Purohit, V. B.; Karad, S. C.; Patel, K. H.; Raval, D. K. Palladium N-Heterocyclic Carbene Catalyzed Regioselective C-H Halogenation of 1-Aryl-3-Methyl-1H-Pyrazol-5(4H)-Ones Using N-Halosuccinimides (NXS). Catal. Sci. Technol. 2015, 5 (6), 3113-3118. https://doi.org/10.1039/c5cy00137d.Krau, J.; Unterreitmeier, D. Preparation and Antibacterial Activity of 3-Methyl-1-p-Substituted Phenylpyrazole-5-Thiol. Arch. Pharm. (Weinheim). 2002, 335 (2-3), 99-103. https://doi.org/10.1002/1521-4184(200203)335:2/3<99::AID-ARDP99>3.0.CO;2-2.Rassu, G.; Zambrano, V.; Pinna, L.; Curti, C.; Battistini, L.; Sartori, A.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Direct and Enantioselective Vinylogous Michael Addition of [alfa]-Alkylidenepyrazolinones to Nitroolefins Catalyzed by Dual Cinchona Alkaloid Thioureas. Adv. Synth. Catal. 2014, 356 (10), 2330-2336. https://doi.org/10.1002/adsc.201300964.Nayak, M.; Batchu, H.; Batra, S. Straightforward Copper-Catalyzed Synthesis of Pyrrolopyrazoles from Halogenated Pyrazolecarbaldehydes. Tetrahedron Lett. 2012, 53 (32), 4206-4208. https://doi.org/10.1016/j.tetlet.2012.05.148.Palka, B.; Di Capua, A.; Anzini, M.; Vilkauskaité, G.; Sackus, A.; Holzer, W. Synthesis of Trifluoromethyl-Substituted Pyrazolo[4,3-c]Pyridines - Sequential versus Multicomponent Reaction Approach. Beilstein J. Org. Chem. 2014, 10, 1759-1764. https://doi.org/10.3762/bjoc.10.183.Tang, Q.; Zhao, Y.; Du, X.; Chong, L.; Gong, P.; Guo, C. Design, Synthesis, and Structure-Activity Relationships of Novel 6,7-Disubstituted-4-Phenoxyquinoline Derivatives as Potential Antitumor Agents. Eur. J. Med. Chem. 2013, 69, 77-89. https://doi.org/10.1016/j.ejmech.2013.08.019.Mokhtar, M.; Saleh, T. S.; Basahel, S. N. Mg-Al Hydrotalcites as Efficient Catalysts for Aza-Michael Addition Reaction: A Green Protocol. J. Mol. Catal. A Chem. 2012, 353-354, 122-131. https://doi.org/10.1016/j.molcata.2011.11.015.201624624Publication15cce969-be9e-4320-94bc-85afca78cca4virtual::20928-115cce969-be9e-4320-94bc-85afca78cca4virtual::20928-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000370380virtual::20928-1ORIGINALTesis_Entrega_Final.pdfTesis_Entrega_Final.pdfTesis doctoralapplication/pdf5820567https://repositorio.uniandes.edu.co/bitstreams/d1458170-39c6-4b27-81e4-6188b4eaa1b6/download615b23637daf70e68a32b509470d1f45MD52Formato de autorización y entrega de tesis (1).pdfFormato de autorización y entrega de tesis (1).pdfHIDEapplication/pdf242280https://repositorio.uniandes.edu.co/bitstreams/f401879c-a3b0-463e-b84f-49b529a54753/download6ea5c250905a4605e6ec7d2703d9567eMD53TEXTTesis_Entrega_Final.pdf.txtTesis_Entrega_Final.pdf.txtExtracted texttext/plain263901https://repositorio.uniandes.edu.co/bitstreams/13001798-6b58-4b1c-8726-508c39557acd/downloade3c5690868284442812b96a5f4562e31MD54Formato de autorización y entrega de tesis (1).pdf.txtFormato de autorización y entrega de tesis (1).pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/42ba3741-9fd7-4d1e-9bbd-322e8ae251b4/download4491fe1afb58beaaef41a73cf7ff2e27MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/150c94b7-2a8f-4ee2-9e0f-1ae841a76b67/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTesis_Entrega_Final.pdf.jpgTesis_Entrega_Final.pdf.jpgIM Thumbnailimage/jpeg10299https://repositorio.uniandes.edu.co/bitstreams/76cb695a-7738-4728-adce-9ed84fe710f6/download5b07d12845f8fdf97391f2b314fb8d6eMD55Formato de autorización y entrega de tesis (1).pdf.jpgFormato de autorización y entrega de tesis (1).pdf.jpgIM Thumbnailimage/jpeg16217https://repositorio.uniandes.edu.co/bitstreams/ff7fb8ca-7072-4a09-a65f-913b1996e51a/downloadf7de01cf5ab73c77fd4d0a3583a673edMD571992/60021oai:repositorio.uniandes.edu.co:1992/600212024-12-04 16:55:09.099http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |