Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico

La búsqueda de nuevos y mejores materiales multiferroicos está motivada por las posibilidades que ofrecen la sintonización de propiedades magnéticas mediante la aplicación de un campo eléctrico o, viceversa, el control de la polarización eléctrica por campos magnéticos. En la actualidad, la familia...

Full description

Autores:
Vega Bustos, Karen Alejandra
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/70971
Acceso en línea:
https://hdl.handle.net/1992/70971
Palabra clave:
tungsteno selenio 2
materiales multiferroicos
Dicalcogenuros de metales de transición (TMD)
WSe2
Física
Rights
openAccess
License
CC0 1.0 Universal
id UNIANDES2_05f78703859345fecd86ed53200a99ad
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/70971
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
dc.title.alternative.spa.fl_str_mv Variación de propiedades electrónicas del WSe2 a partir de dopaje químico
title Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
spellingShingle Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
tungsteno selenio 2
materiales multiferroicos
Dicalcogenuros de metales de transición (TMD)
WSe2
Física
title_short Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
title_full Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
title_fullStr Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
title_full_unstemmed Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
title_sort Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químico
dc.creator.fl_str_mv Vega Bustos, Karen Alejandra
dc.contributor.advisor.none.fl_str_mv Giraldo Gallo, Paula Liliana
Galvis Echeverry, José Augusto
dc.contributor.author.none.fl_str_mv Vega Bustos, Karen Alejandra
dc.contributor.jury.none.fl_str_mv Rodríguez Dueñas, Ferney Javier
Espejo Pabón, Camilo
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias
dc.subject.keyword.none.fl_str_mv tungsteno selenio 2
materiales multiferroicos
Dicalcogenuros de metales de transición (TMD)
WSe2
topic tungsteno selenio 2
materiales multiferroicos
Dicalcogenuros de metales de transición (TMD)
WSe2
Física
dc.subject.themes.spa.fl_str_mv Física
description La búsqueda de nuevos y mejores materiales multiferroicos está motivada por las posibilidades que ofrecen la sintonización de propiedades magnéticas mediante la aplicación de un campo eléctrico o, viceversa, el control de la polarización eléctrica por campos magnéticos. En la actualidad, la familia de materiales vdW más investigada son los dicalcogenuros de metales de transición (TMD) por exhibir propiedades eléctricas, mecánicas y ópticas prometedoras. Dentro de los TMDs se tienen materiales que bajo ciertas condiciones se ha reportado ferroelectricidad o ferromagnetismo por separado (WTe2, MoS2, MoSe2, WS2, WSe2). En este trabajo, se estudia la variación de las propiedades electrónicas de monocristales de WSe2 a partir de dopaje con Telurio (Te). Como resultado de este dopaje químico, se encontró la presencia en simultáneo de estados ferromagnéticos y ferroeléctricos, es decir, multiferroicidad a temperatura ambiente en el bulk de este material (detectado por primera vez en los TMDs). Monocristales con diferentes niveles de dopaje de Te fueron caracterizados a partir de medidas de XRD, magnetización, microscopía PFM/AMF, y transporte eléctrico. A partir de estas últimas se detectaron propiedades multifuncionales de diodo, suicheo resistivo e histéresis capacitiva.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-27
dc.date.accessioned.none.fl_str_mv 2023-11-01T21:04:17Z
dc.date.available.none.fl_str_mv 2023-11-01T21:04:17Z
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/70971
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/70971
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Jae-Hyeon Cho y Wook Jo. A brief review on magnetoelectric multiferroic oxides. Journal of the Korean Institute of Electrical and Electronic Material Engineers 34:3 (2021), 149-166 (see pages iii, 1, 10). H Béa, M Gajek, M Bibes y A Barthélémy. Spintronics with multiferroics. Journal of Physics: Condensed Matter 20:43 (2008), 434221 (see pages iii, 1). Menghao Wu. Two-dimensional van der Waals ferroelectrics: Scientic and technological opportunities. ACS nano 15:6 (2021), 9229-9237 (see pages iii, 1). Yan Lu, Ruixiang Fei, Xiaobo Lu, Linghan Zhu, Li Wang y Li Yang. Artifcial multiferroics and enhanced magnetoelectric efect in van der Waals heterostructures. ACS applied materials & interfaces 12:5 (2020), 6243-6249 (see pages iii, 1, 18). Andres Castellanos-Gomez. Why all the fuss about 2D semiconductors? Nature Photonics 10:4 (2016), 202-204 (see pages iii, 1, 3, 4, 6). Ethan C Ahn. 2D materials for spintronic devices. npj 2D Materials and Applications 4:1 (2020), 1-14 (see pages iii, 1, 6). Muhammad Habib, Zahir Muhammad, Rashid Khan, Chuanqiang Wu, Zia ur Rehman, Yu Zhou, Hengjie Liu y Li Song. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping. Nanotechnology 29:11 (2018), 115701 (see pages iii, 2, 60). Ehsan Nasr Esfahani, Terrance Li, Bevin Huang, Xiaodong Xu y Jiangyu Li. Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy. Nano Energy 52 (2018), 117-122 (see pages iii, 2, 7, 18). Dirk Van Delft y Peter Kes. The discovery of superconductivity. Physics Today 63:9 (2010), 38-43 (see pages 1, 10). Nicola A Hill. Why are there so few magnetic ferroelectrics? 2000 (see pages 1, 10-12, 15, 16). AJC Buurma, GR Blake, TTM Palstra y Umut Adem. Multiferroic materials: physics and properties. Reference Module in Materials Science and Materials Engineering (2016) (see pages 1, 10, 12, 16). Sahwan Hong, Taekjib Choi, Ji Hoon Jeon, Yunseok Kim, Hosang Lee, Ho-Young Joo, Inrok Hwang, Jin-Soo Kim, Sung-Oong Kang, Sergei V Kalinin y col. Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes. Advanced Materials 25:16 (2013), 2339-2343 (see page 1). F Yan, GZ Xing y L Li. Low temperature dependent ferroelectric resistive switching in epitaxial BiFeO3 films. Applied Physics Letters 104:13 (2014), 132904 (see pages 1, 20, 21). Kin Fai Mak y Jie Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics 10:4 (2016), 216-226 (see pages 1, 5). Tingting Zhong, Xiaoyong Li, Menghao Wu y Jun-Ming Liu. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. National science review 7:2 (2020), 373-380 (see page 1). 75 Zhengyuan Tu y Menghao Wu. 2D diluted multiferroic semiconductors upon intercalation. Advanced Electronic Materials 5:6 (2019), 1800960 (see page 1). Ziji Shao, Jinghua Liang, Qirui Cui, Mairbek Chshiev, Albert Fert, Tiejun Zhou y Hongxin Yang. Multiferroic materials based on transition-metal dichalcogenides: Potential platform for reversible control of Dzyaloshinskii-Moriya interaction and skyrmion via electric field. Physical Review B 105:17 (2022), 174404 (see page 1). Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V Yazyev y Andras Kis. 2D transition metal dichalcogenides. Nature Reviews Materials 2:8 (2017), 1-15 (see pages 3-5). Jiawen You, Md Delowar Hossain y Zhengtang Luo. Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Convergence 5:1 (2018), 1-13 (see page 3). Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh y Hua Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry 5:4 (2013), 263-275 (see pages 3, 4). Kinga Lasek, Jingfeng Li, Sadhu Kolekar, Paula Mariel Coelho, Min Zhang, Zhiming Wang, Matthias Batzill y col. Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective. Surface Science Reports 76:2 (2021), 100523 (see page 4). Santanu Das, Moonkyung Kim, Jo-won Lee y Wonbong Choi. Synthesis, properties, and applications of 2-D materials: A comprehensive review. Critical Reviews in Solid State and Materials Sciences 39:4 (2014), 231-252 (see page 5). Intek Song, Chibeom Park y Hee Cheul Choi. Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. Rsc Advances 5:10 (2015), 7495-7514 (see page 5). Yuerui Lu. Two-dimensional Materials in Nanophotonics: Developments, Devices, and Applications. CRC Press, 2019 (see page 5). Francesco Bonaccorso, Antonino Bartolotta, Jonathan N Coleman y Claudia Backes. 2D-crystal-based functional inks. Advanced Materials 28:29 (2016), 6136-6166 (see page 6). Xu Jing, Yury Illarionov, Eilam Yalon, Peng Zhou, Tibor Grasser, Yuanyuan Shi y Mario Lanza. Engineering field eect transistors with 2D semiconducting channels: Status and prospects. Advanced Functional Materials 30:18 (2020), 1901971 (see page 6). Ajit Srivastava, Meinrad Sidler, Adrien V Allain, Dominik S Lembke, Andras Kis y A Imamoğlu. Valley Zeeman efect in elementary optical excitations of monolayer WSe2. Nature Physics 11:2 (2015), 141-147 (see page 6). D Voß, P Krüger, A Mazur y J Pollmann. Atomic and electronic structure of WSe 2 from ab initio theory: Bulk crystal and thin film systems. Physical Review B 60:20 (1999), 14311 (see page 6). MK Agarwal, VV Rao y VM Pathak. Growth of n-type and p-type WSe2 crystals using SeCl4 transporter and their characterization. Journal of crystal growth 97:3-4 (1989), 675-679 (see page 7). Adem Ali Muhabie, Ching-Hwa Ho, Belete Tewabe Gebeyehu, Shan-You Huang, Chih-Wei Chiu, Juin-Yih Lai, Duu-Jong Lee y Chih-Chia Cheng. Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical science 9:24 (2018), 5452-5460 (see page 7). 76 Weiwei Ju, Yi Zhang, Tongwei Li, Donghui Wang, Enqin Zhao, Guangxiong Hu, Yanmin Xu y Haisheng Li. A type-II WSe2/HfSe2 van der Waals heterostructure with adjustable electronic and optical properties. Results in Physics 25 (2021), 104250. issn: 2211-3797. doi: https: / / doi. org /10.1016 /j. rinp.2021.104250. url: https: / /www. sciencedirect.com / science/article/pii/S2211379721003909 (see page 7). Qilin Cheng, Jinbo Pang, Dehui Sun, Jingang Wang, Shu Zhang, Fan Liu, Yuke Chen, Ruiqi Yang, Na Liang, Xiheng Lu y col. WSe2 2D p-type semiconductor-based electronic devices for information technology: design, preparation, and applications. InfoMat 2:4 (2020), 656-697 (see pages 7, 8). Kai-Xuan Chen, Xiao-Ming Wang, Dong-Chuan Mo y Shu-Shen Lyu. Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. The Journal of Physical Chemistry C 119:47 (2015), 26706-26711 (see page 7). Anchal Sharma, Charu Madhu y Jay P. Singh. Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review. International Journal of Computer Applications 89 (2014), 36-40 (see page 8). Mahito Yamamoto, Ryo Nouchi, Teruo Kanki, Azusa N Hattori, Kenji Watanabe, Takashi Taniguchi, Keiji Ueno e Hidekazu Tanaka. Gate-tunable thermal metal–insulator transition in VO2 monolithically integrated into a WSe2 field-effect transistor. ACS applied materials & interfaces 11:3 (2019), 3224-3230 (see page 8). Andreas Pospischil, Marco M Furchi y Thomas Mueller. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature nanotechnology 9:4 (2014), 257-261 (see pages 8, 9). Andreas Pospischil y Thomas Mueller. Optoelectronic devices based on atomically thin transition metal dichalcogenides. Applied Sciences 6:3 (2016), 78 (see pages 9, 10). Jorge A Sauceda. Introducción al estudio de los Materiales Multiferroicos. Revista de la Escuela de Física 2:1 (2014), 11-37 (see page 10). Dr. Irfan Lone, Jeenat Aslam, N.R.E. Radwan, Ali Bashal, Amin Ajlouni y Arifa Akhter. Multiferroic ABO3 Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism. Nanoscale Research Letters 14 (dic. de 2019). doi: 10.1186/s11671-019-2961-7 (see pages 10, 11, 13). T Kimura, S Kawamoto, I Yamada, M Azuma, M Takano e Y Tokura. Magnetocapacitance effect in multiferroic BiMnO 3. Physical Review B 67:18 (2003), 180401 (see page 10). Richard Javier Caraballo-Vivas. Magnetism from intermetallics and perovskite oxides. arXiv preprint arXiv:1707.09868 (2017) (see page 11). Pengcheng Chen, Yong Xu, Na Wang, Artem Oganov y Wenhui Duan. Effects of ferroelectric polarization on surface phase diagram: Evolutionary algorithm study of the BaTiO 3 (001) surface. Physical Review B 92 (mayo de 2015). doi: 10.1103/PhysRevB.92.085432 (see pages 12, 13). Joseph Valasek. Piezo-electric and allied phenomena in Rochelle salt. Physical review 17:4 (1921), 475 (see page 12). Ravinder S Dahiya y Maurizio Valle. Robotic tactile sensing: technologies and system. Springer, 2013 (see pages 14, 15). Daniel Khomskii. Classifying multiferroics: Mechanisms and effects. Physics 2 (2009), 20 (see page 16). 77 Hiromi Shima, Hiroshi Naganuma y Soichiro Okamura. Optical properties of multiferroic BiFeO3 films. Materials Science-Advanced Topics (2013), 33-61 (see pages 16, 17). Lujun Wei, Bai Sun, Wenxi Zhao, Hongwei Li y Peng Chen. Light regulated I–V hysteresis loop of Ag/BiFeO3/FTO thin film. Applied Surface Science 393 (2017), 325-329 (see pages 16, 21, 67. Chengliang Lu, Menghao Wu, Lin Lin y Jun-Ming Liu. Single-phase multiferroics: new materials, phenomena, and physics. National Science Review 6:4 (2019), 653-668 (see page 16). S. J. Cho, M. J. Uddin y P. Alaboina. Review of Nanotechnology for Cathode Materials in Batteries. Elsevier Inc., 2017, 83-129. isbn: 9780323429962. doi: 10.1016 /B978 - 0 - 323 - 42977-1.00003-0. url: http://dx.doi.org/10.1016/B978-0-323-42977-1/00003-0 (see pages 17, 23). Junling Wang. Multiferroic materials: Properties, techniques, and applications. CRC Press, 2016 (see pages 17, 18). Sefaattin Tongay, Sima S Varnoosfaderani, Bill R Appleton, Junqiao Wu y Arthur F Hebard. Magnetic properties of MoS 2: Existence of ferromagnetism. Applied Physics Letters 101:12 (2012), 123105 (see page 18). Xirui Wang, Kenji Yasuda, Yang Zhang, Song Liu, Kenji Watanabe, Takashi Taniguchi, James Hone, Liang Fu y Pablo Jarillo-Herrero. Interfacial ferroelectricity in rhombohedralstacked bilayer transition metal dichalcogenides. Nature nanotechnology (2022), 1-5 (see page 18). Wenzhuo Wu, Lei Wang, Yilei Li, Fan Zhang, Long Lin, Simiao Niu, Daniel Chenet, Xian Zhang, Yufeng Hao, Tony F Heinz y col. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:7523 (2014), 470-474 (see page 18). Pankaj Sharma, Fei-Xiang Xiang, Ding-Fu Shao, Dawei Zhang, Evgeny Y Tsymbal, Alex R Hamilton y Jan Seidel. A room-temperature ferroelectric semimetal. Science advances 5:7 (2019), eaax5080 (see page 18). Zurab Guguchia. Unconventional Magnetism in Layered Transition Metal Dichalcogenides. Condensed Matter 5:2 (2020), 42 (see page 18). TW Hickmott. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics 33:9 (1962), 2669-2682 (see page 18). Jae Sung Lee, Shinbuhm Lee y Tae Won Noh. Resistive switching phenomena: A review of statistical physics approaches. Applied Physics Reviews 2:3 (2015), 031303 (see pages 19, 20). A Beck, JG Bednorz, Ch Gerber, Ch Rossel y D Widmer. Reproducible switching eect in thin oxide films for memory applications. Applied Physics Letters 77:1 (2000), 139-141 (see page 19). Isao H Inoue y Akihito Sawa. Resistive switchings in transition-metal oxides. Funct. Met. Oxides 11 (2013), 443-463 (see page 20). Can Wang, Kui-juan Jin, Zhong-tang Xu, Le Wang, Chen Ge, Hui-bin Lu, Hai-zhong Guo, Meng He y Guo-zhen Yang. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO 3 thin films. Applied Physics Letters 98:19 (2011), 192901 (see page 20). 78 Xiaohan Wu, Ruijing Ge, Yuqian Gu, Emmanuel Okogbue, Jianping Shi, Abhay Shivayogimath, Peter Bøggild, Timothy J Booth, Yanfeng Zhang, Yeonwoong Jung y col. Universal Non-Volatile Resistive Switching Behavior in 2D Metal Dichalcogenides Featuring Unique Conductive-Point Random Access Memory Effect. En: 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE. 2021, 1-3 (see pages 21, 22). Muhammad Muqeet Rehman, Hafiz Mohammad Mutee Ur Rehman, Jahan Zeb Gul, Woo Young Kim, Khasan S Karimov y Nisar Ahmed. Decade of 2D-materials-based RRAM devices: a review. Science and technology of advanced materials 21:1 (2020), 147-186 (see page 21). Yida Li, Maheswari Sivan, Jessie Xuhua Niu, Hasita Veluri, Evgeny Zamburg, Jinfeng Leong, Umesh Chand, Subhranu Samanta, Xinghua Wang, Xuewei Feng, Yunshan Zhao y Aaron Voon-Yew Thean. Aerosol Jet Printed WSe2Based RRAM on Kapton Suitable for Flexible Monolithic Memory Integration. En: 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019, 1-3. doi: 10.1109/FLEPS. 2019.8792256 (see page 22). Carlo Paorici y Giovanni Attolini. Vapour growth of bulk crystals by PVT and CVT. Progress in Crystal Growth and Characterization of Materials 48-49:1-3 SPEC. ISS. (Ene. de 2004), 2-41. issn: 0960-8974 (see pages 24, 25). Diana Jim y Paula Giraldo. Agradecimientos (2020) (see page 25). Michael Binnewies, Robert Glaum, Marcus Schmidt y Peer Schmidt. Chemical vapor transport reactions. Chemical Vapor Transport Reactions (2021), 1-628. doi: 10.1515/9783110254655 (see page 25). J. B. Legma, G. Vacquier y A. Casalot. Chemical vapour transport of molybdenum and tungsten diselenides by various transport agents. Journal of Crystal Growth 130:1-2 (1993), 253-258. issn: 00220248. doi: 10.1016/0022-0248(93)90859-U (see page 25). Peng Yu, Junhao Lin, Linfeng Sun, Quang Luan Le, Xuechao Yu, Guanhui Gao, Chuang Han Hsu, Di Wu, Tay Rong Chang, Qingsheng Zeng, Fucai Liu, Qi Jie Wang, Horng Tay Jeng, Hsin Lin, Achim Trampert, Zexiang Shen, Kazu Suenaga y Zheng Liu. Metal–Semiconductor Phase-Transition in WSe2(1-x)Te2x Monolayer. Advanced Materials 29:4 (2017), 1-8. issn: 15214095. doi: 10.1002/adma.201603991 (see pages 25, 35, 46-48). Makoto Tachibana. Beginner’s Guide to Flux Crystal Growth. NIMS Monographs (2017). doi: 10.1007/978-4-431-56587-1. url: http://link.springer.com/10.1007/978-4-431-56587-1 (see page 26). Mercouri G. Kanatzidis, Rainer Pöttgen y Wolfgang Jeitschko. The metal ux: A preparative tool for the exploration of intermetallic compounds. Angewandte Chemie - International Edition 44:43 (2005), 6996-7023. issn: 14337851. doi: 10.1002/anie.200462170 (see page 26). Wolfgang K. Hofmann. Molybdenum and tungsten diselenide from high temperature solutions. Journal of Crystal Growth 76:1 (1986), 93-99. issn: 00220248. doi: 10.1016/0022- 0248(86)90014-X (see page 26). Robert W. Cahn. Binary Alloy Phase Diagrams-Second edition. T. B. Massalski, Editor in-Chief; H. Okamoto, P. R. Subramanian, L. Kacprzak, Editors. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., hard- back. 995.00 the set. Advanced Materials 3:12 (dic. de 1991), 628-629. issn: 0935-9648. doi: 10.1002/ADMA. 19910031215 (see page 27). 79 G. P. Voutsas, A. G. Papazoglou, P. J. Rentzeperis y D. Siapkas. The crystal structure of antimony selenide, Sb 2 Se 3 . Zeitschrift für Kristallographie - Crystalline Materials 171:1-4 (oct. de 1985), 261-268. issn: 2194-4946. doi: 10.1524/ZKRI.1985.171.14.261 (see page 27). Robert E. Dinnebier y S. J. L. Billinge. Powder difraction : theory and practice (2008), 582 (see pages 28, 30, 31). B.D. Cullity y S.R. Stock. Elements of X-Ray Difrraction. Third. United States of America: Pearson Education Limited, 2001, 608. isbn: 1269374508 (see pages 29, 30). Amandeep Singh Wadhwa y Harvinder Singh Dhaliwal. A Textbook of Engineering Material and Metallurgy. Firewall Media, 2008 (see page 32). M Steven Shackley. «An introduction to X-ray uorescence (XRF) analysis in archaeology». En: X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, 2011, 7-44 (see page 33). Ewen Smith y Geoffrey Dent. Modern Raman spectroscopy: a practical approach. John Wiley & Sons, 2019 (see pages 33, 34). Philipp Tonndorf, Robert Schmidt, Philipp Böttger, Xiao Zhang, Janna Börner, Andreas Liebig, Manfred Albrecht, Christian Kloc, Ovidiu Gordan, Dietrich RT Zahn y col. Photoluminescence emission and Raman response of monolayer MoS 2, MoSe 2, and WSe 2. Optics express 21:4 (2013), 4908-4916 (see page 34). Yuxuan Lin y col. Optical properties of two-dimensional transition metal dichalcogenides. Tesis doct. Massachusetts Institute of Technology, 2014 (see page 35). Dieter K. Schroder. Semiconductor Material And Device Characterization. Third. isbn: 9780471739067 (see pages 36-38). IRE L. B. VALDES, MEMBER. Resistivity Measurements on Germanium for Transistors. 29 (1952), 1429-1434 (see page 36). Adenilson J Chiquito, Cleber A Amorim, Olivia M Berengue, Luana S Araujo, Eric P Bernardo y Edson R Leite. Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. Journal of Physics: Condensed Matter 24:22 (2012), 225303 (see page 39). Sam Thomas, S Prakash y Kumutha Priya. Characterization of memristor based on nonlinear ion drift model. En: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE. 2017, 2189-2192 (see page 39). Salcedo Pimienta José Danilo. Onda de densidad de carga y superconductividad en ta1- xmoxs2 : evolución de propiedades estructurales y electrónicas (2021). url: http://hdl. handle.net/1992/51685 (see page 39). Neha Kumari, Mansi Kalyan, SuryaKanta Ghosh, Amit Ranjan Maity y Rupam Mukherjee. Possible negative correlation between electrical and thermal conductivity in p-doped WSe2 single crystal. Materials Research Express 8:4 (2021), 045902 (see page 40). Meshal Alzaid, NMA Hadia, ER Shaaban, M El-Hagary y WS Mohamed. Thickness controlling bandgap energy, refractive index and electrical conduction mechanism of 2D Tungsten Diselenide (WSe2) thin films for photovoltaic applications. Applied Physics A 128:2 (2022), 1-12 (see page 40). Hans-Jürgen Butt, Brunero Cappella y Michael Kappl. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface science reports 59:1-6 (2005), 1-152 (see pages 40, 41). 80 Alessio Morelli. Piezoresponse force microscopy of ferroelectric thin films. English. Relation: http://www.rug.nl/ Rights: University of Groningen. Tesis doct. 2009. isbn: 9789036739382 (see pages 42, 43). F Peter, A Rüdiger, R Dittmann, R Waser, K Szot, B Reichenberg y K Prume. Analysis of shape effects on the piezoresponse in ferroelectric nanograins with and without adsorbates. Applied Physics Letters 87:8 (2005), 082901 (see page 42). Piezoresponse Force Microscopy (PFM). url: https://www.parksystems.com/park-spm-modes/ 93- dielectric- piezoelectric/230- piezoelectric- force-microscopy- pfm (visitado 08-05-2022) (see page 42). Marin Cernea, bullet Lucian, Lucian Trupina, Bogdan Vasile, Roxana Trusca y Cristina Chirila. Nanotubes of piezoelectric BNT–BT 0.08 obtained from sol–gel precursor. Jul. de 2013. doi: 10.1007/s11051-013-1787-y (see page 43). Diego Andrés Carranza Célis, Juan Gabriel Ramírez Rojas, Paula Liliana Giraldo Gallo y Johans Restrepo Cárdenas. Control de propiedades multiferroicas en nanopartículas de BiFeO3 / Diego Andrés Carranza Célis ; Juan Gabriel Ramírez, director ; Paula Liliana Giraldo Gallo, Johans Restrepo Cárdenas, jurados. 2018. url: http://biblioteca.uniandes.edu.co/acepto201699.php? id=15989.pdf (see page 44). T Thomson. Magnetic properties of metallic thin films. Metallic Films for Electronic, Optical and Magnetic Applications (2014), 454-546 (see pages 43, 44). John Philip McKelvey. Física del estado sólido y de semiconductores /. Incluye índice. México : Limusa, 1976 (see page 46). Pierre Villars y Karin Cenzual, eds. 2H-WSe2 (WSe2) Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012”. accessed 2022-05-30. url: https://materials.springer. com/isp/crystallographic/docs/sd_0310430 (see page 52). Islam S.M. Khalil, Anke Klingner y Sarthak Misra. «Chapter 3 - Theory of electromagnetics: Soft-magnetic bodies». En: Mathematical Modeling of Swimming Soft Microrobots. Ed. por Islam S.M. Khalil, Anke Klingner y Sarthak Misra. Academic Press, 2021, 43-59. isbn: 978- 0-12-816945-2. doi: https: / / doi . org /10 .1016 /B978 - 0 - 12 - 816945 - 2 .00011 - 0. url: https: //www.sciencedirect.com/science/article/pii/B9780128169452000110 (see page 58). Yanlin Song y Daoben Zhu. High density data storage: Principle, Technology, and Materials. World Scientific, 2009 (see page 59). webelements. url: https://www.webelements.com/tungsten/atoms.html (visitado 08-05-2023) (see page 59). Seok Joon Yun, Dinh Loc Duong, Doan Manh Ha, Kirandeep Singh, Thanh Luan Phan, Wooseon Choi, Young-Min Kim y Young Hee Lee. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Advanced Science 7:9 (2020), 1903076 (see page 60). RS Weis y TK Gaylord. Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A 37:4 (1985), 191-203 (see page 62). Andres Gomez, Marti Gich, Adrien Carretero-Genevrier, Teresa Puig y Xavier Obradors. Piezo-generated charge mapping revealed through direct piezoelectric force microscopy. Nature communications 8:1 (2017), 1-10 (see page 62). Shilpa Rana, Vishal Singh y Bharti Singh. Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. iScience 25:2 (2022), 103748. issn: 2589-0042. doi: https : / / doi . org / 10 . 1016 / j . isci . 2022 . 103748. url: https : //www.sciencedirect.com/science/article/pii/S2589004222000189 (see page 62). 81 Shuoguo Yuan y col. 2d ferroelectricity and piezoelectricity for electronic devices (2020) (see page 62). Ju-Hyuck Lee, Jae Young Park, Eun Bi Cho, Tae Yun Kim, Sang A Han, Tae-Ho Kim, Yanan Liu, Sung Kyun Kim, Chang Jae Roh, Hong-Joon Yoon y col. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Advanced Materials 29:29 (2017), 1606667 (see page 62). Anshida Mayeen y Nandakumar Kalarikkal. «Piezoelectric Polymer Nanocomposites For Energy-Scavenging Applications». En: Polymeric and Nanostructured Materials: Synthesis, Properties, and Advanced Applications. CRC Press, 2018, 273-292 (see page 62). AO Slobodeniuk, Ł Bala, M Koperski, MR Molas, P Kossacki, K Nogajewski, M Bartos, K Watanabe, T Taniguchi, C Faugeras y col. Fine structure of K-excitons in multilayers of transition metal dichalcogenides. arXiv preprint arXiv:1810.00623 (2018) (see page 64). Hanjun Jiang, Lu Zheng, Jing Wang, Manzhang Xu, Xuetao Gan, Xuewen Wang y Wei Huang. Inversion symmetry broken in 2H phase vanadium-doped molybdenum disulfide. Nanoscale 13:43 (2021), 18103-18111 (see page 64). Seunghun Kang, Sera Kim, Sera Jeon, Woo-Sung Jang, Daehee Seol, Young-Min Kim, Jaekwang Lee, Heejun Yang y Yunseok Kim. Atomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides. Nano Energy 58 (2019), 57-62 (see page 64). Frank Lechermann, Noam Bernstein, II Mazin y Roser Valentí. Uncovering the mechanism of the impurity-selective mott transition in paramagnetic v 2 o 3. Physical review letters 121:10 (2018), 106401 (see page 66). Yoav Kalcheim, Alberto Camjayi, Javier Del Valle, Pavel Salev, Marcelo Rozenberg e Ivan K Schuller. Non-thermal resistive switching in Mott insulator nanowires. Nature communications 11:1 (2020), 2985 (see page 66). Paola Russo, Ming Xiao y Norman Y Zhou. Electrochemical Oxidation Induced MultiLevel Memory in Carbon-Based Resistive Switching Devices. Scientific reports 9:1 (2019), 1-10 (see page 68). C. Espejo y W. López. Comunicación privada. Uninorte (2022) (see page 73).
dc.rights.en.fl_str_mv CC0 1.0 Universal
dc.rights.uri.none.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 88 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Maestría en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/8e84e440-34d7-4196-8a60-38d5a4ed5f04/download
https://repositorio.uniandes.edu.co/bitstreams/cfc3d2ed-c545-4b4b-8a02-7bf63588b6a5/download
https://repositorio.uniandes.edu.co/bitstreams/9aadac40-433b-4a68-9969-479046874f89/download
https://repositorio.uniandes.edu.co/bitstreams/f416668d-0bee-446c-b6ea-cf4585d34c47/download
https://repositorio.uniandes.edu.co/bitstreams/51fdc8b5-52b4-4c9f-a238-5604db2549e4/download
https://repositorio.uniandes.edu.co/bitstreams/eb589378-6e62-4b95-9f34-0aeb289a27cb/download
https://repositorio.uniandes.edu.co/bitstreams/383b9e06-bd7d-4590-87e4-b7f67afdda78/download
https://repositorio.uniandes.edu.co/bitstreams/f31f39a0-a632-43d0-a3da-8dc71c9b0c83/download
bitstream.checksum.fl_str_mv b681df7ef13aa8cc8d6d997225839979
dff6b18979e9655dcf40daa11719ef5e
42fd4ad1e89814f5e4a476b409eb708c
ae9e573a68e7f92501b6913cc846c39f
503d999048fada1473d5cab40952d354
b236fc41d1db8c133a73c475f8445452
2f72c5155827473952a150a8a9a10409
e444539273f5fae1f889c909d1f7cc5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133831734460416
spelling Giraldo Gallo, Paula LilianaGalvis Echeverry, José AugustoVega Bustos, Karen AlejandraRodríguez Dueñas, Ferney JavierEspejo Pabón, CamiloFacultad de Ciencias2023-11-01T21:04:17Z2023-11-01T21:04:17Z2022-07-27https://hdl.handle.net/1992/70971instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La búsqueda de nuevos y mejores materiales multiferroicos está motivada por las posibilidades que ofrecen la sintonización de propiedades magnéticas mediante la aplicación de un campo eléctrico o, viceversa, el control de la polarización eléctrica por campos magnéticos. En la actualidad, la familia de materiales vdW más investigada son los dicalcogenuros de metales de transición (TMD) por exhibir propiedades eléctricas, mecánicas y ópticas prometedoras. Dentro de los TMDs se tienen materiales que bajo ciertas condiciones se ha reportado ferroelectricidad o ferromagnetismo por separado (WTe2, MoS2, MoSe2, WS2, WSe2). En este trabajo, se estudia la variación de las propiedades electrónicas de monocristales de WSe2 a partir de dopaje con Telurio (Te). Como resultado de este dopaje químico, se encontró la presencia en simultáneo de estados ferromagnéticos y ferroeléctricos, es decir, multiferroicidad a temperatura ambiente en el bulk de este material (detectado por primera vez en los TMDs). Monocristales con diferentes niveles de dopaje de Te fueron caracterizados a partir de medidas de XRD, magnetización, microscopía PFM/AMF, y transporte eléctrico. A partir de estas últimas se detectaron propiedades multifuncionales de diodo, suicheo resistivo e histéresis capacitiva.Ministerio de Ciencia, Tecnología e Innovación de Colombia, through Grant No. 122585271058. Fundación para la promoción de la investigación y la tecnología (FPIT), of Banco de la República de Colombia, Project number 4.687Magister en Ciencias - FísicaMaestríaQuantum MaterialsMateriales88 páginasapplication/pdfspaUniversidad de los AndesMaestría en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Variación de propiedades electrónicas del dicalcogenuro de metal de transición WSe2 a partir de dopaje químicoVariación de propiedades electrónicas del WSe2 a partir de dopaje químicoTrabajo de grado - Maestríainfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDtungsteno selenio 2materiales multiferroicosDicalcogenuros de metales de transición (TMD)WSe2FísicaJae-Hyeon Cho y Wook Jo. A brief review on magnetoelectric multiferroic oxides. Journal of the Korean Institute of Electrical and Electronic Material Engineers 34:3 (2021), 149-166 (see pages iii, 1, 10). H Béa, M Gajek, M Bibes y A Barthélémy. Spintronics with multiferroics. Journal of Physics: Condensed Matter 20:43 (2008), 434221 (see pages iii, 1). Menghao Wu. Two-dimensional van der Waals ferroelectrics: Scientic and technological opportunities. ACS nano 15:6 (2021), 9229-9237 (see pages iii, 1). Yan Lu, Ruixiang Fei, Xiaobo Lu, Linghan Zhu, Li Wang y Li Yang. Artifcial multiferroics and enhanced magnetoelectric efect in van der Waals heterostructures. ACS applied materials & interfaces 12:5 (2020), 6243-6249 (see pages iii, 1, 18). Andres Castellanos-Gomez. Why all the fuss about 2D semiconductors? Nature Photonics 10:4 (2016), 202-204 (see pages iii, 1, 3, 4, 6). Ethan C Ahn. 2D materials for spintronic devices. npj 2D Materials and Applications 4:1 (2020), 1-14 (see pages iii, 1, 6). Muhammad Habib, Zahir Muhammad, Rashid Khan, Chuanqiang Wu, Zia ur Rehman, Yu Zhou, Hengjie Liu y Li Song. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping. Nanotechnology 29:11 (2018), 115701 (see pages iii, 2, 60). Ehsan Nasr Esfahani, Terrance Li, Bevin Huang, Xiaodong Xu y Jiangyu Li. Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy. Nano Energy 52 (2018), 117-122 (see pages iii, 2, 7, 18). Dirk Van Delft y Peter Kes. The discovery of superconductivity. Physics Today 63:9 (2010), 38-43 (see pages 1, 10). Nicola A Hill. Why are there so few magnetic ferroelectrics? 2000 (see pages 1, 10-12, 15, 16). AJC Buurma, GR Blake, TTM Palstra y Umut Adem. Multiferroic materials: physics and properties. Reference Module in Materials Science and Materials Engineering (2016) (see pages 1, 10, 12, 16). Sahwan Hong, Taekjib Choi, Ji Hoon Jeon, Yunseok Kim, Hosang Lee, Ho-Young Joo, Inrok Hwang, Jin-Soo Kim, Sung-Oong Kang, Sergei V Kalinin y col. Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes. Advanced Materials 25:16 (2013), 2339-2343 (see page 1). F Yan, GZ Xing y L Li. Low temperature dependent ferroelectric resistive switching in epitaxial BiFeO3 films. Applied Physics Letters 104:13 (2014), 132904 (see pages 1, 20, 21). Kin Fai Mak y Jie Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics 10:4 (2016), 216-226 (see pages 1, 5). Tingting Zhong, Xiaoyong Li, Menghao Wu y Jun-Ming Liu. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. National science review 7:2 (2020), 373-380 (see page 1). 75 Zhengyuan Tu y Menghao Wu. 2D diluted multiferroic semiconductors upon intercalation. Advanced Electronic Materials 5:6 (2019), 1800960 (see page 1). Ziji Shao, Jinghua Liang, Qirui Cui, Mairbek Chshiev, Albert Fert, Tiejun Zhou y Hongxin Yang. Multiferroic materials based on transition-metal dichalcogenides: Potential platform for reversible control of Dzyaloshinskii-Moriya interaction and skyrmion via electric field. Physical Review B 105:17 (2022), 174404 (see page 1). Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V Yazyev y Andras Kis. 2D transition metal dichalcogenides. Nature Reviews Materials 2:8 (2017), 1-15 (see pages 3-5). Jiawen You, Md Delowar Hossain y Zhengtang Luo. Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Convergence 5:1 (2018), 1-13 (see page 3). Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh y Hua Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry 5:4 (2013), 263-275 (see pages 3, 4). Kinga Lasek, Jingfeng Li, Sadhu Kolekar, Paula Mariel Coelho, Min Zhang, Zhiming Wang, Matthias Batzill y col. Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective. Surface Science Reports 76:2 (2021), 100523 (see page 4). Santanu Das, Moonkyung Kim, Jo-won Lee y Wonbong Choi. Synthesis, properties, and applications of 2-D materials: A comprehensive review. Critical Reviews in Solid State and Materials Sciences 39:4 (2014), 231-252 (see page 5). Intek Song, Chibeom Park y Hee Cheul Choi. Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. Rsc Advances 5:10 (2015), 7495-7514 (see page 5). Yuerui Lu. Two-dimensional Materials in Nanophotonics: Developments, Devices, and Applications. CRC Press, 2019 (see page 5). Francesco Bonaccorso, Antonino Bartolotta, Jonathan N Coleman y Claudia Backes. 2D-crystal-based functional inks. Advanced Materials 28:29 (2016), 6136-6166 (see page 6). Xu Jing, Yury Illarionov, Eilam Yalon, Peng Zhou, Tibor Grasser, Yuanyuan Shi y Mario Lanza. Engineering field eect transistors with 2D semiconducting channels: Status and prospects. Advanced Functional Materials 30:18 (2020), 1901971 (see page 6). Ajit Srivastava, Meinrad Sidler, Adrien V Allain, Dominik S Lembke, Andras Kis y A Imamoğlu. Valley Zeeman efect in elementary optical excitations of monolayer WSe2. Nature Physics 11:2 (2015), 141-147 (see page 6). D Voß, P Krüger, A Mazur y J Pollmann. Atomic and electronic structure of WSe 2 from ab initio theory: Bulk crystal and thin film systems. Physical Review B 60:20 (1999), 14311 (see page 6). MK Agarwal, VV Rao y VM Pathak. Growth of n-type and p-type WSe2 crystals using SeCl4 transporter and their characterization. Journal of crystal growth 97:3-4 (1989), 675-679 (see page 7). Adem Ali Muhabie, Ching-Hwa Ho, Belete Tewabe Gebeyehu, Shan-You Huang, Chih-Wei Chiu, Juin-Yih Lai, Duu-Jong Lee y Chih-Chia Cheng. Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical science 9:24 (2018), 5452-5460 (see page 7). 76 Weiwei Ju, Yi Zhang, Tongwei Li, Donghui Wang, Enqin Zhao, Guangxiong Hu, Yanmin Xu y Haisheng Li. A type-II WSe2/HfSe2 van der Waals heterostructure with adjustable electronic and optical properties. Results in Physics 25 (2021), 104250. issn: 2211-3797. doi: https: / / doi. org /10.1016 /j. rinp.2021.104250. url: https: / /www. sciencedirect.com / science/article/pii/S2211379721003909 (see page 7). Qilin Cheng, Jinbo Pang, Dehui Sun, Jingang Wang, Shu Zhang, Fan Liu, Yuke Chen, Ruiqi Yang, Na Liang, Xiheng Lu y col. WSe2 2D p-type semiconductor-based electronic devices for information technology: design, preparation, and applications. InfoMat 2:4 (2020), 656-697 (see pages 7, 8). Kai-Xuan Chen, Xiao-Ming Wang, Dong-Chuan Mo y Shu-Shen Lyu. Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. The Journal of Physical Chemistry C 119:47 (2015), 26706-26711 (see page 7). Anchal Sharma, Charu Madhu y Jay P. Singh. Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review. International Journal of Computer Applications 89 (2014), 36-40 (see page 8). Mahito Yamamoto, Ryo Nouchi, Teruo Kanki, Azusa N Hattori, Kenji Watanabe, Takashi Taniguchi, Keiji Ueno e Hidekazu Tanaka. Gate-tunable thermal metal–insulator transition in VO2 monolithically integrated into a WSe2 field-effect transistor. ACS applied materials & interfaces 11:3 (2019), 3224-3230 (see page 8). Andreas Pospischil, Marco M Furchi y Thomas Mueller. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature nanotechnology 9:4 (2014), 257-261 (see pages 8, 9). Andreas Pospischil y Thomas Mueller. Optoelectronic devices based on atomically thin transition metal dichalcogenides. Applied Sciences 6:3 (2016), 78 (see pages 9, 10). Jorge A Sauceda. Introducción al estudio de los Materiales Multiferroicos. Revista de la Escuela de Física 2:1 (2014), 11-37 (see page 10). Dr. Irfan Lone, Jeenat Aslam, N.R.E. Radwan, Ali Bashal, Amin Ajlouni y Arifa Akhter. Multiferroic ABO3 Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism. Nanoscale Research Letters 14 (dic. de 2019). doi: 10.1186/s11671-019-2961-7 (see pages 10, 11, 13). T Kimura, S Kawamoto, I Yamada, M Azuma, M Takano e Y Tokura. Magnetocapacitance effect in multiferroic BiMnO 3. Physical Review B 67:18 (2003), 180401 (see page 10). Richard Javier Caraballo-Vivas. Magnetism from intermetallics and perovskite oxides. arXiv preprint arXiv:1707.09868 (2017) (see page 11). Pengcheng Chen, Yong Xu, Na Wang, Artem Oganov y Wenhui Duan. Effects of ferroelectric polarization on surface phase diagram: Evolutionary algorithm study of the BaTiO 3 (001) surface. Physical Review B 92 (mayo de 2015). doi: 10.1103/PhysRevB.92.085432 (see pages 12, 13). Joseph Valasek. Piezo-electric and allied phenomena in Rochelle salt. Physical review 17:4 (1921), 475 (see page 12). Ravinder S Dahiya y Maurizio Valle. Robotic tactile sensing: technologies and system. Springer, 2013 (see pages 14, 15). Daniel Khomskii. Classifying multiferroics: Mechanisms and effects. Physics 2 (2009), 20 (see page 16). 77 Hiromi Shima, Hiroshi Naganuma y Soichiro Okamura. Optical properties of multiferroic BiFeO3 films. Materials Science-Advanced Topics (2013), 33-61 (see pages 16, 17). Lujun Wei, Bai Sun, Wenxi Zhao, Hongwei Li y Peng Chen. Light regulated I–V hysteresis loop of Ag/BiFeO3/FTO thin film. Applied Surface Science 393 (2017), 325-329 (see pages 16, 21, 67. Chengliang Lu, Menghao Wu, Lin Lin y Jun-Ming Liu. Single-phase multiferroics: new materials, phenomena, and physics. National Science Review 6:4 (2019), 653-668 (see page 16). S. J. Cho, M. J. Uddin y P. Alaboina. Review of Nanotechnology for Cathode Materials in Batteries. Elsevier Inc., 2017, 83-129. isbn: 9780323429962. doi: 10.1016 /B978 - 0 - 323 - 42977-1.00003-0. url: http://dx.doi.org/10.1016/B978-0-323-42977-1/00003-0 (see pages 17, 23). Junling Wang. Multiferroic materials: Properties, techniques, and applications. CRC Press, 2016 (see pages 17, 18). Sefaattin Tongay, Sima S Varnoosfaderani, Bill R Appleton, Junqiao Wu y Arthur F Hebard. Magnetic properties of MoS 2: Existence of ferromagnetism. Applied Physics Letters 101:12 (2012), 123105 (see page 18). Xirui Wang, Kenji Yasuda, Yang Zhang, Song Liu, Kenji Watanabe, Takashi Taniguchi, James Hone, Liang Fu y Pablo Jarillo-Herrero. Interfacial ferroelectricity in rhombohedralstacked bilayer transition metal dichalcogenides. Nature nanotechnology (2022), 1-5 (see page 18). Wenzhuo Wu, Lei Wang, Yilei Li, Fan Zhang, Long Lin, Simiao Niu, Daniel Chenet, Xian Zhang, Yufeng Hao, Tony F Heinz y col. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:7523 (2014), 470-474 (see page 18). Pankaj Sharma, Fei-Xiang Xiang, Ding-Fu Shao, Dawei Zhang, Evgeny Y Tsymbal, Alex R Hamilton y Jan Seidel. A room-temperature ferroelectric semimetal. Science advances 5:7 (2019), eaax5080 (see page 18). Zurab Guguchia. Unconventional Magnetism in Layered Transition Metal Dichalcogenides. Condensed Matter 5:2 (2020), 42 (see page 18). TW Hickmott. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics 33:9 (1962), 2669-2682 (see page 18). Jae Sung Lee, Shinbuhm Lee y Tae Won Noh. Resistive switching phenomena: A review of statistical physics approaches. Applied Physics Reviews 2:3 (2015), 031303 (see pages 19, 20). A Beck, JG Bednorz, Ch Gerber, Ch Rossel y D Widmer. Reproducible switching eect in thin oxide films for memory applications. Applied Physics Letters 77:1 (2000), 139-141 (see page 19). Isao H Inoue y Akihito Sawa. Resistive switchings in transition-metal oxides. Funct. Met. Oxides 11 (2013), 443-463 (see page 20). Can Wang, Kui-juan Jin, Zhong-tang Xu, Le Wang, Chen Ge, Hui-bin Lu, Hai-zhong Guo, Meng He y Guo-zhen Yang. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO 3 thin films. Applied Physics Letters 98:19 (2011), 192901 (see page 20). 78 Xiaohan Wu, Ruijing Ge, Yuqian Gu, Emmanuel Okogbue, Jianping Shi, Abhay Shivayogimath, Peter Bøggild, Timothy J Booth, Yanfeng Zhang, Yeonwoong Jung y col. Universal Non-Volatile Resistive Switching Behavior in 2D Metal Dichalcogenides Featuring Unique Conductive-Point Random Access Memory Effect. En: 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE. 2021, 1-3 (see pages 21, 22). Muhammad Muqeet Rehman, Hafiz Mohammad Mutee Ur Rehman, Jahan Zeb Gul, Woo Young Kim, Khasan S Karimov y Nisar Ahmed. Decade of 2D-materials-based RRAM devices: a review. Science and technology of advanced materials 21:1 (2020), 147-186 (see page 21). Yida Li, Maheswari Sivan, Jessie Xuhua Niu, Hasita Veluri, Evgeny Zamburg, Jinfeng Leong, Umesh Chand, Subhranu Samanta, Xinghua Wang, Xuewei Feng, Yunshan Zhao y Aaron Voon-Yew Thean. Aerosol Jet Printed WSe2Based RRAM on Kapton Suitable for Flexible Monolithic Memory Integration. En: 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019, 1-3. doi: 10.1109/FLEPS. 2019.8792256 (see page 22). Carlo Paorici y Giovanni Attolini. Vapour growth of bulk crystals by PVT and CVT. Progress in Crystal Growth and Characterization of Materials 48-49:1-3 SPEC. ISS. (Ene. de 2004), 2-41. issn: 0960-8974 (see pages 24, 25). Diana Jim y Paula Giraldo. Agradecimientos (2020) (see page 25). Michael Binnewies, Robert Glaum, Marcus Schmidt y Peer Schmidt. Chemical vapor transport reactions. Chemical Vapor Transport Reactions (2021), 1-628. doi: 10.1515/9783110254655 (see page 25). J. B. Legma, G. Vacquier y A. Casalot. Chemical vapour transport of molybdenum and tungsten diselenides by various transport agents. Journal of Crystal Growth 130:1-2 (1993), 253-258. issn: 00220248. doi: 10.1016/0022-0248(93)90859-U (see page 25). Peng Yu, Junhao Lin, Linfeng Sun, Quang Luan Le, Xuechao Yu, Guanhui Gao, Chuang Han Hsu, Di Wu, Tay Rong Chang, Qingsheng Zeng, Fucai Liu, Qi Jie Wang, Horng Tay Jeng, Hsin Lin, Achim Trampert, Zexiang Shen, Kazu Suenaga y Zheng Liu. Metal–Semiconductor Phase-Transition in WSe2(1-x)Te2x Monolayer. Advanced Materials 29:4 (2017), 1-8. issn: 15214095. doi: 10.1002/adma.201603991 (see pages 25, 35, 46-48). Makoto Tachibana. Beginner’s Guide to Flux Crystal Growth. NIMS Monographs (2017). doi: 10.1007/978-4-431-56587-1. url: http://link.springer.com/10.1007/978-4-431-56587-1 (see page 26). Mercouri G. Kanatzidis, Rainer Pöttgen y Wolfgang Jeitschko. The metal ux: A preparative tool for the exploration of intermetallic compounds. Angewandte Chemie - International Edition 44:43 (2005), 6996-7023. issn: 14337851. doi: 10.1002/anie.200462170 (see page 26). Wolfgang K. Hofmann. Molybdenum and tungsten diselenide from high temperature solutions. Journal of Crystal Growth 76:1 (1986), 93-99. issn: 00220248. doi: 10.1016/0022- 0248(86)90014-X (see page 26). Robert W. Cahn. Binary Alloy Phase Diagrams-Second edition. T. B. Massalski, Editor in-Chief; H. Okamoto, P. R. Subramanian, L. Kacprzak, Editors. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol., hard- back. 995.00 the set. Advanced Materials 3:12 (dic. de 1991), 628-629. issn: 0935-9648. doi: 10.1002/ADMA. 19910031215 (see page 27). 79 G. P. Voutsas, A. G. Papazoglou, P. J. Rentzeperis y D. Siapkas. The crystal structure of antimony selenide, Sb 2 Se 3 . Zeitschrift für Kristallographie - Crystalline Materials 171:1-4 (oct. de 1985), 261-268. issn: 2194-4946. doi: 10.1524/ZKRI.1985.171.14.261 (see page 27). Robert E. Dinnebier y S. J. L. Billinge. Powder difraction : theory and practice (2008), 582 (see pages 28, 30, 31). B.D. Cullity y S.R. Stock. Elements of X-Ray Difrraction. Third. United States of America: Pearson Education Limited, 2001, 608. isbn: 1269374508 (see pages 29, 30). Amandeep Singh Wadhwa y Harvinder Singh Dhaliwal. A Textbook of Engineering Material and Metallurgy. Firewall Media, 2008 (see page 32). M Steven Shackley. «An introduction to X-ray uorescence (XRF) analysis in archaeology». En: X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, 2011, 7-44 (see page 33). Ewen Smith y Geoffrey Dent. Modern Raman spectroscopy: a practical approach. John Wiley & Sons, 2019 (see pages 33, 34). Philipp Tonndorf, Robert Schmidt, Philipp Böttger, Xiao Zhang, Janna Börner, Andreas Liebig, Manfred Albrecht, Christian Kloc, Ovidiu Gordan, Dietrich RT Zahn y col. Photoluminescence emission and Raman response of monolayer MoS 2, MoSe 2, and WSe 2. Optics express 21:4 (2013), 4908-4916 (see page 34). Yuxuan Lin y col. Optical properties of two-dimensional transition metal dichalcogenides. Tesis doct. Massachusetts Institute of Technology, 2014 (see page 35). Dieter K. Schroder. Semiconductor Material And Device Characterization. Third. isbn: 9780471739067 (see pages 36-38). IRE L. B. VALDES, MEMBER. Resistivity Measurements on Germanium for Transistors. 29 (1952), 1429-1434 (see page 36). Adenilson J Chiquito, Cleber A Amorim, Olivia M Berengue, Luana S Araujo, Eric P Bernardo y Edson R Leite. Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. Journal of Physics: Condensed Matter 24:22 (2012), 225303 (see page 39). Sam Thomas, S Prakash y Kumutha Priya. Characterization of memristor based on nonlinear ion drift model. En: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE. 2017, 2189-2192 (see page 39). Salcedo Pimienta José Danilo. Onda de densidad de carga y superconductividad en ta1- xmoxs2 : evolución de propiedades estructurales y electrónicas (2021). url: http://hdl. handle.net/1992/51685 (see page 39). Neha Kumari, Mansi Kalyan, SuryaKanta Ghosh, Amit Ranjan Maity y Rupam Mukherjee. Possible negative correlation between electrical and thermal conductivity in p-doped WSe2 single crystal. Materials Research Express 8:4 (2021), 045902 (see page 40). Meshal Alzaid, NMA Hadia, ER Shaaban, M El-Hagary y WS Mohamed. Thickness controlling bandgap energy, refractive index and electrical conduction mechanism of 2D Tungsten Diselenide (WSe2) thin films for photovoltaic applications. Applied Physics A 128:2 (2022), 1-12 (see page 40). Hans-Jürgen Butt, Brunero Cappella y Michael Kappl. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface science reports 59:1-6 (2005), 1-152 (see pages 40, 41). 80 Alessio Morelli. Piezoresponse force microscopy of ferroelectric thin films. English. Relation: http://www.rug.nl/ Rights: University of Groningen. Tesis doct. 2009. isbn: 9789036739382 (see pages 42, 43). F Peter, A Rüdiger, R Dittmann, R Waser, K Szot, B Reichenberg y K Prume. Analysis of shape effects on the piezoresponse in ferroelectric nanograins with and without adsorbates. Applied Physics Letters 87:8 (2005), 082901 (see page 42). Piezoresponse Force Microscopy (PFM). url: https://www.parksystems.com/park-spm-modes/ 93- dielectric- piezoelectric/230- piezoelectric- force-microscopy- pfm (visitado 08-05-2022) (see page 42). Marin Cernea, bullet Lucian, Lucian Trupina, Bogdan Vasile, Roxana Trusca y Cristina Chirila. Nanotubes of piezoelectric BNT–BT 0.08 obtained from sol–gel precursor. Jul. de 2013. doi: 10.1007/s11051-013-1787-y (see page 43). Diego Andrés Carranza Célis, Juan Gabriel Ramírez Rojas, Paula Liliana Giraldo Gallo y Johans Restrepo Cárdenas. Control de propiedades multiferroicas en nanopartículas de BiFeO3 / Diego Andrés Carranza Célis ; Juan Gabriel Ramírez, director ; Paula Liliana Giraldo Gallo, Johans Restrepo Cárdenas, jurados. 2018. url: http://biblioteca.uniandes.edu.co/acepto201699.php? id=15989.pdf (see page 44). T Thomson. Magnetic properties of metallic thin films. Metallic Films for Electronic, Optical and Magnetic Applications (2014), 454-546 (see pages 43, 44). John Philip McKelvey. Física del estado sólido y de semiconductores /. Incluye índice. México : Limusa, 1976 (see page 46). Pierre Villars y Karin Cenzual, eds. 2H-WSe2 (WSe2) Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012”. accessed 2022-05-30. url: https://materials.springer. com/isp/crystallographic/docs/sd_0310430 (see page 52). Islam S.M. Khalil, Anke Klingner y Sarthak Misra. «Chapter 3 - Theory of electromagnetics: Soft-magnetic bodies». En: Mathematical Modeling of Swimming Soft Microrobots. Ed. por Islam S.M. Khalil, Anke Klingner y Sarthak Misra. Academic Press, 2021, 43-59. isbn: 978- 0-12-816945-2. doi: https: / / doi . org /10 .1016 /B978 - 0 - 12 - 816945 - 2 .00011 - 0. url: https: //www.sciencedirect.com/science/article/pii/B9780128169452000110 (see page 58). Yanlin Song y Daoben Zhu. High density data storage: Principle, Technology, and Materials. World Scientific, 2009 (see page 59). webelements. url: https://www.webelements.com/tungsten/atoms.html (visitado 08-05-2023) (see page 59). Seok Joon Yun, Dinh Loc Duong, Doan Manh Ha, Kirandeep Singh, Thanh Luan Phan, Wooseon Choi, Young-Min Kim y Young Hee Lee. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Advanced Science 7:9 (2020), 1903076 (see page 60). RS Weis y TK Gaylord. Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A 37:4 (1985), 191-203 (see page 62). Andres Gomez, Marti Gich, Adrien Carretero-Genevrier, Teresa Puig y Xavier Obradors. Piezo-generated charge mapping revealed through direct piezoelectric force microscopy. Nature communications 8:1 (2017), 1-10 (see page 62). Shilpa Rana, Vishal Singh y Bharti Singh. Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. iScience 25:2 (2022), 103748. issn: 2589-0042. doi: https : / / doi . org / 10 . 1016 / j . isci . 2022 . 103748. url: https : //www.sciencedirect.com/science/article/pii/S2589004222000189 (see page 62). 81 Shuoguo Yuan y col. 2d ferroelectricity and piezoelectricity for electronic devices (2020) (see page 62). Ju-Hyuck Lee, Jae Young Park, Eun Bi Cho, Tae Yun Kim, Sang A Han, Tae-Ho Kim, Yanan Liu, Sung Kyun Kim, Chang Jae Roh, Hong-Joon Yoon y col. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Advanced Materials 29:29 (2017), 1606667 (see page 62). Anshida Mayeen y Nandakumar Kalarikkal. «Piezoelectric Polymer Nanocomposites For Energy-Scavenging Applications». En: Polymeric and Nanostructured Materials: Synthesis, Properties, and Advanced Applications. CRC Press, 2018, 273-292 (see page 62). AO Slobodeniuk, Ł Bala, M Koperski, MR Molas, P Kossacki, K Nogajewski, M Bartos, K Watanabe, T Taniguchi, C Faugeras y col. Fine structure of K-excitons in multilayers of transition metal dichalcogenides. arXiv preprint arXiv:1810.00623 (2018) (see page 64). Hanjun Jiang, Lu Zheng, Jing Wang, Manzhang Xu, Xuetao Gan, Xuewen Wang y Wei Huang. Inversion symmetry broken in 2H phase vanadium-doped molybdenum disulfide. Nanoscale 13:43 (2021), 18103-18111 (see page 64). Seunghun Kang, Sera Kim, Sera Jeon, Woo-Sung Jang, Daehee Seol, Young-Min Kim, Jaekwang Lee, Heejun Yang y Yunseok Kim. Atomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides. Nano Energy 58 (2019), 57-62 (see page 64). Frank Lechermann, Noam Bernstein, II Mazin y Roser Valentí. Uncovering the mechanism of the impurity-selective mott transition in paramagnetic v 2 o 3. Physical review letters 121:10 (2018), 106401 (see page 66). Yoav Kalcheim, Alberto Camjayi, Javier Del Valle, Pavel Salev, Marcelo Rozenberg e Ivan K Schuller. Non-thermal resistive switching in Mott insulator nanowires. Nature communications 11:1 (2020), 2985 (see page 66). Paola Russo, Ming Xiao y Norman Y Zhou. Electrochemical Oxidation Induced MultiLevel Memory in Carbon-Based Resistive Switching Devices. Scientific reports 9:1 (2019), 1-10 (see page 68). C. Espejo y W. López. Comunicación privada. Uninorte (2022) (see page 73).20190467PublicationORIGINALVariación de propiedades electrónicas del dicalcogenuro.pdfVariación de propiedades electrónicas del dicalcogenuro.pdfapplication/pdf51249689https://repositorio.uniandes.edu.co/bitstreams/8e84e440-34d7-4196-8a60-38d5a4ed5f04/downloadb681df7ef13aa8cc8d6d997225839979MD51Vega Burgos Karen.pdfVega Burgos Karen.pdfHIDEapplication/pdf319179https://repositorio.uniandes.edu.co/bitstreams/cfc3d2ed-c545-4b4b-8a02-7bf63588b6a5/downloaddff6b18979e9655dcf40daa11719ef5eMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.uniandes.edu.co/bitstreams/9aadac40-433b-4a68-9969-479046874f89/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f416668d-0bee-446c-b6ea-cf4585d34c47/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTVariación de propiedades electrónicas del dicalcogenuro.pdf.txtVariación de propiedades electrónicas del dicalcogenuro.pdf.txtExtracted texttext/plain102446https://repositorio.uniandes.edu.co/bitstreams/51fdc8b5-52b4-4c9f-a238-5604db2549e4/download503d999048fada1473d5cab40952d354MD55Vega Burgos Karen.pdf.txtVega Burgos Karen.pdf.txtExtracted texttext/plain2082https://repositorio.uniandes.edu.co/bitstreams/eb589378-6e62-4b95-9f34-0aeb289a27cb/downloadb236fc41d1db8c133a73c475f8445452MD57THUMBNAILVariación de propiedades electrónicas del dicalcogenuro.pdf.jpgVariación de propiedades electrónicas del dicalcogenuro.pdf.jpgGenerated Thumbnailimage/jpeg8364https://repositorio.uniandes.edu.co/bitstreams/383b9e06-bd7d-4590-87e4-b7f67afdda78/download2f72c5155827473952a150a8a9a10409MD56Vega Burgos Karen.pdf.jpgVega Burgos Karen.pdf.jpgGenerated Thumbnailimage/jpeg11019https://repositorio.uniandes.edu.co/bitstreams/f31f39a0-a632-43d0-a3da-8dc71c9b0c83/downloade444539273f5fae1f889c909d1f7cc5dMD581992/70971oai:repositorio.uniandes.edu.co:1992/709712023-11-02 03:01:34.468http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K