Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica
En las últimas décadas, diferentes microorganismos, entre ellos cepas de Candida, han desarrollado una nueva característica, denominada “resistencia antimicrobiana”, la cual ha causado que el tratamiento de enfermedades infecciosas sea más complicado debido a que los medicamentos convencionales han...
- Autores:
-
Murcia Galán, Ricardo Andrés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74304
- Acceso en línea:
- https://hdl.handle.net/1992/74304
- Palabra clave:
- Compuestos de coordinación
Ligandos derivados de azoles
Complejos de cobalto(II)
Complejos de cobre(II)
Actividad antifúngica
Química
- Rights
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_05c70503689386306b9300a1fffb316d |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74304 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
title |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
spellingShingle |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica Compuestos de coordinación Ligandos derivados de azoles Complejos de cobalto(II) Complejos de cobre(II) Actividad antifúngica Química |
title_short |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
title_full |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
title_fullStr |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
title_full_unstemmed |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
title_sort |
Síntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica |
dc.creator.fl_str_mv |
Murcia Galán, Ricardo Andrés |
dc.contributor.advisor.none.fl_str_mv |
Hurtado Belalcazar, John Jady |
dc.contributor.author.none.fl_str_mv |
Murcia Galán, Ricardo Andrés |
dc.contributor.jury.none.fl_str_mv |
Polo, Dorian Le Lagadec, Ronan Reiber, Andreas |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias::Grupo de Investigación en Química Inorgánica Catálisis y Bioniorgánica |
dc.subject.keyword.spa.fl_str_mv |
Compuestos de coordinación Ligandos derivados de azoles Complejos de cobalto(II) Complejos de cobre(II) Actividad antifúngica |
topic |
Compuestos de coordinación Ligandos derivados de azoles Complejos de cobalto(II) Complejos de cobre(II) Actividad antifúngica Química |
dc.subject.themes.spa.fl_str_mv |
Química |
description |
En las últimas décadas, diferentes microorganismos, entre ellos cepas de Candida, han desarrollado una nueva característica, denominada “resistencia antimicrobiana”, la cual ha causado que el tratamiento de enfermedades infecciosas sea más complicado debido a que los medicamentos convencionales han ido perdiendo su eficiencia. Lo anterior se ha convertido en un problema global de salud, el cual ha impulsado la búsqueda de nuevos compuestos con potencial antimicrobiano que den respuesta a esta resistencia. Considerando este panorama, en este trabajo se realizó la síntesis y caracterización de complejos con metales de transición, Co(II) y Cu(II), que contienen ligandos derivados de triazoles (1H-benzotriazol y 1H-1,2,4-triazol). Los ligandos fueron caracterizados por punto de fusión, conductividad, espectroscopía de resonancia magnética nuclear (RMN: 1H, 13C), espectroscopía infrarroja (FT-IR) y Raman, cromatografía líquida de alta resolución acoplada a espectrometría de masas (HPLC-QToF) y análisis elemental. Además, el ligando 2, 1,3-bis(1,2,4-triazol-1-il)propan-2-ol, se caracterizó por medio de Difracción de Rayos X de monocristal, confirmando su estructura. Por su parte, los complejos de coordinación fueron caracterizados por punto de fusión, conductividad, espectroscopía infrarroja (FT-IR) y RAMAN, cromatografía líquida de alta resolución acoplada a espectrometría de masas (HPLC-QToF), análisis elemental, análisis termogravimétrico y espectroscopía UV-Vis. Se obtuvieron un total de nueve compuestos nuevos, un ligando y ocho complejos. Adicionalmente, se realizaron cálculos computacionales bajo el modelo DFT, para proponer las posibles estructuras de los complejos 3, 5, 7 y 9, evaluando diferentes confórmeros de cada complejo, realizando la respectiva optimización geométrica y análisis de descomposición de energía. Se realizó el estudio de actividad biológica frente a cuatro cepas de Candida de relevancia clínica. Todos los complejos de cobalto presentaron mayor actividad antifúngica comparada con los ligandos libres. Se destaca la actividad de los complejos de cobalto contra Candida glabrata y Candida parapsilosis llegando a mostrar valores de concentración mínima inhibitoria entre 7.81 y 15.62 μg/mL. Estos resultados pueden proveer un alto potencial para el diseño de nuevos compuestos antifúngicos. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-13T21:21:20Z |
dc.date.issued.none.fl_str_mv |
2024-05-27 |
dc.date.accepted.none.fl_str_mv |
2024-06-13 |
dc.date.available.none.fl_str_mv |
2026-01-18 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74304 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/74304 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74304 |
identifier_str_mv |
10.57784/1992/74304 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
(1) Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food Sci. Nutr. 2017, 57 (13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192. (2) Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O. E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.-M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The Global Threat of Antimicrobial Resistance: Science for Intervention. New Microbes New Infect. 2015, 6, 22–29. https://doi.org/10.1016/j.nmni.2015.02.007. Marston, H. D.; Dixon, D. M.; Knisely, J. M.; Palmore, T. N.; Fauci, A. S. Antimicrobial Resistance. JAMA 2016, 316 (11), 1193–1204. https://doi.org/10.1001/jama.2016.11764. (4) Health–Americas, T. L. R. Antimicrobial Resistance in the Americas: A Tale of Multiple Realities. Lancet Reg. Health-Am. 2023, 25. (5) Aguilar, G. R.; Swetschinski, L. R.; Weaver, N. D.; Ikuta, K. S.; Mestrovic, T.; Gray, A. P.; Chung, E.; Wool, E. E.; Han, C.; Hayoon, A. G.; Araki, D. T.; Abdollahi, A.; Abu-Zaid, A.; Adnan, M.; Agarwal, R.; Dehkordi, J. A.; Aravkin, A. Y.; Areda, D.; Azzam, A. Y.; Berezin, E. N.; Bhagavathula, A. S.; Bhutta, Z. A.; Bhuyan, S. S.; Browne, A. J.; Castañeda-Orjuela, C. A.; Chandrasekar, E. K.; Ching, P. R.; Dai, X.; Darmstadt, G. L.; De la Hoz, F. P.; Diao, N.; Diaz, D.; Mombaque dos Santos, W.; Eyre, D.; Garcia, C.; Haines-Woodhouse, G.; Hassen, M. B.; Henry, N. J.; Hopkins, S.; Hossain, M. M.; Iregbu, K. C.; Iwu, C. C. D.; Jacobs, J. A.; Janko, M. M.; Jones, R.; Karaye, I. M.; Khalil, I. A.; Khan, I. A.; Khan, T.; Khubchandani, J.; Khusuwan, S.; Kisa, A.; Koyaweda, G. W.; Krapp, F.; Kumaran, E. A. P.; Kyu, H. H.; Lim, S. S.; Liu, X.; Luby, S.; Maharaj, S. B.; Maronga, C.; Martorell, M.; May, J.; McManigal, B.; Mokdad, A. H.; Moore, C. E.; Mostafavi, E.; Murillo-Zamora, E.; Mussi-Pinhata, M. M.; Nanavati, R.; Nassereldine, H.; Natto, Z. S.; Qamar, F. N.; Nuñez-Samudio, V.; Ochoa, T. J.; Ojo-Akosile, T. R.; Olagunju, A. T.; Olivas-Martinez, A.; Ortiz-Brizuela, E.; Ounchanum, P.; Paredes, J. L.; Patthipati, V. S.; Pawar, S.; Pereira, M.; Pollard, A.; Ponce-De-Leon, A.; Sady Prates, E. J.; Qattea, I.; Reyes, L. F.; Roilides, E.; Rosenthal, V. D.; Rudd, K. E.; Sangchan, W.; Seekaew, S.; Seylani, A.; Shababi, N.; Sham, S.; Sifuentes-Osornio, J.; Singh, H.; Stergachis, A.; Tasak, N.; Tat, N. Y.; Thaiprakong, A.; Valdez, P. R.; Yada, D. Y.; Yunusa, I.; Zastrozhin, M. S.; Hay, S. I.; Dolecek, C.; Sartorius, B.; Murray, C. J. L.; Naghavi, M. The Burden of Antimicrobial Resistance in the Americas in 2019: A Cross-Country Systematic Analysis. Lancet Reg. Health – Am. 2023, 25. https://doi.org/10.1016/j.lana.2023.100561. (6) Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial Resistance in Humans, Livestock and the Wider Environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370 (1670), 20140083. https://doi.org/10.1098/rstb.2014.0083. (7) Ayukekbong, J. A.; Ntemgwa, M.; Atabe, A. N. The Threat of Antimicrobial Resistance in Developing Countries: Causes and Control Strategies. Antimicrob. Resist. Infect. Control 2017, 6 (1), 47. https://doi.org/10.1186/s13756-017-0208-x. (8) Chang Hsiao-Han; Cohen Ted; Grad Yonatan H.; Hanage William P.; O’Brien Thomas F.; Lipsitch Marc. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiol. Mol. Biol. Rev. 2015, 79 (1), 101–116. https://doi.org/10.1128/mmbr.00039-14. (9) Chitsaz, M.; Brown, M. H. The Role Played by Drug Efflux Pumps in Bacterial Multidrug Resistance. Essays Biochem. 2017, 61 (1), 127–139. https://doi.org/10.1042/EBC20160064. (10) Yen, P.; Papin, J. A. History of Antibiotic Adaptation Influences Microbial Evolutionary Dynamics during Subsequent Treatment. PLOS Biol. 2017, 15 (8), e2001586. https://doi.org/10.1371/journal.pbio.2001586. (11) Sanglard, D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3. (12) Tyers, M.; Wright, G. D. Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century. Nat. Rev. Microbiol. 2019, 17 (3), 141–155. https://doi.org/10.1038/s41579-018-0141-x. (13) Bollenbach, T. Antimicrobial Interactions: Mechanisms and Implications for Drug Discovery and Resistance Evolution. Antimicrob. • Microb. Syst. Biol. 2015, 27, 1–9. https://doi.org/10.1016/j.mib.2015.05.008. (14) Köhler, J. R.; Casadevall, A.; Perfect, J. The Spectrum of Fungi That Infects Humans. Cold Spring Harb. Perspect. Med. 2014, 5 (1), a019273. https://doi.org/10.1101/cshperspect.a019273. (15) Bidula, S.; Brown, G. D. Immunology of Fungal Infections. In Encyclopedia of Immunobiology; Ratcliffe, M. J. H., Ed.; Academic Press: Oxford, 2016; pp 75–82. https://doi.org/10.1016/B978-0-12-374279-7.13001-2. (16) Rautemaa-Richardson, R.; Richardson, M. D. Systemic Fungal Infections. Medicine (Baltimore) 2017, 45 (12), 757–762. https://doi.org/10.1016/j.mpmed.2017.09.007. (17) Antinori, S.; Corbellino, M.; Parravicini, C. Challenges in the Diagnosis of Invasive Fungal Infections in Immunocompromised Hosts. Curr. Fungal Infect. Rep. 2018, 12 (1), 12–22. https://doi.org/10.1007/s12281-018-0306-0. (18) Vallabhaneni, S.; Mody, R. K.; Walker, T.; Chiller, T. The Global Burden of Fungal Diseases. Infect. Dis. Clin. 2016, 30 (1), 1–11. https://doi.org/10.1016/j.idc.2015.10.004. (19) Fishman, J. A. Infection in Organ Transplantation. Am. J. Transplant. 2017, 17 (4), 856–879. https://doi.org/10.1111/ajt.14208. (20) Husain, S.; Rotstein, C. Infections in Solid Organ Transplant Recipients. In Management of Infections in the Immunocompromised Host; Segal, B. H., Ed.; Springer International Publishing: Cham, 2018; pp 231–242. https://doi.org/10.1007/978-3-319-77674-3_12. (21) Martin-Gandul, C.; Mueller, N. J.; Pascual, M.; Manuel, O. The Impact of Infection on Chronic Allograft Dysfunction and Allograft Survival After Solid Organ Transplantation. Am. J. Transplant. 2015, 15 (12), 3024–3040. https://doi.org/10.1111/ajt.13486. (22) Katabathina, V.; Menias, C. O.; Pickhardt, P.; Lubner, M.; Prasad, S. R. Complications of Immunosuppressive Therapy in Solid Organ Transplantation. Radiol Clin North Am 2016, 54 (2), 303–319. https://doi.org/10.1016/j.rcl.2015.09.009. (23) Gagliotti, C.; Morsillo, F.; Moro, M. L.; Masiero, L.; Procaccio, F.; Vespasiano, F.; Pantosti, A.; Monaco, M.; Errico, G.; Ricci, A.; Grossi, P.; Nanni Costa, A.; Adorno, D.; Ambretti, S.; Amoroso, A.; Arghittu, M.; Berloco, P.; Bertani, A.; Bonizzoli, M.; Cambieri, P.; Canzonieri, M.; Caprio, M.; Carrara, E.; Carrinola, R.; Cibelli, E.; Cillo, U.; Colledan, M.; Colombo, R.; Coluccio, E.; Conaldi, P. G.; Cusi, M.; D’Armini, A. M.; Da Riva, A.; D’Auria, B.; De Carlis, L.; De Cillia, C.; De Gasperi, A.; Di Caro, A.; Di Ciaccio, P.; Dondossola, D.; Farina, C.; Feltrin, G.; Finarelli, A. C.; Fossati, L.; Gaibani, P.; Garcia Fernandez, A.; Gesu, G.; Giacometti, R.; Gona, F.; Gridelli, B.; Henrici De Angelis, L.; Landini, M. P.; Maldarelli, F.; Mancini, C.; Marone, P.; Mularoni, A.; Paglialunga, G.; Paladini, P.; Palù, G.; Parisi, S.; Peris, A.; Pinna, A. D.; Platto, M.; Pugliese, F.; Puoti, F.; Rago, C.; Ravini, M.; Rea, F.; Rinaldi, M.; Rossi, G.; Rossi, L.; Rossi, M.; Salizzoni, M.; Sangiorgi, G.; Santambrogio, L.; Spada, M.; Sparacino, V.; Stella, F.; Torelli, R.; Torresani, E.; Tosi, D.; Vailati, F.; Valeri, M.; Venuta, F.; Vesconi, S.; Viale, P.; Vismara, C.; SInT Collaborative Study Group. Infections in Liver and Lung Transplant Recipients: A National Prospective Cohort. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37 (3), 399–407. https://doi.org/10.1007/s10096-018-3183-0. (24) Nagao, M.; Fujimoto, Y.; Yamamoto, M.; Matsumura, Y.; Kaido, T.; Takakura, S.; Uemoto, S.; Ichiyama, S. Epidemiology of Invasive Fungal Infections after Liver Transplantation and the Risk Factors of Late-Onset Invasive Aspergillosis. J. Infect. Chemother. 2016, 22 (2), 84–89. https://doi.org/10.1016/j.jiac.2015.11.005. (25) Siddique, O.; Siddique, A. S.; Machan, J. T.; Promrat, K. Effects of Infection on Post-Transplant Outcomes: Living versus Deceased Donor Liver Transplants. Clin. Exp. Hepatol. 2018, 4 (1), 28–34. https://doi.org/10.5114/ceh.2018.73464. (26) Young, J.-A. H.; Logan, B. R.; Wu, J.; Wingard, J. R.; Weisdorf, D. J.; Mudrick, C.; Knust, K.; Horowitz, M. M.; Confer, D. L.; Dubberke, E. R.; Pergam, S. A.; Marty, F. M.; Strasfeld, L. M.; Brown, J. (Wes) M.; Langston, A. A.; Schuster, M. G.; Kaul, D. R.; Martin, S. I.; Anasetti, C. Infections after Transplantation of Bone Marrow or Peripheral Blood Stem Cells from Unrelated Donors. Biol. Blood Marrow Transplant. 2016, 22 (2), 359–370. https://doi.org/10.1016/j.bbmt.2015.09.013. (27) Sanz, J.; Cano, I.; González-Barberá, E. M.; Arango, M.; Reyes, J.; Montesinos, P.; Lorenzo, I.; Jarque, I.; Martínez, J.; López, F.; Arilla, M. J.; Lancharro, A.; Moscardó, F.; López-Hontangas, J. L.; Salavert, M.; Sanz, M. A.; Sanz, G. F. Bloodstream Infections in Adult Patients Undergoing Cord Blood Transplantation from Unrelated Donors after Myeloablative Conditioning Regimen. Biol. Blood Marrow Transplant. 2015, 21 (4), 755–760. https://doi.org/10.1016/j.bbmt.2014.12.038. (28) Kritikos, A.; Manuel, O. Bloodstream Infections after Solid-Organ Transplantation. Virulence 2016, 7 (3), 329–340. https://doi.org/10.1080/21505594.2016.1139279. (29) Anesi, J. A.; Baddley, J. W. Approach to the Solid Organ Transplant Patient with Suspected Fungal Infection. Infect. Dis. Clin. 2016, 30 (1), 277–296. https://doi.org/10.1016/j.idc.2015.10.001. (30) Florescu, D. F.; Sandkovsky, U. Fungal Infections in Intestinal and Multivisceral Transplant Recipients. Curr. Opin. Organ Transplant. 2015, 20 (3). (31) Pasternak, Y.; Rubin, S.; Bilavsky, E.; Mozer-Glassberg, Y.; Levy, I.; Nahum, E.; Rom, E.; Gurevich, M.; Ben-Zvi, H.; Ashkenazi-Hoffnung, L. Risk Factors for Early Invasive Fungal Infections in Paediatric Liver Transplant Recipients. Mycoses 2018, 61 (9), 639–645. https://doi.org/10.1111/myc.12784. (32) Khan, A.; El-Charabaty, E.; El-Sayegh, S. Fungal Infections in Renal Transplant Patients. J. Clin. Med. Res. Vol 7 No 6 Jun 2015 2015. (33) Kinnunen, S.; Karhapää, P.; Juutilainen, A.; Finne, P.; Helanterä, I. Secular Trends in Infection-Related Mortality after Kidney Transplantation. Clin J Am Soc Nephrol 2018, 13 (5), 755–762. https://doi.org/10.2215/cjn.11511017. (34) Santos, T.; Aguiar, B.; Santos, L.; Romaozinho, C.; Tome, R.; Macario, F.; Alves, R.; Campos, M.; Mota, A. Invasive Fungal Infections After Kidney Transplantation: A Single-Center Experience. Transplant. Proc. 2015, 47 (4), 971–975. https://doi.org/10.1016/j.transproceed.2015.03.040. (35) Sahin, S. Z.; Akalin, H.; Ersoy, A.; Yildiz, A.; Ocakoglu, G.; Cetinoglu, E. D.; Dizdar, O. S.; Kazak, E.; Ener, B. Invasive Fungal Infections in Renal Transplant Recipients: Epidemiology and Risk Factors. Mycopathologia 2015, 180 (1), 43–50. https://doi.org/10.1007/s11046-015-9875-4. (36) Limper, A. H.; Adenis, A.; Le, T.; Harrison, T. S. Fungal Infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17 (11), e334–e343. https://doi.org/10.1016/S1473-3099(17)30303-1. (37) Kandati, J.; Boorsu, S. K.; Ponugoti, M. lakshmi; Samudrala, V. Bacterial and Fungal Agents Causing Lower Respiratory Tract Infections in Patients with Human Immunodeficiency Virus Infection. Int. J. Res. Med. Sci. 2017, 4 (8), 3595–3600. https://doi.org/10.18203/2320-6012.ijrms20162335. (38) Feldman, C. A., Ronald. Bacterial Respiratory Infections Complicating Human Immunodeficiency Virus. Semin. Respir. Crit. Care Med. 2016, 37 (02), 214–229. https://doi.org/10.1055/s-0036-1572558. (39) Antachopoulos, C.; Walsh, T. J.; Roilides, E. Fungal Infections in Primary Immunodeficiencies. Eur. J. Pediatr. 2007, 166 (11), 1099–1117. https://doi.org/10.1007/s00431-007-0527-7. (40) Pilmis, B.; Puel, A.; Lortholary, O.; Lanternier, F. New Clinical Phenotypes of Fungal Infections in Special Hosts. Clin. Microbiol. Infect. 2016, 22 (8), 681–687. https://doi.org/10.1016/j.cmi.2016.05.016. (41) Ostrosky-Zeichner, L.; Al-Obaidi, M. Invasive Fungal Infections in the Intensive Care Unit. Infect. Dis. Clin. 2017, 31 (3), 475–487. https://doi.org/10.1016/j.idc.2017.05.005. (42) Peng, X.-M.; Cai, G.-X.; Zhou, C.-H. Recent Developments in Azole Compounds as Antibacterial and Antifungal Agents. Curr. Top. Med. Chem. 2013, 13 (16), 1963–2010. (43) Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole Antifungals: 35 Years of Invasive Fungal Infection Management. Expert Rev. Anti Infect. Ther. 2015, 13 (6), 787–798. https://doi.org/10.1586/14787210.2015.1032939. (44) Maertens, J. A. History of the Development of Azole Derivatives. Clin. Microbiol. Infect. 2004, 10 (s1), 1–10. https://doi.org/10.1111/j.1470-9465.2004.00841.x. (45) Sheehan Daniel J.; Hitchcock Christopher A.; Sibley Carol M. Current and Emerging Azole Antifungal Agents. Clin. Microbiol. Rev. 1999, 12 (1), 40–79. https://doi.org/10.1128/cmr.12.1.40. (46) Bodey, G. P. Azole Antifungal Agents. Clin. Infect. Dis. 1992, 14 (Supplement_1), S161–S169. https://doi.org/10.1093/clinids/14.Supplement_1.S161. (47) Revie, N. M.; Iyer, K. R.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Antimicrob. Microb. Syst. Biol. 2018, 45, 70–76. https://doi.org/10.1016/j.mib.2018.02.005. (48) Zavrel, M.; White, T. C. Medically Important Fungi Respond to Azole Drugs: An Update. Future Microbiol. 2015, 10 (8), 1355–1373. https://doi.org/10.2217/FMB.15.47. (49) Perlin, D. S.; Shor, E.; Zhao, Y. Update on Antifungal Drug Resistance. Curr. Clin. Microbiol. Rep. 2015, 2 (2), 84–95. https://doi.org/10.1007/s40588-015-0015-1. (50) Beardsley, J.; Halliday, C. L.; Chen, S. C.-A.; Sorrell, T. C. Responding to the Emergence of Antifungal Drug Resistance: Perspectives from the Bench and the Bedside. Future Microbiol. 2018, 13 (10), 1175–1191. https://doi.org/10.2217/fmb-2018-0059. (51) Li, X.-Z.; Li, J. Antimicrobial Resistance in Stenotrophomonas Maltophilia: Mechanisms and Clinical Implications. In Antimicrobial Drug Resistance: Clinical and Epidemiological Aspects, Volume 2; Mayers, D. L., Sobel, J. D., Ouellette, M., Kaye, K. S., Marchaim, D., Eds.; Springer International Publishing: Cham, 2017; pp 937–958. https://doi.org/10.1007/978-3-319-47266-9_11. (52) Sagatova, A. A.; Keniya, M. V.; Wilson, R. K.; Sabherwal, M.; Tyndall, J. D. A.; Monk, B. C. Triazole Resistance Mediated by Mutations of a Conserved Active Site Tyrosine in Fungal Lanosterol 14α-Demethylase. Sci. Rep. 2016, 6 (1), 26213. https://doi.org/10.1038/srep26213. (53) Abd-El-Aziz, A. S.; Agatemor, C.; Etkin, N. Antimicrobial Resistance Challenged with Metal-Based Antimicrobial Macromolecules. Biomaterials 2017, 118, 27–50. https://doi.org/10.1016/j.biomaterials.2016.12.002. (54) Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11 (6), 371–384. https://doi.org/10.1038/nrmicro3028. (55) A Search for Antibacterial Agents. 2012. https://doi.org/10.5772/1085. (56) Weinberg, E. D. The Mutual Effects of Antimicrobial Compounds and Metallic Cations. Bacteriol. Rev. 1957, 21 (1), 46–68. (57) O’Shea, D. Synthesis, Characterisation and Biological Activity of Novel Carboxylate Complexes Incorporating Phenanthroline and Benzimidazole Ligands. 2004. https://doi.org/10.21427/D7SK6G. (58) Chang, E. L.; Simmers, C.; Knight, D. A. Cobalt Complexes as Antiviral and Antibacterial Agents. Pharmaceuticals 2010, 3 (6), 1711–1728. https://doi.org/10.3390/ph3061711. (59) Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff Base Transition Metal Complexes in Antimicrobial and Anticancer Chemotherapy. MedChemComm 2018, 9 (3), 409–436. https://doi.org/10.1039/C7MD00526A. (60) Shaygan, S.; Pasdar, H.; Foroughifar, N.; Davallo, M.; Motiee, F. Cobalt (II) Complexes with Schiff Base Ligands Derived from Terephthalaldehyde and Ortho-Substituted Anilines: Synthesis, Characterization and Antibacterial Activity. Appl. Sci. 2018, 8 (3). https://doi.org/10.3390/app8030385. (61) Fetoh, A.; Asla, K. A.; El-Sherif, A. A.; El-Didamony, H.; Abu El-Reash, G. M. Synthesis, Structural Characterization, Thermogravimetric, Molecular Modelling and Biological Studies of Co(II) and Ni(II) Schiff Bases Complexes. J. Mol. Struct. 2019, 1178, 524–537. https://doi.org/10.1016/j.molstruc.2018.10.066. (62) Orojloo, M.; Zolgharnein, P.; Solimannejad, M.; Amani, S. Synthesis and Characterization of Cobalt (II), Nickel (II), Copper (II) and Zinc (II) Complexes Derived from Two Schiff Base Ligands: Spectroscopic, Thermal, Magnetic Moment, Electrochemical and Antimicrobial Studies. Inorganica Chim. Acta 2017, 467, 227–237. https://doi.org/10.1016/j.ica.2017.08.016. (63) Basha, M. T.; Alghanmi, R. M.; Shehata, M. R.; Abdel-Rahman, L. H. Synthesis, Structural Characterization, DFT Calculations, Biological Investigation, Molecular Docking and DNA Binding of Co(II), Ni(II) and Cu(II) Nanosized Schiff Base Complexes Bearing Pyrimidine Moiety. J. Mol. Struct. 2019, 1183, 298–312. https://doi.org/10.1016/j.molstruc.2019.02.001. (64) Mohamed, G. G.; Mahmoud, W. H.; Diab, M. A.; El-Sonbati, A. Z.; Abbas, S. Y. Synthesis, Characterization, Theoretical Study and Biological Activity of Schiff Base Nanomaterial Analogues. J. Mol. Struct. 2019, 1181, 645–659. https://doi.org/10.1016/j.molstruc.2019.01.007. (65) Sakthi, M.; Ramu, A. Synthesis, Structure, DNA/BSA Binding and Antibacterial Studies of NNO Tridentate Schiff Base Metal Complexes. J. Mol. Struct. 2017, 1149, 727–735. https://doi.org/10.1016/j.molstruc.2017.08.040. (66) Tadavi, S. K.; Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Sangshetti, J. N.; Bendre, R. S. Synthesis, Crystal Structures, Biological Screening and Electrochemical Analysis of Some Salen-Based Transition Metal Complexes. Res. Chem. Intermed. 2017, 43 (8), 4863–4879. https://doi.org/10.1007/s11164-017-2917-4. (67) El-Gamel, N. E. Coordination Behaviour and Biopotency of Metal NN Salen Complexes. RSC Adv. 2012, 2 (13), 5870–5876. (68) Mahmoud, W. H.; Sayed, F. N.; Mohamed, G. G. Azo Dye with Nitrogen Donor Sets of Atoms and Its Metal Complexes: Synthesis, Characterization, DFT, Biological, Anticancer and Molecular Docking Studies. Appl. Organomet. Chem. 2018, 32 (6), e4347. https://doi.org/10.1002/aoc.4347. (69) Okagu, O. D.; Ugwu, K. C.; Ibeji, C. U.; Ekennia, A. C.; Okpareke, O. C.; Ezeorah, C. J.; Anarado, C. J. O.; Babahan, I.; Coban, B.; Yıldız, U.; Cömert, F.; Ujam, O. T. Synthesis and Characterization of Cu(II), Co(II) and Ni(II) Complexes of a Benzohydrazone Derivative: Spectroscopic, DFT, Antipathogenic and DNA Binding Studies. J. Mol. Struct. 2019, 1183, 107–117. https://doi.org/10.1016/j.molstruc.2019.01.069. (70) Al Zoubi, W.; Al-Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G. A New Azo-Schiff Base: Synthesis, Characterization, Biological Activity and Theoretical Studies of Its Complexes. Appl. Organomet. Chem. 2018, 32 (1), e3895. https://doi.org/10.1002/aoc.3895. (71) Ekennia, A. C.; Osowole, A. A.; Onwudiwe, D. C.; Babahan, I.; Ibeji, C. U.; Okafor, S. N.; Ujam, O. T. Synthesis, Characterization, Molecular Docking, Biological Activity and Density Functional Theory Studies of Novel 1,4-Naphthoquinone Derivatives and Pd(II), Ni(II) and Co(II) Complexes. Appl. Organomet. Chem. 2018, 32 (5), e4310. https://doi.org/10.1002/aoc.4310. (72) Nagula, N.; Kunche, S.; Jaheer, M.; Mudavath, R.; Sivan, S.; Ch, S. D. Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and It’s Metal Complexes. J. Fluoresc. 2018, 28 (1), 225–241. https://doi.org/10.1007/s10895-017-2185-0. (73) Subbiah, A.; Sambamoorthy, S. Antimicrobial and Cytotoxic Studies of Cobalt (II), Nickel (II) and Copper (II) Complexes with N-4-Methylphenyl (2, 4-Dihydroxy Acetophenylideneimine). Orient J Chem 2018, 34, 2008–2016. (74) Raman, N.; Chandrasekar, T.; Kumaravel, G.; Mitu, L. Synthesis of Innovative Biochemical Active Mixed Ligand Metal(II) Complexes with Thiazole Containing Schiff Base: In Vitro Antimicrobial Profile. Appl. Organomet. Chem. 2018, 32 (1), e3922. https://doi.org/10.1002/aoc.3922. (75) Abdel-Rahman, L. H.; Abu-Dief, A. M.; Newair, E. F.; Hamdan, S. K. Some New Nano-Sized Cr(III), Fe(II), Co(II), and Ni(II) Complexes Incorporating 2-((E)-(Pyridine-2-Ylimino)Methyl)Napthalen-1-Ol Ligand: Structural Characterization, Electrochemical, Antioxidant, Antimicrobial, Antiviral Assessment and DNA Interaction. J. Photochem. Photobiol. B 2016, 160, 18–31. https://doi.org/10.1016/j.jphotobiol.2016.03.040. (76) Shahid, M.; Anjuli; Tasneem, S.; Mantasha, I.; Ahamad, M. N.; Sama, F.; Fatma, K.; Siddiqi, Z. A. Spectral Characterization, Crystal Structures and Biological Activities of Iminodiacetate Ternary Complexes. J. Mol. Struct. 2017, 1146, 424–431. https://doi.org/10.1016/j.molstruc.2017.06.023. (77) Al-Saif, F. A.; Alibrahim, K. A.; Alfurhood, J. A.; Refat, M. S. Synthesis, Spectroscopic, Thermal, Biological, Morphological and Molecular Docking Studies of the Different Quinolone Drugs and Their Cobalt(II) Complexes. J. Mol. Liq. 2018, 249, 438–453. https://doi.org/10.1016/j.molliq.2017.11.073. (78) Dhayabaran, V. V.; Prakash, T. D.; Renganathan, R.; Friehs, E.; Bahnemann, D. W. Novel Bioactive Co(II), Cu(II), Ni(II) and Zn(II) Complexes with Schiff Base Ligand Derived from Histidine and 1,3-Indandione: Synthesis, Structural Elucidation, Biological Investigation and Docking Analysis. J. Fluoresc. 2017, 27 (1), 135–150. https://doi.org/10.1007/s10895-016-1941-x. (79) Calu, L.; Badea, M.; Čelan Korošin, N.; Chifiriuc, M. C.; Bleotu, C.; Stanică, N.; Silvestro, L.; Maurer, M.; Olar, R. Spectral, Thermal and Biological Characterization of Complexes with a Schiff Base Bearing Triazole Moiety as Potential Antimicrobial Species. J. Therm. Anal. Calorim. 2018, 134 (3), 1839–1850. https://doi.org/10.1007/s10973-018-7871-x. (80) Calu, L.; Badea, M.; Chifiriuc, M. C.; Bleotu, C.; David, G.-I.; Ioniţă, G.; Măruţescu, L.; Lazăr, V.; Stanică, N.; Soponaru, I.; Marinescu, D.; Olar, R. Synthesis, Spectral, Thermal, Magnetic and Biological Characterization of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with a Schiff Base Bearing a 1,2,4-Triazole Pharmacophore. J. Therm. Anal. Calorim. 2015, 120 (1), 375–386. https://doi.org/10.1007/s10973-014-3970-5. (81) Bagihalli, G. B.; Badami, P. S.; Patil, S. A. Synthesis, Spectral Characterization and in Vitro Biological Studies of Co(II), Ni(II) and Cu(II) Complexes with 1,2,4-Triazole Schiff Bases. J. Enzyme Inhib. Med. Chem. 2009, 24 (2), 381–394. https://doi.org/10.1080/14756360802187901. (82) Apohan, E.; Yilmaz, U.; Yilmaz, O.; Serindag, A.; Küçükbay, H.; Yesilada, O.; Baran, Y. Synthesis, Cytotoxic and Antimicrobial Activities of Novel Cobalt and Zinc Complexes of Benzimidazole Derivatives. J. Organomet. Chem. 2017, 828, 52–58. https://doi.org/10.1016/j.jorganchem.2016.11.020. (83) Kumaravel, G.; Raman, N. A Treatise on Benzimidazole Based Schiff Base Metal(II) Complexes Accentuating Their Biological Efficacy: Spectroscopic Evaluation of DNA Interactions, DNA Cleavage and Antimicrobial Screening. Mater. Sci. Eng. C 2017, 70, 184–194. https://doi.org/10.1016/j.msec.2016.08.069. (84) Kumaravel, G.; Ponnukalai, P. U.; Mahendiran, D.; Raman, N. Exploring the DNA Interactions, FGF Growth Receptor Interaction and Biological Screening of Metal(II) Complexes of NNN Donor Ligand Derived from 2‑(Aminomethyl)Benzimidazole. Int. J. Biol. Macromol. 2019, 126, 1303–1317. https://doi.org/10.1016/j.ijbiomac.2018.09.116. (85) Kumaravel, G.; Utthra, P. P.; Raman, N. DNA Fastening and Scission Actions of Cu(II), Co(II), Ni(II) and Zn(II) Complexes: Synthesis, Spectral Characterization and Cytotoxic Study. Appl. Organomet. Chem. 2018, 32 (2), e4010. https://doi.org/10.1002/aoc.4010. (86) Beheshti, A.; Safaeiyan, F.; Hashemi, F.; Motamedi, H.; Mayer, P.; Bruno, G.; Rudbari, H. A. Synthesis, Structural Characterization, Antibacterial Activity and Computational Studies of New Cobalt (II) Complexes with 1,1,3,3-Tetrakis (3,5-Dimethyl-1-Pyrazolyl)Propane Ligand. J. Mol. Struct. 2016, 1123, 225–237. https://doi.org/10.1016/j.molstruc.2016.06.037. (87) Radha, V. P.; Jone Kirubavathy, S.; Chitra, S. Synthesis, Characterization and Biological Investigations of Novel Schiff Base Ligands Containing Imidazoline Moiety and Their Co(II) and Cu(II) Complexes. J. Mol. Struct. 2018, 1165, 246–258. https://doi.org/10.1016/j.molstruc.2018.03.109. (88) Gaber, M.; El-Wakiel, N.; Hemeda, O. M. Cr(III), Mn(II), Co(II), Ni(II) and Cu(II) Complexes of 7-((1H-Benzo[d]Imidazol-2-Yl)Diazenyl)-5-Nitroquinolin-8-Ol.Synthesis, Thermal, Spectral, Electrical Measurements, Molecular Modeling and Biological Activity. J. Mol. Struct. 2019, 1180, 318–329. https://doi.org/10.1016/j.molstruc.2018.12.006. (89) Muneera, M. S.; Joseph, J. Design, Synthesis, Structural Elucidation, Pharmacological Evaluation of Metal Complexes with Pyrazoline Derivatives. J. Photochem. Photobiol. B 2016, 163, 57–68. https://doi.org/10.1016/j.jphotobiol.2016.08.010. (90) Gaber, M.; El-Wakiel, N. A.; El-Ghamry, H.; Fathalla, S. K. Synthesis, Spectroscopic Characterization, DNA Interaction and Biological Activities of Mn(II), Co(II), Ni(II) and Cu(II) Complexes with [(1H-1,2,4-Triazole-3-Ylimino)Methyl]Naphthalene-2-Ol. J. Mol. Struct. 2014, 1076, 251–261. https://doi.org/10.1016/j.molstruc.2014.06.071. (91) Sumrra, S. H.; Kausar, S.; Raza, M. A.; Zubair, M.; Zafar, M. N.; Nadeem, M. A.; Mughal, E. U.; Chohan, Z. H.; Mushtaq, F.; Rashid, U. Metal Based Triazole Compounds: Their Synthesis, Computational, Antioxidant, Enzyme Inhibition and Antimicrobial Properties. J. Mol. Struct. 2018, 1168, 202–211. https://doi.org/10.1016/j.molstruc.2018.05.036. (92) Utthra, P. P.; Kumaravel, G.; Raman, N. Screening the Efficient Biological Prospects of Triazole Allied Mixed Ligand Metal Complexes. J. Mol. Struct. 2017, 1150, 374–382. https://doi.org/10.1016/j.molstruc.2017.09.002. (93) Sumrra, S. H.; Mushtaq, F.; Khalid, M.; Raza, M. A.; Nazar, M. F.; Ali, B.; Braga, A. A. C. Synthesis, Spectral Characterization and Computed Optical Analysis of Potent Triazole Based Compounds. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2018, 190, 197–207. https://doi.org/10.1016/j.saa.2017.09.019. (94) Hanif, M.; Chohan, Z. H. Design, Spectral Characterization and Biological Studies of Transition Metal(II) Complexes with Triazole Schiff Bases. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2013, 104, 468–476. https://doi.org/10.1016/j.saa.2012.11.077. (95) Hanif, M.; Chohan, Z. H. Synthesis, Spectral Characterization and Biological Studies of Transition Metal(II) Complexes with Triazole Schiff Bases. Appl. Organomet. Chem. 2013, 27 (1), 36–44. https://doi.org/10.1002/aoc.2936. (96) Ali, A. E.; Elasala, G. S.; Ibrahim, R. S. Synthesis, Characterization, Spectral, Thermal Analysis and Biological Activity Studies of Metronidazole Complexes. J. Mol. Struct. 2019, 1176, 673–684. https://doi.org/10.1016/j.molstruc.2018.08.095. (97) Brul, S.; Coote, P. Preservative Agents in Foods: Mode of Action and Microbial Resistance Mechanisms. Int. J. Food Microbiol. 1999, 50 (1), 1–17. https://doi.org/10.1016/S0168-1605(99)00072-0. (98) Azócar, M. I.; Gómez, G.; Levín, P.; Paez, M.; Muñoz, H.; Dinamarca, N. Review: Antibacterial Behavior of Carboxylate Silver(I) Complexes. J. Coord. Chem. 2014, 67 (23–24), 3840–3853. https://doi.org/10.1080/00958972.2014.974582. (99) Vasile Scăețeanu, G.; Chifiriuc, M. C.; Bleotu, C.; Kamerzan, C.; Măruţescu, L.; Daniliuc, C. G.; Maxim, C.; Calu, L.; Olar, R.; Badea, M. Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2′-Bipyridine. Molecules 2018, 23 (1). https://doi.org/10.3390/molecules23010157. (100) Bello-Vieda, N. J.; Pastrana, H. F.; Garavito, M. F.; Ávila, A. G.; Celis, A. M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J. J. Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles. 2018. (101) Hurtado, J.; Nuñez-Dallos, N.; Movilla, S.; Pietro Miscione, G.; Peoples, B. C.; Rojas, R.; Valderrama, M.; Fröhlich, R. Chromium(III) Complexes Bearing Bis(Benzotriazolyl)Pyridine Ligands: Synthesis, Characterization and Ethylene Polymerization Behavior. J. Coord. Chem. 2017, 70 (5), 803–818. https://doi.org/10.1080/00958972.2017.1286330. (102) Molina, V.; Rauhalahti, M.; Hurtado, J.; Fliegl, H.; Sundholm, D.; Muñoz-Castro, A. Aromaticity Introduced by Antiferromagnetic Ligand Mediated Metal–Metal Interactions. Insights from the Induced Magnetic Response in [Cu6(dmPz)6(OH)6]. Inorg. Chem. Front. 2017, 4 (6), 986–993. https://doi.org/10.1039/C7QI00023E. (103) Nagles, E.; Ibarra, L.; Llanos, J. P.; Hurtado, J.; Garcia-Beltrán, O. Development of a Novel Electrochemical Sensor Based on Cobalt(II) Complex Useful in the Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid. J. Electroanal. Chem. 2017, 788, 38–43. https://doi.org/10.1016/j.jelechem.2017.01.057. (104) Nuñez-Dallos, N.; Lopez-Barbosa, N.; Muñoz-Castro, A.; Mac-Leod Carey, D.; De Nisi, A.; Monari, M.; Osma, J. F.; Hurtado, J. A New Copper(I) Coordination Polymer from 2,6-Bis(1H-Benzotriazol-1-Ylmethyl)Pyridine: Synthesis, Characterization, and Use as Additive in Transparent Submicron UV Filters. J. Coord. Chem. 2017, 70 (19), 3363–3378. https://doi.org/10.1080/00958972.2017.1393072. (105) Posada, A. F.; Macías, M. A.; Movilla, S.; Miscione, G. P.; Pérez, L. D.; Hurtado, J. J. Polymers of ε-Caprolactone Using New Copper(II) and Zinc(II) Complexes as Initiators: Synthesis, Characterization and X-Ray Crystal Structures. Polymers 2018, 10 (11). https://doi.org/10.3390/polym10111239. (106) Rueda-Espinosa, J.; Torres, J. F.; Gauthier, C. V.; Wojtas, L.; Verma, G.; Macías, M. A.; Hurtado, J. Copper(II) Complexes with Tridentate Bis(Pyrazolylmethyl)Pyridine Ligands: Synthesis, X-Ray Crystal Structures and ϵ-Caprolactone Polymerization. ChemistrySelect 2017, 2 (30), 9815–9821. https://doi.org/10.1002/slct.201701820. (107) Sandoval-Rojas, A. P.; Ibarra, L.; Cortés, M. T.; Hurtado, M.; Macías, M.; Hurtado, J. J. Synthesis and Characterization of a New Copper(II) Polymer Containing a Thiocyanate Bridge and Its Application in Dopamine Detection. Inorganica Chim. Acta 2017, 459, 95–102. https://doi.org/10.1016/j.ica.2017.01.022. (108) Sandoval-Rojas, A. P.; Ibarra, L.; Cortés, M. T.; Macías, M. A.; Suescun, L.; Hurtado, J. Synthesis and Characterization of Copper(II) Complexes Containing Acetate and N,N-Donor Ligands, and Their Electrochemical Behavior in Dopamine Detection. J. Electroanal. Chem. 2017, 805, 60–67. https://doi.org/10.1016/j.jelechem.2017.10.018. (109) Torres, J. F.; Bello-Vieda, N. J.; Macías, M. A.; Muñoz-Castro, A.; Rojas-Dotti, C.; Martínez-Lillo, J.; Hurtado, J. Water Dissociation of a Dinuclear Bis(3,5-Dimethylpyrazolyl)Methane Copper(II) Complex: X-Ray Diffraction Structure, Magnetic Properties, and Characteristic Absorption of the (CuN2Cl2)2 Core. Eur. J. Inorg. Chem. 2018, 2018 (32), 3644–3651. https://doi.org/10.1002/ejic.201800478. (110) Mestizo Melo, P. D. Síntesis, Caracterización y Estudio Citotóxico de Nuevos Complejos de Co (II), Cu (II) y Ni (II) Con Ligandos de Cumarina Tipo Salen Con Potencial Actividad Anticancerígena. 2016. (111) Fonseca, D.; Páez, C.; Ibarra, L.; García-Huertas, P.; Macías, M. A.; Triana-Chávez, O.; Hurtado, J. J. Metal Complex Derivatives of Bis(Pyrazol-1-Yl)Methane Ligands: Synthesis, Characterization and Anti-Trypanosoma Cruzi Activity. Transit. Met. Chem. 2019, 44 (2), 135–144. https://doi.org/10.1007/s11243-018-0277-6. (112) Hurtado, J.; Ibarra, L.; Yepes, D.; García-Huertas, P.; Macías, M. A.; Triana-Chavez, O.; Nagles, E.; Suescun, L.; Muñoz-Castro, A. Synthesis, Crystal Structure, Catalytic and Anti-Trypanosoma Cruzi Activity of a New Chromium(III) Complex Containing Bis(3,5-Dimethylpyrazol-1-Yl)Methane. J. Mol. Struct. 2017, 1146, 365–372. https://doi.org/10.1016/j.molstruc.2017.06.014. (113) Urbina Julio A.; Concepcion Juan Luis; Montalvetti Andrea; Rodriguez Juan B.; Docampo Roberto. Mechanism of Action of 4-Phenoxyphenoxyethyl Thiocyanate (WC-9) against Trypanosoma Cruzi, the Causative Agent of Chagas’ Disease. Antimicrob. Agents Chemother. 2003, 47 (6), 2047–2050. https://doi.org/10.1128/aac.47.6.2047-2050.2003. (114) Dufour, V.; Stahl, M.; Baysse, C. The Antibacterial Properties of Isothiocyanates. Microbiology, 2015, 161, 229–243. https://doi.org/10.1099/mic.0.082362-0. (115) Björck L.; Rosén C-G.; Marshall V.; Reiter B. Antibacterial Activity of the Lactoperoxidase System in Milk Against Pseudomonads and Other Gram-Negative Bacteria. Appl. Microbiol. 1975, 30 (2), 199–204. https://doi.org/10.1128/am.30.2.199-204.1975. (116) van der Veen, B. S.; de Winther, M. P. J.; Heeringa, P. Myeloperoxidase: Molecular Mechanisms of Action and Their Relevance to Human Health and Disease. Antioxid. Redox Signal. 2009, 11 (11), 2899–2937. https://doi.org/10.1089/ars.2009.2538. (117) Sisecioglu, M.; Kirecci, E.; Cankaya, M.; Ozdemir, H.; Gulcin, I.; Atasever, A. The Prohibitive Effect of Lactoperoxidase System (LPS) on Some Pathogen Fungi and Bacteria. Afr. J. Pharm. Pharmacol. 2010, 4 (9), 671–677. (118) Malkin, R.; Malmström, R.; Vänngård, T. The Requirement of the “Non‐blue” Copper (II) for the Activity of Fungal Laccase. FEBS Lett. 1968, 1 (1), 50–54. (119) Castillo, K. F.; Bello-Vieda, N. J.; Nuñez-Dallos, N. G.; Pastrana, H. F.; Celis, A. M.; Restrepo, S.; Hurtado, J. J.; Ávila, A. G. Metal Complex Derivatives of Azole: A Study on Their Synthesis, Characterization, and Antibacterial and Antifungal Activities. J. Braz. Chem. Soc. 2016, 27. (120) Bello-Vieda, N. J.; Pastrana, H. F.; Garavito, M. F.; Ávila, A. G.; Celis, A. M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J. J. Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles. Molecules 2018, 23 (2). https://doi.org/10.3390/molecules23020361. (121) Sanchez-Delgado, R. A.; Anzellotti, A. Metal Complexes as Chemotherapeutic Agents Against Tropical Diseases: Trypanosomiasis, Malaria and Leishmaniasis. Mini Rev. Med. Chem. 2004, 4 (1), 23–30. https://doi.org/10.2174/1389557043487493. (122) Murcia, R. A.; Leal, S. M.; Roa, M. V.; Nagles, E.; Muñoz-Castro, A.; Hurtado, J. J. Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules 2018, 23 (8). https://doi.org/10.3390/molecules23082013. (123) Zhang, G.-F.; Dou, Y.-L.; She, J.-B.; Yin, M.-H. Synthesis and Crystal Structure of a Copper Coordination Polymer [(Cu(Btapo)2BrCH3OH)+Br−]n (Btapo=1,3-Bis(Benzotriazol-1-Yl) Propan-2-Ol). J. Chem. Crystallogr. 2007, 37 (1), 63–67. https://doi.org/10.1007/s10870-006-9152-y. (124) Geary, W. J. The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 1971, 7 (1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0. (125) Katritzky, A. R.; Ramsden, C. A.; Joule, J. A.; Zhdankin, V. V. Handbook of Heterocyclic Chemistry; Elsevier, 2010. (126) Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier, 2017. (127) Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, 2004. (128) Rubim, J.; Gutz, I. G. R.; Sala, O.; Orville-Thomas, W. J. Surface Enhanced Raman Spectra of Benzotriazole Adsorbed on a Copper Electrode. J. Mol. Struct. 1983, 100, 571–583. https://doi.org/10.1016/0022-2860(83)90114-X. (129) Bigotto, A.; Nand Pandey§, A.; Zerbo, C. Polarized Infrared and Raman Spectra and Ab-Initio Calculations of Benzotriazole. Spectrosc. Lett. 1996, 29 (3), 511–522. https://doi.org/10.1080/00387019608006667. (130) Chan, H. Y. H.; Weaver, M. J. A Vibrational Structural Analysis of Benzotriazole Adsorption and Phase Film Formation on Copper Using Surface-Enhanced Raman Spectroscopy. Langmuir 1999, 15 (9), 3348–3355. https://doi.org/10.1021/la981724f. (131) Metikoš‐Huković, M.; Babić, R.; Marinović, A. Spectrochemical Characterization of Benzotriazole on Copper. J. Electrochem. Soc. 1998, 145 (12), 4045. https://doi.org/10.1149/1.1838912. (132) Thomas, S.; Venkateswaran, S.; Kapoor, S.; D’Cunha, R.; Mukherjee, T. Surface Enhanced Raman Scattering of Benzotriazole: A Molecular Orientational Study. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2004, 60 (1), 25–29. https://doi.org/10.1016/S1386-1425(03)00213-0. (133) Mathey, Y.; Greig, D. R.; Shriver, D. F. Variable-Temperature Raman and Infrared Spectra of the Copper Acetate Dimer Cu2(O2CCH3)4(H2O)2 and Its Derivatives. Inorg. Chem. 1982, 21 (9), 3409–3413. https://doi.org/10.1021/ic00139a028. (134) Applegarth, L. M. S. G. A.; Corbeil, C. R.; Mercer, D. J. W.; Pye, C. C.; Tremaine, P. R. Raman and Ab Initio Investigation of Aqueous Cu(I) Chloride Complexes from 25 to 80 °C. J. Phys. Chem. B 2014, 118 (1), 204–214. https://doi.org/10.1021/jp406580q. (135) Agulló-Rueda, F.; Calleja, J. M.; Martini, M.; Spinolo, G.; Cariati, F. Raman and Infrared Spectra of Transition Metal Halide Hexahydrates. J. Raman Spectrosc. 1987, 18 (7), 485–491. https://doi.org/10.1002/jrs.1250180707. (136) Billes, F.; Ziegler, I.; Mikosch, H. Vibrational Spectroscopic Study of Sodium-1,2,4-Triazole, an Important Intermediate Compound in the Synthesis of Several Active Substances. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016, 153, 349–362. https://doi.org/10.1016/j.saa.2015.08.014. (137) Billes, F.; Endrédi, H.; Keresztury, G. Vibrational Spectroscopy of Triazoles and Tetrazole. J. Mol. Struct. THEOCHEM 2000, 530 (1), 183–200. https://doi.org/10.1016/S0166-1280(00)00340-7. (138) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; John Wiley & Sons, 1999. (139) Titiš, J.; Hudák, J.; Kožíšek, J.; Krutošíková, A.; Moncol’, J.; Tarabová, D.; Boča, R. Structural, Spectral and Magnetic Properties of Carboxylato Cobalt(II) Complexes with Heterocyclic N-Donor Ligands: Reconstruction of Magnetic Parameters from Electronic Spectra. Inorganica Chim. Acta 2012, 388, 106–113. https://doi.org/10.1016/j.ica.2012.03.036. (140) Atkins, P. Shriver and Atkins’ Inorganic Chemistry; Oxford University Press, USA, 2010. (141) Deswal, Y.; Asija, S.; Kumar, D.; Jindal, D. K.; Chandan, G.; Panwar, V.; Saroya, S.; Kumar, N. Transition Metal Complexes of Triazole-Based Bioactive Ligands: Synthesis, Spectral Characterization, Antimicrobial, Anticancer and Molecular Docking Studies. Res. Chem. Intermed. 2022, 48 (2), 703–729. https://doi.org/10.1007/s11164-021-04621-5. (142) Abdel-Rahman, L. H.; Abu-Dief, A. M.; Ismael, M.; Mohamed, M. A. A.; Hashem, N. A. Synthesis, Structure Elucidation, Biological Screening, Molecular Modeling and DNA Binding of Some Cu(II) Chelates Incorporating Imines Derived from Amino Acids. J. Mol. Struct. 2016, 1103, 232–244. https://doi.org/10.1016/j.molstruc.2015.09.039. (143) Adam, M. S. S.; Abdel-Rahman, L. H.; Abu-Dief, A. M.; Hashem, N. A. Synthesis, Catalysis, Antimicrobial Activity, and DNA Interactions of New Cu(II)-Schiff Base Complexes. Inorg. Nano-Met. Chem. 2020, 50 (3), 136–150. https://doi.org/10.1080/24701556.2019.1672735. (144) Abu-Dief, A. M.; Abdel-Rahman, L. H.; Hashem, N. A.; Newair, E. F. Structure Explication, Biological Evaluation, DNA Interaction, Electrochemistry and Antioxidant Activity of Iron (II) Tri-and Tetra-Dentate Schiff Base Amino Acid Complexes. Sohag J. Sci. 2021, 6 (2), 9–25. (145) van Lenthe, E.; Snijders, J. G.; Baerends, E. J. The Zero‐order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105 (15), 6505–6516. https://doi.org/10.1063/1.472460. (146) van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. Relativistic Regular Two-Component Hamiltonians. Int. J. Quantum Chem. 1996, 57 (3), 281–293. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U. (147) Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54 (23), 16533–16539. https://doi.org/10.1103/PhysRevB.54.16533. (148) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865. (149) Van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. J. Comput. Chem. 2003, 24 (9), 1142–1156. https://doi.org/10.1002/jcc.10255. (150) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344. (151) Johnson, E. R.; Becke, A. D. A Post-Hartree–Fock Model of Intermolecular Interactions. J. Chem. Phys. 2005, 123 (2), 024101. https://doi.org/10.1063/1.1949201. (152) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. https://doi.org/10.1002/jcc.21759. (153) Andrada, D. M.; Foroutan-Nejad, C. Energy Components in Energy Decomposition Analysis (EDA) Are Path Functions; Why Does It Matter? Phys. Chem. Chem. Phys. 2020, 22 (39), 22459–22464. https://doi.org/10.1039/D0CP04016A. (154) Ziegler, T.; Rauk, A. On the Calculation of Bonding Energies by the Hartree Fock Slater Method. Theor. Chim. Acta 1977, 46 (1), 1–10. https://doi.org/10.1007/BF00551648. (155) Morokuma, K. Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O. J. Chem. Phys. 2003, 55 (3), 1236–1244. https://doi.org/10.1063/1.1676210. (156) Kitaura, K.; Morokuma, K. A New Energy Decomposition Scheme for Molecular Interactions within the Hartree-Fock Approximation. Int. J. Quantum Chem. 1976, 10 (2), 325–340. https://doi.org/10.1002/qua.560100211. (157) Vyboishchikov, S. F.; Krapp, A.; Frenking, G. Two Complementary Molecular Energy Decomposition Schemes: The Mayer and Ziegler–Rauk Methods in Comparison. J. Chem. Phys. 2008, 129 (14), 144111. https://doi.org/10.1063/1.2989805. (158) Zhao, L.; von Hopffgarten, M.; Andrada, D. M.; Frenking, G. Energy Decomposition Analysis. WIREs Comput. Mol. Sci. 2018, 8 (3), e1345. https://doi.org/10.1002/wcms.1345. (159) García-Santamarina, S.; Thiele, D. J. Copper at the Fungal Pathogen-Host Axis *. J. Biol. Chem. 2015, 290 (31), 18945–18953. https://doi.org/10.1074/jbc.R115.649129. (160) Li, C. X.; Gleason, J. E.; Zhang, S. X.; Bruno, V. M.; Cormack, B. P.; Culotta, V. C. Candida Albicans Adapts to Host Copper during Infection by Swapping Metal Cofactors for Superoxide Dismutase. Proc. Natl. Acad. Sci. 2015, 112 (38), E5336–E5342. https://doi.org/10.1073/pnas.1513447112. (161) Schwartz Jennifer A.; Olarte Karen T.; Michalek Jamie L.; Jandu Gurjinder S.; Michel Sarah L. J.; Bruno Vincent M. Regulation of Copper Toxicity by Candida Albicans GPA2. Eukaryot. Cell 2013, 12 (7), 954–961. https://doi.org/10.1128/ec.00344-12. (162) Nair, M. S.; Upadhyaya, I.; Amalaradjou, M. A. R.; Venkitanarayanan, K. Antimicrobial Food Additives and Disinfectants. In Foodborne Pathogens and Antibiotic Resistance; 2016; pp 275–301. https://doi.org/10.1002/9781119139188.ch12. (163) Ravindran, R.; R, M.; Fazil, S.; Devi, A. S. Synthesis, Spectroscopic and Biological Studies of Metal Complexes of an ONO Donor Pyrazolylhydrazone – Crystal Structure of Ligand and Co(II) Complex. J. Indian Chem. Soc. 2022, 99 (4), 100389. https://doi.org/10.1016/j.jics.2022.100389. (164) Obaleye, J. A.; Ajibola, A. A.; Bernardus, V. B.; Hosten, E. C. Synthesis, X-Ray Crystallography, Spectroscopic and in Vitro Antimicrobial Studies of a New Cu(II) Complex of Trichloroacetic Acid and Imidazole. J. Mol. Struct. 2020, 1203, 127435. https://doi.org/10.1016/j.molstruc.2019.127435. (165) Kalarani, R.; Sankarganesh, M.; Kumar, G. G. V.; Kalanithi, M. Synthesis, Spectral, DFT Calculation, Sensor, Antimicrobial and DNA Binding Studies of Co(II), Cu(II) and Zn(II) Metal Complexes with 2-Amino Benzimidazole Schiff Base. J. Mol. Struct. 2020, 1206, 127725. https://doi.org/10.1016/j.molstruc.2020.127725. (166) Fudulu, A.; Olar, R.; Maxim, C.; Scăeţeanu, G. V.; Bleotu, C.; Matei, L.; Chifiriuc, M. C.; Badea, M. New Cobalt (II) Complexes with Imidazole Derivatives: Antimicrobial Efficiency against Planktonic and Adherent Microbes and In Vitro Cytotoxicity Features. Molecules 2021, 26 (1). https://doi.org/10.3390/molecules26010055. (167) Dias, B. B.; da Silva Dantas, F. G.; Galvão, F.; Cupozak-Pinheiro, W. J.; Wender, H.; Pizzuti, L.; Rosa, P. P.; Tenório, K. V.; Gatto, C. C.; Negri, M.; Casagrande, G. A.; de Oliveira, K. M. P. Synthesis, Structural Characterization, and Prospects for New Cobalt (II) Complexes with Thiocarbamoyl-Pyrazoline Ligands as Promising Antifungal Agents. J. Inorg. Biochem. 2020, 213, 111277. https://doi.org/10.1016/j.jinorgbio.2020.111277. (168) Stevanović, N. Lj.; Aleksic, I.; Kljun, J.; Skaro Bogojevic, S.; Veselinovic, A.; Nikodinovic-Runic, J.; Turel, I.; Djuran, M. I.; Glišić, B. Đ. Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential. Pharmaceuticals 2021, 14 (1). https://doi.org/10.3390/ph14010024. (169) Bresson, C.; Darolles, C.; Carmona, A.; Gautier, C.; Sage, N.; Roudeau, S.; Ortega, R.; Ansoborlo, E.; Malard, V. Cobalt Chloride Speciation, Mechanisms of Cytotoxicity on Human Pulmonary Cells, and Synergistic Toxicity with Zinc. Metallomics 2013, 5 (2), 133–143. https://doi.org/10.1039/c3mt20196a. (170) Simonsen, L. O.; Harbak, H.; Bennekou, P. Cobalt Metabolism and Toxicology—A Brief Update. Sci. Total Environ. 2012, 432, 210–215. https://doi.org/10.1016/j.scitotenv.2012.06.009. (171) G Lippi; M Franchini; G C Guidi. Cobalt Chloride Administration in Athletes: A New Perspective in Blood Doping? Br. J. Sports Med. 2005, 39 (11), 872. https://doi.org/10.1136/bjsm.2005.019232. (172) Oyagbemi, A.; Omobowale, T.; Awoyomi, O.; Ajibade, T.; Falayi, O.; Ogunpolu, B.; Okotie, U.; Asenuga, E.; Adejumobi, O.; Hassan, F.; Ola-Davies, O.; Saba, A.; Adedapo, A.; Yakubu, M. Cobalt Chloride Toxicity Elicited Hypertension and Cardiac Complication via Induction of Oxidative Stress and Upregulation of COX-2/Bax Signaling Pathway. Hum. Exp. Toxicol. 2019, 38 (5), 519–532. https://doi.org/10.1177/0960327118812158. (173) Gómez-Arnaiz, S.; Tate, R. J.; Grant, M. H. Cytotoxicity of Cobalt Chloride in Brain Cell Lines - a Comparison between Astrocytoma and Neuroblastoma Cells. Toxicol. In Vitro 2020, 68, 104958. https://doi.org/10.1016/j.tiv.2020.104958. (174) Kasprzak, K. S.; Zastawny, T. H.; North, S. L.; Riggs, C. W.; Diwan, B. A.; Rice, J. M.; Dizdaroglu, M. Oxidative DNA Base Damage in Renal, Hepatic, and Pulmonary Chromatin of Rats after Intraperitoneal Injection of Cobalt(II) Acetate. Chem. Res. Toxicol. 1994, 7 (3), 329–335. https://doi.org/10.1021/tx00039a009. (175) Speijers, G. J. A.; Krajnc, E. I.; Berkvens, J. M.; van Logten, M. J. Acute Oral Toxicity of Inorganic Cobalt Compounds in Rats. Food Chem. Toxicol. 1982, 20 (3), 311–314. https://doi.org/10.1016/S0278-6915(82)80298-6. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_f1cf http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.none.fl_str_mv |
171 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias - Química |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Química |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/3cd5302b-0248-45ee-8564-69eae7f69f75/download https://repositorio.uniandes.edu.co/bitstreams/4269f1c5-8867-495e-a453-da3a4494d7be/download https://repositorio.uniandes.edu.co/bitstreams/c2e4d275-d749-4669-add2-0863f7276f76/download https://repositorio.uniandes.edu.co/bitstreams/2b1dccbb-dafe-489b-8b99-333538be4721/download https://repositorio.uniandes.edu.co/bitstreams/38b0c1ca-bd48-4fad-8c0a-1be6f2a7abd5/download https://repositorio.uniandes.edu.co/bitstreams/b18b7a35-fed0-4734-a1a6-ea449b082bab/download https://repositorio.uniandes.edu.co/bitstreams/22c56c22-e7ff-4977-8fd5-4ac78304d709/download |
bitstream.checksum.fl_str_mv |
b1270d0bac829a11e97a96175eadcd79 07aeaf742de07f3a48559b2477f6e9ab ae9e573a68e7f92501b6913cc846c39f 542dbb161000397e04bc6c6912fb740f 242b39adc1621d93ac7c0e35cca4e6e3 e868f94546def3a3c32e51bc4633d02c 531a8bd7699640e53574101e6fe7771a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111811518464000 |
spelling |
Hurtado Belalcazar, John Jadyvirtual::18186-1Murcia Galán, Ricardo AndrésPolo, DorianLe Lagadec, RonanReiber, Andreasvirtual::18188-1Facultad de Ciencias::Grupo de Investigación en Química Inorgánica Catálisis y Bioniorgánica2024-06-13T21:21:20Z2026-01-182024-05-272024-06-13https://hdl.handle.net/1992/7430410.57784/1992/74304instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En las últimas décadas, diferentes microorganismos, entre ellos cepas de Candida, han desarrollado una nueva característica, denominada “resistencia antimicrobiana”, la cual ha causado que el tratamiento de enfermedades infecciosas sea más complicado debido a que los medicamentos convencionales han ido perdiendo su eficiencia. Lo anterior se ha convertido en un problema global de salud, el cual ha impulsado la búsqueda de nuevos compuestos con potencial antimicrobiano que den respuesta a esta resistencia. Considerando este panorama, en este trabajo se realizó la síntesis y caracterización de complejos con metales de transición, Co(II) y Cu(II), que contienen ligandos derivados de triazoles (1H-benzotriazol y 1H-1,2,4-triazol). Los ligandos fueron caracterizados por punto de fusión, conductividad, espectroscopía de resonancia magnética nuclear (RMN: 1H, 13C), espectroscopía infrarroja (FT-IR) y Raman, cromatografía líquida de alta resolución acoplada a espectrometría de masas (HPLC-QToF) y análisis elemental. Además, el ligando 2, 1,3-bis(1,2,4-triazol-1-il)propan-2-ol, se caracterizó por medio de Difracción de Rayos X de monocristal, confirmando su estructura. Por su parte, los complejos de coordinación fueron caracterizados por punto de fusión, conductividad, espectroscopía infrarroja (FT-IR) y RAMAN, cromatografía líquida de alta resolución acoplada a espectrometría de masas (HPLC-QToF), análisis elemental, análisis termogravimétrico y espectroscopía UV-Vis. Se obtuvieron un total de nueve compuestos nuevos, un ligando y ocho complejos. Adicionalmente, se realizaron cálculos computacionales bajo el modelo DFT, para proponer las posibles estructuras de los complejos 3, 5, 7 y 9, evaluando diferentes confórmeros de cada complejo, realizando la respectiva optimización geométrica y análisis de descomposición de energía. Se realizó el estudio de actividad biológica frente a cuatro cepas de Candida de relevancia clínica. Todos los complejos de cobalto presentaron mayor actividad antifúngica comparada con los ligandos libres. Se destaca la actividad de los complejos de cobalto contra Candida glabrata y Candida parapsilosis llegando a mostrar valores de concentración mínima inhibitoria entre 7.81 y 15.62 μg/mL. Estos resultados pueden proveer un alto potencial para el diseño de nuevos compuestos antifúngicos.In recent decades, different microorganism, including strains of Candida, have developed a new characteristic called “antimicrobial resistance”, which has made the treatment of infectious diseases more complicated due to the losing of efficiency of conventional medicaments. The preceding situation has become a global health problem, which has driven the research for new compounds with antimicrobial potential that respond to this resistance. Considering this panorama, in this work was carried out the synthesis and characterization of complexes with transition metals, Co(II) and Cu(II), containing ligands derived from triazoles (1H-benzotriazole and 1H-1,2,4-triazole). The ligands were characterized by melting point, conductivity, nuclear magnetic resonance (NMR: 1 H, 13C), infrared spectroscopy (FT-IR) and Raman, high performance liquid chromatography couple to mass spectrometry (HPLC-QToF) and elemental analysis. Furthermore, the ligand 2, 1,3-bis(1,2,4-triazol-1-yl)propan-2-ol, was characterized by single crystal X-ray diffraction, confirming its structure. In the other hand, the coordination complexes were characterized by melting point, conductivity, infrared spectroscopy (FT-IR) and Raman, high performance liquid chromatography coupled to mass spectrometry (HPLC-QToF), elemental analysis, thermogravimetric analysis and UV-Vis spectroscopy. A total of nine new compounds were obtained, one ligand and eight complexes. Additionally, to propose the possible structures of complexes 3, 5, 7 and 9, evaluating different conformers of each complex, computational calculations were carried out under DFT model, performing the respective geometric optimization and energy decomposition analysis. Biological activity study was carried out against four strains of Candida of clinical relevance. All cobalt complexes showed greater antifungal activity compared to the free ligands. The activity of cobalt complexes against Candida glabrata and Candida parapsilosis stands out, showing minimum inhibitory concentration values between 7.81 and 15.62 µg/mL. These results may provide high potential for the design of new antifungal compounds.DoctoradoBioinorgánica171 páginasapplication/pdfspaUniversidad de los AndesDoctorado en Ciencias - QuímicaFacultad de CienciasDepartamento de Químicahttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfhttp://purl.org/coar/access_right/c_f1cf http://purl.org/coar/access_right/c_f1cfSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngicaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDCompuestos de coordinaciónLigandos derivados de azolesComplejos de cobalto(II)Complejos de cobre(II)Actividad antifúngicaQuímica(1) Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food Sci. Nutr. 2017, 57 (13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192.(2) Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O. E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.-M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The Global Threat of Antimicrobial Resistance: Science for Intervention. New Microbes New Infect. 2015, 6, 22–29. https://doi.org/10.1016/j.nmni.2015.02.007.Marston, H. D.; Dixon, D. M.; Knisely, J. M.; Palmore, T. N.; Fauci, A. S. Antimicrobial Resistance. JAMA 2016, 316 (11), 1193–1204. https://doi.org/10.1001/jama.2016.11764.(4) Health–Americas, T. L. R. Antimicrobial Resistance in the Americas: A Tale of Multiple Realities. Lancet Reg. Health-Am. 2023, 25.(5) Aguilar, G. R.; Swetschinski, L. R.; Weaver, N. D.; Ikuta, K. S.; Mestrovic, T.; Gray, A. P.; Chung, E.; Wool, E. E.; Han, C.; Hayoon, A. G.; Araki, D. T.; Abdollahi, A.; Abu-Zaid, A.; Adnan, M.; Agarwal, R.; Dehkordi, J. A.; Aravkin, A. Y.; Areda, D.; Azzam, A. Y.; Berezin, E. N.; Bhagavathula, A. S.; Bhutta, Z. A.; Bhuyan, S. S.; Browne, A. J.; Castañeda-Orjuela, C. A.; Chandrasekar, E. K.; Ching, P. R.; Dai, X.; Darmstadt, G. L.; De la Hoz, F. P.; Diao, N.; Diaz, D.; Mombaque dos Santos, W.; Eyre, D.; Garcia, C.; Haines-Woodhouse, G.; Hassen, M. B.; Henry, N. J.; Hopkins, S.; Hossain, M. M.; Iregbu, K. C.; Iwu, C. C. D.; Jacobs, J. A.; Janko, M. M.; Jones, R.; Karaye, I. M.; Khalil, I. A.; Khan, I. A.; Khan, T.; Khubchandani, J.; Khusuwan, S.; Kisa, A.; Koyaweda, G. W.; Krapp, F.; Kumaran, E. A. P.; Kyu, H. H.; Lim, S. S.; Liu, X.; Luby, S.; Maharaj, S. B.; Maronga, C.; Martorell, M.; May, J.; McManigal, B.; Mokdad, A. H.; Moore, C. E.; Mostafavi, E.; Murillo-Zamora, E.; Mussi-Pinhata, M. M.; Nanavati, R.; Nassereldine, H.; Natto, Z. S.; Qamar, F. N.; Nuñez-Samudio, V.; Ochoa, T. J.; Ojo-Akosile, T. R.; Olagunju, A. T.; Olivas-Martinez, A.; Ortiz-Brizuela, E.; Ounchanum, P.; Paredes, J. L.; Patthipati, V. S.; Pawar, S.; Pereira, M.; Pollard, A.; Ponce-De-Leon, A.; Sady Prates, E. J.; Qattea, I.; Reyes, L. F.; Roilides, E.; Rosenthal, V. D.; Rudd, K. E.; Sangchan, W.; Seekaew, S.; Seylani, A.; Shababi, N.; Sham, S.; Sifuentes-Osornio, J.; Singh, H.; Stergachis, A.; Tasak, N.; Tat, N. Y.; Thaiprakong, A.; Valdez, P. R.; Yada, D. Y.; Yunusa, I.; Zastrozhin, M. S.; Hay, S. I.; Dolecek, C.; Sartorius, B.; Murray, C. J. L.; Naghavi, M. The Burden of Antimicrobial Resistance in the Americas in 2019: A Cross-Country Systematic Analysis. Lancet Reg. Health – Am. 2023, 25. https://doi.org/10.1016/j.lana.2023.100561.(6) Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial Resistance in Humans, Livestock and the Wider Environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370 (1670), 20140083. https://doi.org/10.1098/rstb.2014.0083.(7) Ayukekbong, J. A.; Ntemgwa, M.; Atabe, A. N. The Threat of Antimicrobial Resistance in Developing Countries: Causes and Control Strategies. Antimicrob. Resist. Infect. Control 2017, 6 (1), 47. https://doi.org/10.1186/s13756-017-0208-x.(8) Chang Hsiao-Han; Cohen Ted; Grad Yonatan H.; Hanage William P.; O’Brien Thomas F.; Lipsitch Marc. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiol. Mol. Biol. Rev. 2015, 79 (1), 101–116. https://doi.org/10.1128/mmbr.00039-14.(9) Chitsaz, M.; Brown, M. H. The Role Played by Drug Efflux Pumps in Bacterial Multidrug Resistance. Essays Biochem. 2017, 61 (1), 127–139. https://doi.org/10.1042/EBC20160064.(10) Yen, P.; Papin, J. A. History of Antibiotic Adaptation Influences Microbial Evolutionary Dynamics during Subsequent Treatment. PLOS Biol. 2017, 15 (8), e2001586. https://doi.org/10.1371/journal.pbio.2001586.(11) Sanglard, D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3.(12) Tyers, M.; Wright, G. D. Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century. Nat. Rev. Microbiol. 2019, 17 (3), 141–155. https://doi.org/10.1038/s41579-018-0141-x.(13) Bollenbach, T. Antimicrobial Interactions: Mechanisms and Implications for Drug Discovery and Resistance Evolution. Antimicrob. • Microb. Syst. Biol. 2015, 27, 1–9. https://doi.org/10.1016/j.mib.2015.05.008.(14) Köhler, J. R.; Casadevall, A.; Perfect, J. The Spectrum of Fungi That Infects Humans. Cold Spring Harb. Perspect. Med. 2014, 5 (1), a019273. https://doi.org/10.1101/cshperspect.a019273.(15) Bidula, S.; Brown, G. D. Immunology of Fungal Infections. In Encyclopedia of Immunobiology; Ratcliffe, M. J. H., Ed.; Academic Press: Oxford, 2016; pp 75–82. https://doi.org/10.1016/B978-0-12-374279-7.13001-2.(16) Rautemaa-Richardson, R.; Richardson, M. D. Systemic Fungal Infections. Medicine (Baltimore) 2017, 45 (12), 757–762. https://doi.org/10.1016/j.mpmed.2017.09.007.(17) Antinori, S.; Corbellino, M.; Parravicini, C. Challenges in the Diagnosis of Invasive Fungal Infections in Immunocompromised Hosts. Curr. Fungal Infect. Rep. 2018, 12 (1), 12–22. https://doi.org/10.1007/s12281-018-0306-0.(18) Vallabhaneni, S.; Mody, R. K.; Walker, T.; Chiller, T. The Global Burden of Fungal Diseases. Infect. Dis. Clin. 2016, 30 (1), 1–11. https://doi.org/10.1016/j.idc.2015.10.004.(19) Fishman, J. A. Infection in Organ Transplantation. Am. J. Transplant. 2017, 17 (4), 856–879. https://doi.org/10.1111/ajt.14208.(20) Husain, S.; Rotstein, C. Infections in Solid Organ Transplant Recipients. In Management of Infections in the Immunocompromised Host; Segal, B. H., Ed.; Springer International Publishing: Cham, 2018; pp 231–242. https://doi.org/10.1007/978-3-319-77674-3_12.(21) Martin-Gandul, C.; Mueller, N. J.; Pascual, M.; Manuel, O. The Impact of Infection on Chronic Allograft Dysfunction and Allograft Survival After Solid Organ Transplantation. Am. J. Transplant. 2015, 15 (12), 3024–3040. https://doi.org/10.1111/ajt.13486.(22) Katabathina, V.; Menias, C. O.; Pickhardt, P.; Lubner, M.; Prasad, S. R. Complications of Immunosuppressive Therapy in Solid Organ Transplantation. Radiol Clin North Am 2016, 54 (2), 303–319. https://doi.org/10.1016/j.rcl.2015.09.009.(23) Gagliotti, C.; Morsillo, F.; Moro, M. L.; Masiero, L.; Procaccio, F.; Vespasiano, F.; Pantosti, A.; Monaco, M.; Errico, G.; Ricci, A.; Grossi, P.; Nanni Costa, A.; Adorno, D.; Ambretti, S.; Amoroso, A.; Arghittu, M.; Berloco, P.; Bertani, A.; Bonizzoli, M.; Cambieri, P.; Canzonieri, M.; Caprio, M.; Carrara, E.; Carrinola, R.; Cibelli, E.; Cillo, U.; Colledan, M.; Colombo, R.; Coluccio, E.; Conaldi, P. G.; Cusi, M.; D’Armini, A. M.; Da Riva, A.; D’Auria, B.; De Carlis, L.; De Cillia, C.; De Gasperi, A.; Di Caro, A.; Di Ciaccio, P.; Dondossola, D.; Farina, C.; Feltrin, G.; Finarelli, A. C.; Fossati, L.; Gaibani, P.; Garcia Fernandez, A.; Gesu, G.; Giacometti, R.; Gona, F.; Gridelli, B.; Henrici De Angelis, L.; Landini, M. P.; Maldarelli, F.; Mancini, C.; Marone, P.; Mularoni, A.; Paglialunga, G.; Paladini, P.; Palù, G.; Parisi, S.; Peris, A.; Pinna, A. D.; Platto, M.; Pugliese, F.; Puoti, F.; Rago, C.; Ravini, M.; Rea, F.; Rinaldi, M.; Rossi, G.; Rossi, L.; Rossi, M.; Salizzoni, M.; Sangiorgi, G.; Santambrogio, L.; Spada, M.; Sparacino, V.; Stella, F.; Torelli, R.; Torresani, E.; Tosi, D.; Vailati, F.; Valeri, M.; Venuta, F.; Vesconi, S.; Viale, P.; Vismara, C.; SInT Collaborative Study Group. Infections in Liver and Lung Transplant Recipients: A National Prospective Cohort. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37 (3), 399–407. https://doi.org/10.1007/s10096-018-3183-0.(24) Nagao, M.; Fujimoto, Y.; Yamamoto, M.; Matsumura, Y.; Kaido, T.; Takakura, S.; Uemoto, S.; Ichiyama, S. Epidemiology of Invasive Fungal Infections after Liver Transplantation and the Risk Factors of Late-Onset Invasive Aspergillosis. J. Infect. Chemother. 2016, 22 (2), 84–89. https://doi.org/10.1016/j.jiac.2015.11.005.(25) Siddique, O.; Siddique, A. S.; Machan, J. T.; Promrat, K. Effects of Infection on Post-Transplant Outcomes: Living versus Deceased Donor Liver Transplants. Clin. Exp. Hepatol. 2018, 4 (1), 28–34. https://doi.org/10.5114/ceh.2018.73464.(26) Young, J.-A. H.; Logan, B. R.; Wu, J.; Wingard, J. R.; Weisdorf, D. J.; Mudrick, C.; Knust, K.; Horowitz, M. M.; Confer, D. L.; Dubberke, E. R.; Pergam, S. A.; Marty, F. M.; Strasfeld, L. M.; Brown, J. (Wes) M.; Langston, A. A.; Schuster, M. G.; Kaul, D. R.; Martin, S. I.; Anasetti, C. Infections after Transplantation of Bone Marrow or Peripheral Blood Stem Cells from Unrelated Donors. Biol. Blood Marrow Transplant. 2016, 22 (2), 359–370. https://doi.org/10.1016/j.bbmt.2015.09.013.(27) Sanz, J.; Cano, I.; González-Barberá, E. M.; Arango, M.; Reyes, J.; Montesinos, P.; Lorenzo, I.; Jarque, I.; Martínez, J.; López, F.; Arilla, M. J.; Lancharro, A.; Moscardó, F.; López-Hontangas, J. L.; Salavert, M.; Sanz, M. A.; Sanz, G. F. Bloodstream Infections in Adult Patients Undergoing Cord Blood Transplantation from Unrelated Donors after Myeloablative Conditioning Regimen. Biol. Blood Marrow Transplant. 2015, 21 (4), 755–760. https://doi.org/10.1016/j.bbmt.2014.12.038.(28) Kritikos, A.; Manuel, O. Bloodstream Infections after Solid-Organ Transplantation. Virulence 2016, 7 (3), 329–340. https://doi.org/10.1080/21505594.2016.1139279.(29) Anesi, J. A.; Baddley, J. W. Approach to the Solid Organ Transplant Patient with Suspected Fungal Infection. Infect. Dis. Clin. 2016, 30 (1), 277–296. https://doi.org/10.1016/j.idc.2015.10.001.(30) Florescu, D. F.; Sandkovsky, U. Fungal Infections in Intestinal and Multivisceral Transplant Recipients. Curr. Opin. Organ Transplant. 2015, 20 (3).(31) Pasternak, Y.; Rubin, S.; Bilavsky, E.; Mozer-Glassberg, Y.; Levy, I.; Nahum, E.; Rom, E.; Gurevich, M.; Ben-Zvi, H.; Ashkenazi-Hoffnung, L. Risk Factors for Early Invasive Fungal Infections in Paediatric Liver Transplant Recipients. Mycoses 2018, 61 (9), 639–645. https://doi.org/10.1111/myc.12784.(32) Khan, A.; El-Charabaty, E.; El-Sayegh, S. Fungal Infections in Renal Transplant Patients. J. Clin. Med. Res. Vol 7 No 6 Jun 2015 2015.(33) Kinnunen, S.; Karhapää, P.; Juutilainen, A.; Finne, P.; Helanterä, I. Secular Trends in Infection-Related Mortality after Kidney Transplantation. Clin J Am Soc Nephrol 2018, 13 (5), 755–762. https://doi.org/10.2215/cjn.11511017.(34) Santos, T.; Aguiar, B.; Santos, L.; Romaozinho, C.; Tome, R.; Macario, F.; Alves, R.; Campos, M.; Mota, A. Invasive Fungal Infections After Kidney Transplantation: A Single-Center Experience. Transplant. Proc. 2015, 47 (4), 971–975. https://doi.org/10.1016/j.transproceed.2015.03.040.(35) Sahin, S. Z.; Akalin, H.; Ersoy, A.; Yildiz, A.; Ocakoglu, G.; Cetinoglu, E. D.; Dizdar, O. S.; Kazak, E.; Ener, B. Invasive Fungal Infections in Renal Transplant Recipients: Epidemiology and Risk Factors. Mycopathologia 2015, 180 (1), 43–50. https://doi.org/10.1007/s11046-015-9875-4.(36) Limper, A. H.; Adenis, A.; Le, T.; Harrison, T. S. Fungal Infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17 (11), e334–e343. https://doi.org/10.1016/S1473-3099(17)30303-1.(37) Kandati, J.; Boorsu, S. K.; Ponugoti, M. lakshmi; Samudrala, V. Bacterial and Fungal Agents Causing Lower Respiratory Tract Infections in Patients with Human Immunodeficiency Virus Infection. Int. J. Res. Med. Sci. 2017, 4 (8), 3595–3600. https://doi.org/10.18203/2320-6012.ijrms20162335.(38) Feldman, C. A., Ronald. Bacterial Respiratory Infections Complicating Human Immunodeficiency Virus. Semin. Respir. Crit. Care Med. 2016, 37 (02), 214–229. https://doi.org/10.1055/s-0036-1572558.(39) Antachopoulos, C.; Walsh, T. J.; Roilides, E. Fungal Infections in Primary Immunodeficiencies. Eur. J. Pediatr. 2007, 166 (11), 1099–1117. https://doi.org/10.1007/s00431-007-0527-7.(40) Pilmis, B.; Puel, A.; Lortholary, O.; Lanternier, F. New Clinical Phenotypes of Fungal Infections in Special Hosts. Clin. Microbiol. Infect. 2016, 22 (8), 681–687. https://doi.org/10.1016/j.cmi.2016.05.016.(41) Ostrosky-Zeichner, L.; Al-Obaidi, M. Invasive Fungal Infections in the Intensive Care Unit. Infect. Dis. Clin. 2017, 31 (3), 475–487. https://doi.org/10.1016/j.idc.2017.05.005.(42) Peng, X.-M.; Cai, G.-X.; Zhou, C.-H. Recent Developments in Azole Compounds as Antibacterial and Antifungal Agents. Curr. Top. Med. Chem. 2013, 13 (16), 1963–2010.(43) Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole Antifungals: 35 Years of Invasive Fungal Infection Management. Expert Rev. Anti Infect. Ther. 2015, 13 (6), 787–798. https://doi.org/10.1586/14787210.2015.1032939.(44) Maertens, J. A. History of the Development of Azole Derivatives. Clin. Microbiol. Infect. 2004, 10 (s1), 1–10. https://doi.org/10.1111/j.1470-9465.2004.00841.x.(45) Sheehan Daniel J.; Hitchcock Christopher A.; Sibley Carol M. Current and Emerging Azole Antifungal Agents. Clin. Microbiol. Rev. 1999, 12 (1), 40–79. https://doi.org/10.1128/cmr.12.1.40.(46) Bodey, G. P. Azole Antifungal Agents. Clin. Infect. Dis. 1992, 14 (Supplement_1), S161–S169. https://doi.org/10.1093/clinids/14.Supplement_1.S161.(47) Revie, N. M.; Iyer, K. R.; Robbins, N.; Cowen, L. E. Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Antimicrob. Microb. Syst. Biol. 2018, 45, 70–76. https://doi.org/10.1016/j.mib.2018.02.005.(48) Zavrel, M.; White, T. C. Medically Important Fungi Respond to Azole Drugs: An Update. Future Microbiol. 2015, 10 (8), 1355–1373. https://doi.org/10.2217/FMB.15.47.(49) Perlin, D. S.; Shor, E.; Zhao, Y. Update on Antifungal Drug Resistance. Curr. Clin. Microbiol. Rep. 2015, 2 (2), 84–95. https://doi.org/10.1007/s40588-015-0015-1.(50) Beardsley, J.; Halliday, C. L.; Chen, S. C.-A.; Sorrell, T. C. Responding to the Emergence of Antifungal Drug Resistance: Perspectives from the Bench and the Bedside. Future Microbiol. 2018, 13 (10), 1175–1191. https://doi.org/10.2217/fmb-2018-0059.(51) Li, X.-Z.; Li, J. Antimicrobial Resistance in Stenotrophomonas Maltophilia: Mechanisms and Clinical Implications. In Antimicrobial Drug Resistance: Clinical and Epidemiological Aspects, Volume 2; Mayers, D. L., Sobel, J. D., Ouellette, M., Kaye, K. S., Marchaim, D., Eds.; Springer International Publishing: Cham, 2017; pp 937–958. https://doi.org/10.1007/978-3-319-47266-9_11.(52) Sagatova, A. A.; Keniya, M. V.; Wilson, R. K.; Sabherwal, M.; Tyndall, J. D. A.; Monk, B. C. Triazole Resistance Mediated by Mutations of a Conserved Active Site Tyrosine in Fungal Lanosterol 14α-Demethylase. Sci. Rep. 2016, 6 (1), 26213. https://doi.org/10.1038/srep26213.(53) Abd-El-Aziz, A. S.; Agatemor, C.; Etkin, N. Antimicrobial Resistance Challenged with Metal-Based Antimicrobial Macromolecules. Biomaterials 2017, 118, 27–50. https://doi.org/10.1016/j.biomaterials.2016.12.002.(54) Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11 (6), 371–384. https://doi.org/10.1038/nrmicro3028.(55) A Search for Antibacterial Agents. 2012. https://doi.org/10.5772/1085.(56) Weinberg, E. D. The Mutual Effects of Antimicrobial Compounds and Metallic Cations. Bacteriol. Rev. 1957, 21 (1), 46–68.(57) O’Shea, D. Synthesis, Characterisation and Biological Activity of Novel Carboxylate Complexes Incorporating Phenanthroline and Benzimidazole Ligands. 2004. https://doi.org/10.21427/D7SK6G.(58) Chang, E. L.; Simmers, C.; Knight, D. A. Cobalt Complexes as Antiviral and Antibacterial Agents. Pharmaceuticals 2010, 3 (6), 1711–1728. https://doi.org/10.3390/ph3061711.(59) Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff Base Transition Metal Complexes in Antimicrobial and Anticancer Chemotherapy. MedChemComm 2018, 9 (3), 409–436. https://doi.org/10.1039/C7MD00526A.(60) Shaygan, S.; Pasdar, H.; Foroughifar, N.; Davallo, M.; Motiee, F. Cobalt (II) Complexes with Schiff Base Ligands Derived from Terephthalaldehyde and Ortho-Substituted Anilines: Synthesis, Characterization and Antibacterial Activity. Appl. Sci. 2018, 8 (3). https://doi.org/10.3390/app8030385.(61) Fetoh, A.; Asla, K. A.; El-Sherif, A. A.; El-Didamony, H.; Abu El-Reash, G. M. Synthesis, Structural Characterization, Thermogravimetric, Molecular Modelling and Biological Studies of Co(II) and Ni(II) Schiff Bases Complexes. J. Mol. Struct. 2019, 1178, 524–537. https://doi.org/10.1016/j.molstruc.2018.10.066.(62) Orojloo, M.; Zolgharnein, P.; Solimannejad, M.; Amani, S. Synthesis and Characterization of Cobalt (II), Nickel (II), Copper (II) and Zinc (II) Complexes Derived from Two Schiff Base Ligands: Spectroscopic, Thermal, Magnetic Moment, Electrochemical and Antimicrobial Studies. Inorganica Chim. Acta 2017, 467, 227–237. https://doi.org/10.1016/j.ica.2017.08.016.(63) Basha, M. T.; Alghanmi, R. M.; Shehata, M. R.; Abdel-Rahman, L. H. Synthesis, Structural Characterization, DFT Calculations, Biological Investigation, Molecular Docking and DNA Binding of Co(II), Ni(II) and Cu(II) Nanosized Schiff Base Complexes Bearing Pyrimidine Moiety. J. Mol. Struct. 2019, 1183, 298–312. https://doi.org/10.1016/j.molstruc.2019.02.001.(64) Mohamed, G. G.; Mahmoud, W. H.; Diab, M. A.; El-Sonbati, A. Z.; Abbas, S. Y. Synthesis, Characterization, Theoretical Study and Biological Activity of Schiff Base Nanomaterial Analogues. J. Mol. Struct. 2019, 1181, 645–659. https://doi.org/10.1016/j.molstruc.2019.01.007.(65) Sakthi, M.; Ramu, A. Synthesis, Structure, DNA/BSA Binding and Antibacterial Studies of NNO Tridentate Schiff Base Metal Complexes. J. Mol. Struct. 2017, 1149, 727–735. https://doi.org/10.1016/j.molstruc.2017.08.040.(66) Tadavi, S. K.; Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Sangshetti, J. N.; Bendre, R. S. Synthesis, Crystal Structures, Biological Screening and Electrochemical Analysis of Some Salen-Based Transition Metal Complexes. Res. Chem. Intermed. 2017, 43 (8), 4863–4879. https://doi.org/10.1007/s11164-017-2917-4.(67) El-Gamel, N. E. Coordination Behaviour and Biopotency of Metal NN Salen Complexes. RSC Adv. 2012, 2 (13), 5870–5876.(68) Mahmoud, W. H.; Sayed, F. N.; Mohamed, G. G. Azo Dye with Nitrogen Donor Sets of Atoms and Its Metal Complexes: Synthesis, Characterization, DFT, Biological, Anticancer and Molecular Docking Studies. Appl. Organomet. Chem. 2018, 32 (6), e4347. https://doi.org/10.1002/aoc.4347.(69) Okagu, O. D.; Ugwu, K. C.; Ibeji, C. U.; Ekennia, A. C.; Okpareke, O. C.; Ezeorah, C. J.; Anarado, C. J. O.; Babahan, I.; Coban, B.; Yıldız, U.; Cömert, F.; Ujam, O. T. Synthesis and Characterization of Cu(II), Co(II) and Ni(II) Complexes of a Benzohydrazone Derivative: Spectroscopic, DFT, Antipathogenic and DNA Binding Studies. J. Mol. Struct. 2019, 1183, 107–117. https://doi.org/10.1016/j.molstruc.2019.01.069.(70) Al Zoubi, W.; Al-Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G. A New Azo-Schiff Base: Synthesis, Characterization, Biological Activity and Theoretical Studies of Its Complexes. Appl. Organomet. Chem. 2018, 32 (1), e3895. https://doi.org/10.1002/aoc.3895.(71) Ekennia, A. C.; Osowole, A. A.; Onwudiwe, D. C.; Babahan, I.; Ibeji, C. U.; Okafor, S. N.; Ujam, O. T. Synthesis, Characterization, Molecular Docking, Biological Activity and Density Functional Theory Studies of Novel 1,4-Naphthoquinone Derivatives and Pd(II), Ni(II) and Co(II) Complexes. Appl. Organomet. Chem. 2018, 32 (5), e4310. https://doi.org/10.1002/aoc.4310.(72) Nagula, N.; Kunche, S.; Jaheer, M.; Mudavath, R.; Sivan, S.; Ch, S. D. Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and It’s Metal Complexes. J. Fluoresc. 2018, 28 (1), 225–241. https://doi.org/10.1007/s10895-017-2185-0.(73) Subbiah, A.; Sambamoorthy, S. Antimicrobial and Cytotoxic Studies of Cobalt (II), Nickel (II) and Copper (II) Complexes with N-4-Methylphenyl (2, 4-Dihydroxy Acetophenylideneimine). Orient J Chem 2018, 34, 2008–2016.(74) Raman, N.; Chandrasekar, T.; Kumaravel, G.; Mitu, L. Synthesis of Innovative Biochemical Active Mixed Ligand Metal(II) Complexes with Thiazole Containing Schiff Base: In Vitro Antimicrobial Profile. Appl. Organomet. Chem. 2018, 32 (1), e3922. https://doi.org/10.1002/aoc.3922.(75) Abdel-Rahman, L. H.; Abu-Dief, A. M.; Newair, E. F.; Hamdan, S. K. Some New Nano-Sized Cr(III), Fe(II), Co(II), and Ni(II) Complexes Incorporating 2-((E)-(Pyridine-2-Ylimino)Methyl)Napthalen-1-Ol Ligand: Structural Characterization, Electrochemical, Antioxidant, Antimicrobial, Antiviral Assessment and DNA Interaction. J. Photochem. Photobiol. B 2016, 160, 18–31. https://doi.org/10.1016/j.jphotobiol.2016.03.040.(76) Shahid, M.; Anjuli; Tasneem, S.; Mantasha, I.; Ahamad, M. N.; Sama, F.; Fatma, K.; Siddiqi, Z. A. Spectral Characterization, Crystal Structures and Biological Activities of Iminodiacetate Ternary Complexes. J. Mol. Struct. 2017, 1146, 424–431. https://doi.org/10.1016/j.molstruc.2017.06.023.(77) Al-Saif, F. A.; Alibrahim, K. A.; Alfurhood, J. A.; Refat, M. S. Synthesis, Spectroscopic, Thermal, Biological, Morphological and Molecular Docking Studies of the Different Quinolone Drugs and Their Cobalt(II) Complexes. J. Mol. Liq. 2018, 249, 438–453. https://doi.org/10.1016/j.molliq.2017.11.073.(78) Dhayabaran, V. V.; Prakash, T. D.; Renganathan, R.; Friehs, E.; Bahnemann, D. W. Novel Bioactive Co(II), Cu(II), Ni(II) and Zn(II) Complexes with Schiff Base Ligand Derived from Histidine and 1,3-Indandione: Synthesis, Structural Elucidation, Biological Investigation and Docking Analysis. J. Fluoresc. 2017, 27 (1), 135–150. https://doi.org/10.1007/s10895-016-1941-x.(79) Calu, L.; Badea, M.; Čelan Korošin, N.; Chifiriuc, M. C.; Bleotu, C.; Stanică, N.; Silvestro, L.; Maurer, M.; Olar, R. Spectral, Thermal and Biological Characterization of Complexes with a Schiff Base Bearing Triazole Moiety as Potential Antimicrobial Species. J. Therm. Anal. Calorim. 2018, 134 (3), 1839–1850. https://doi.org/10.1007/s10973-018-7871-x.(80) Calu, L.; Badea, M.; Chifiriuc, M. C.; Bleotu, C.; David, G.-I.; Ioniţă, G.; Măruţescu, L.; Lazăr, V.; Stanică, N.; Soponaru, I.; Marinescu, D.; Olar, R. Synthesis, Spectral, Thermal, Magnetic and Biological Characterization of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with a Schiff Base Bearing a 1,2,4-Triazole Pharmacophore. J. Therm. Anal. Calorim. 2015, 120 (1), 375–386. https://doi.org/10.1007/s10973-014-3970-5.(81) Bagihalli, G. B.; Badami, P. S.; Patil, S. A. Synthesis, Spectral Characterization and in Vitro Biological Studies of Co(II), Ni(II) and Cu(II) Complexes with 1,2,4-Triazole Schiff Bases. J. Enzyme Inhib. Med. Chem. 2009, 24 (2), 381–394. https://doi.org/10.1080/14756360802187901.(82) Apohan, E.; Yilmaz, U.; Yilmaz, O.; Serindag, A.; Küçükbay, H.; Yesilada, O.; Baran, Y. Synthesis, Cytotoxic and Antimicrobial Activities of Novel Cobalt and Zinc Complexes of Benzimidazole Derivatives. J. Organomet. Chem. 2017, 828, 52–58. https://doi.org/10.1016/j.jorganchem.2016.11.020.(83) Kumaravel, G.; Raman, N. A Treatise on Benzimidazole Based Schiff Base Metal(II) Complexes Accentuating Their Biological Efficacy: Spectroscopic Evaluation of DNA Interactions, DNA Cleavage and Antimicrobial Screening. Mater. Sci. Eng. C 2017, 70, 184–194. https://doi.org/10.1016/j.msec.2016.08.069.(84) Kumaravel, G.; Ponnukalai, P. U.; Mahendiran, D.; Raman, N. Exploring the DNA Interactions, FGF Growth Receptor Interaction and Biological Screening of Metal(II) Complexes of NNN Donor Ligand Derived from 2‑(Aminomethyl)Benzimidazole. Int. J. Biol. Macromol. 2019, 126, 1303–1317. https://doi.org/10.1016/j.ijbiomac.2018.09.116.(85) Kumaravel, G.; Utthra, P. P.; Raman, N. DNA Fastening and Scission Actions of Cu(II), Co(II), Ni(II) and Zn(II) Complexes: Synthesis, Spectral Characterization and Cytotoxic Study. Appl. Organomet. Chem. 2018, 32 (2), e4010. https://doi.org/10.1002/aoc.4010.(86) Beheshti, A.; Safaeiyan, F.; Hashemi, F.; Motamedi, H.; Mayer, P.; Bruno, G.; Rudbari, H. A. Synthesis, Structural Characterization, Antibacterial Activity and Computational Studies of New Cobalt (II) Complexes with 1,1,3,3-Tetrakis (3,5-Dimethyl-1-Pyrazolyl)Propane Ligand. J. Mol. Struct. 2016, 1123, 225–237. https://doi.org/10.1016/j.molstruc.2016.06.037.(87) Radha, V. P.; Jone Kirubavathy, S.; Chitra, S. Synthesis, Characterization and Biological Investigations of Novel Schiff Base Ligands Containing Imidazoline Moiety and Their Co(II) and Cu(II) Complexes. J. Mol. Struct. 2018, 1165, 246–258. https://doi.org/10.1016/j.molstruc.2018.03.109.(88) Gaber, M.; El-Wakiel, N.; Hemeda, O. M. Cr(III), Mn(II), Co(II), Ni(II) and Cu(II) Complexes of 7-((1H-Benzo[d]Imidazol-2-Yl)Diazenyl)-5-Nitroquinolin-8-Ol.Synthesis, Thermal, Spectral, Electrical Measurements, Molecular Modeling and Biological Activity. J. Mol. Struct. 2019, 1180, 318–329. https://doi.org/10.1016/j.molstruc.2018.12.006.(89) Muneera, M. S.; Joseph, J. Design, Synthesis, Structural Elucidation, Pharmacological Evaluation of Metal Complexes with Pyrazoline Derivatives. J. Photochem. Photobiol. B 2016, 163, 57–68. https://doi.org/10.1016/j.jphotobiol.2016.08.010.(90) Gaber, M.; El-Wakiel, N. A.; El-Ghamry, H.; Fathalla, S. K. Synthesis, Spectroscopic Characterization, DNA Interaction and Biological Activities of Mn(II), Co(II), Ni(II) and Cu(II) Complexes with [(1H-1,2,4-Triazole-3-Ylimino)Methyl]Naphthalene-2-Ol. J. Mol. Struct. 2014, 1076, 251–261. https://doi.org/10.1016/j.molstruc.2014.06.071.(91) Sumrra, S. H.; Kausar, S.; Raza, M. A.; Zubair, M.; Zafar, M. N.; Nadeem, M. A.; Mughal, E. U.; Chohan, Z. H.; Mushtaq, F.; Rashid, U. Metal Based Triazole Compounds: Their Synthesis, Computational, Antioxidant, Enzyme Inhibition and Antimicrobial Properties. J. Mol. Struct. 2018, 1168, 202–211. https://doi.org/10.1016/j.molstruc.2018.05.036.(92) Utthra, P. P.; Kumaravel, G.; Raman, N. Screening the Efficient Biological Prospects of Triazole Allied Mixed Ligand Metal Complexes. J. Mol. Struct. 2017, 1150, 374–382. https://doi.org/10.1016/j.molstruc.2017.09.002.(93) Sumrra, S. H.; Mushtaq, F.; Khalid, M.; Raza, M. A.; Nazar, M. F.; Ali, B.; Braga, A. A. C. Synthesis, Spectral Characterization and Computed Optical Analysis of Potent Triazole Based Compounds. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2018, 190, 197–207. https://doi.org/10.1016/j.saa.2017.09.019.(94) Hanif, M.; Chohan, Z. H. Design, Spectral Characterization and Biological Studies of Transition Metal(II) Complexes with Triazole Schiff Bases. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2013, 104, 468–476. https://doi.org/10.1016/j.saa.2012.11.077.(95) Hanif, M.; Chohan, Z. H. Synthesis, Spectral Characterization and Biological Studies of Transition Metal(II) Complexes with Triazole Schiff Bases. Appl. Organomet. Chem. 2013, 27 (1), 36–44. https://doi.org/10.1002/aoc.2936.(96) Ali, A. E.; Elasala, G. S.; Ibrahim, R. S. Synthesis, Characterization, Spectral, Thermal Analysis and Biological Activity Studies of Metronidazole Complexes. J. Mol. Struct. 2019, 1176, 673–684. https://doi.org/10.1016/j.molstruc.2018.08.095.(97) Brul, S.; Coote, P. Preservative Agents in Foods: Mode of Action and Microbial Resistance Mechanisms. Int. J. Food Microbiol. 1999, 50 (1), 1–17. https://doi.org/10.1016/S0168-1605(99)00072-0.(98) Azócar, M. I.; Gómez, G.; Levín, P.; Paez, M.; Muñoz, H.; Dinamarca, N. Review: Antibacterial Behavior of Carboxylate Silver(I) Complexes. J. Coord. Chem. 2014, 67 (23–24), 3840–3853. https://doi.org/10.1080/00958972.2014.974582.(99) Vasile Scăețeanu, G.; Chifiriuc, M. C.; Bleotu, C.; Kamerzan, C.; Măruţescu, L.; Daniliuc, C. G.; Maxim, C.; Calu, L.; Olar, R.; Badea, M. Synthesis, Structural Characterization, Antimicrobial Activity, and In Vitro Biocompatibility of New Unsaturated Carboxylate Complexes with 2,2′-Bipyridine. Molecules 2018, 23 (1). https://doi.org/10.3390/molecules23010157.(100) Bello-Vieda, N. J.; Pastrana, H. F.; Garavito, M. F.; Ávila, A. G.; Celis, A. M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J. J. Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles. 2018.(101) Hurtado, J.; Nuñez-Dallos, N.; Movilla, S.; Pietro Miscione, G.; Peoples, B. C.; Rojas, R.; Valderrama, M.; Fröhlich, R. Chromium(III) Complexes Bearing Bis(Benzotriazolyl)Pyridine Ligands: Synthesis, Characterization and Ethylene Polymerization Behavior. J. Coord. Chem. 2017, 70 (5), 803–818. https://doi.org/10.1080/00958972.2017.1286330.(102) Molina, V.; Rauhalahti, M.; Hurtado, J.; Fliegl, H.; Sundholm, D.; Muñoz-Castro, A. Aromaticity Introduced by Antiferromagnetic Ligand Mediated Metal–Metal Interactions. Insights from the Induced Magnetic Response in [Cu6(dmPz)6(OH)6]. Inorg. Chem. Front. 2017, 4 (6), 986–993. https://doi.org/10.1039/C7QI00023E.(103) Nagles, E.; Ibarra, L.; Llanos, J. P.; Hurtado, J.; Garcia-Beltrán, O. Development of a Novel Electrochemical Sensor Based on Cobalt(II) Complex Useful in the Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid. J. Electroanal. Chem. 2017, 788, 38–43. https://doi.org/10.1016/j.jelechem.2017.01.057.(104) Nuñez-Dallos, N.; Lopez-Barbosa, N.; Muñoz-Castro, A.; Mac-Leod Carey, D.; De Nisi, A.; Monari, M.; Osma, J. F.; Hurtado, J. A New Copper(I) Coordination Polymer from 2,6-Bis(1H-Benzotriazol-1-Ylmethyl)Pyridine: Synthesis, Characterization, and Use as Additive in Transparent Submicron UV Filters. J. Coord. Chem. 2017, 70 (19), 3363–3378. https://doi.org/10.1080/00958972.2017.1393072.(105) Posada, A. F.; Macías, M. A.; Movilla, S.; Miscione, G. P.; Pérez, L. D.; Hurtado, J. J. Polymers of ε-Caprolactone Using New Copper(II) and Zinc(II) Complexes as Initiators: Synthesis, Characterization and X-Ray Crystal Structures. Polymers 2018, 10 (11). https://doi.org/10.3390/polym10111239.(106) Rueda-Espinosa, J.; Torres, J. F.; Gauthier, C. V.; Wojtas, L.; Verma, G.; Macías, M. A.; Hurtado, J. Copper(II) Complexes with Tridentate Bis(Pyrazolylmethyl)Pyridine Ligands: Synthesis, X-Ray Crystal Structures and ϵ-Caprolactone Polymerization. ChemistrySelect 2017, 2 (30), 9815–9821. https://doi.org/10.1002/slct.201701820.(107) Sandoval-Rojas, A. P.; Ibarra, L.; Cortés, M. T.; Hurtado, M.; Macías, M.; Hurtado, J. J. Synthesis and Characterization of a New Copper(II) Polymer Containing a Thiocyanate Bridge and Its Application in Dopamine Detection. Inorganica Chim. Acta 2017, 459, 95–102. https://doi.org/10.1016/j.ica.2017.01.022.(108) Sandoval-Rojas, A. P.; Ibarra, L.; Cortés, M. T.; Macías, M. A.; Suescun, L.; Hurtado, J. Synthesis and Characterization of Copper(II) Complexes Containing Acetate and N,N-Donor Ligands, and Their Electrochemical Behavior in Dopamine Detection. J. Electroanal. Chem. 2017, 805, 60–67. https://doi.org/10.1016/j.jelechem.2017.10.018.(109) Torres, J. F.; Bello-Vieda, N. J.; Macías, M. A.; Muñoz-Castro, A.; Rojas-Dotti, C.; Martínez-Lillo, J.; Hurtado, J. Water Dissociation of a Dinuclear Bis(3,5-Dimethylpyrazolyl)Methane Copper(II) Complex: X-Ray Diffraction Structure, Magnetic Properties, and Characteristic Absorption of the (CuN2Cl2)2 Core. Eur. J. Inorg. Chem. 2018, 2018 (32), 3644–3651. https://doi.org/10.1002/ejic.201800478.(110) Mestizo Melo, P. D. Síntesis, Caracterización y Estudio Citotóxico de Nuevos Complejos de Co (II), Cu (II) y Ni (II) Con Ligandos de Cumarina Tipo Salen Con Potencial Actividad Anticancerígena. 2016.(111) Fonseca, D.; Páez, C.; Ibarra, L.; García-Huertas, P.; Macías, M. A.; Triana-Chávez, O.; Hurtado, J. J. Metal Complex Derivatives of Bis(Pyrazol-1-Yl)Methane Ligands: Synthesis, Characterization and Anti-Trypanosoma Cruzi Activity. Transit. Met. Chem. 2019, 44 (2), 135–144. https://doi.org/10.1007/s11243-018-0277-6.(112) Hurtado, J.; Ibarra, L.; Yepes, D.; García-Huertas, P.; Macías, M. A.; Triana-Chavez, O.; Nagles, E.; Suescun, L.; Muñoz-Castro, A. Synthesis, Crystal Structure, Catalytic and Anti-Trypanosoma Cruzi Activity of a New Chromium(III) Complex Containing Bis(3,5-Dimethylpyrazol-1-Yl)Methane. J. Mol. Struct. 2017, 1146, 365–372. https://doi.org/10.1016/j.molstruc.2017.06.014.(113) Urbina Julio A.; Concepcion Juan Luis; Montalvetti Andrea; Rodriguez Juan B.; Docampo Roberto. Mechanism of Action of 4-Phenoxyphenoxyethyl Thiocyanate (WC-9) against Trypanosoma Cruzi, the Causative Agent of Chagas’ Disease. Antimicrob. Agents Chemother. 2003, 47 (6), 2047–2050. https://doi.org/10.1128/aac.47.6.2047-2050.2003.(114) Dufour, V.; Stahl, M.; Baysse, C. The Antibacterial Properties of Isothiocyanates. Microbiology, 2015, 161, 229–243. https://doi.org/10.1099/mic.0.082362-0.(115) Björck L.; Rosén C-G.; Marshall V.; Reiter B. Antibacterial Activity of the Lactoperoxidase System in Milk Against Pseudomonads and Other Gram-Negative Bacteria. Appl. Microbiol. 1975, 30 (2), 199–204. https://doi.org/10.1128/am.30.2.199-204.1975.(116) van der Veen, B. S.; de Winther, M. P. J.; Heeringa, P. Myeloperoxidase: Molecular Mechanisms of Action and Their Relevance to Human Health and Disease. Antioxid. Redox Signal. 2009, 11 (11), 2899–2937. https://doi.org/10.1089/ars.2009.2538.(117) Sisecioglu, M.; Kirecci, E.; Cankaya, M.; Ozdemir, H.; Gulcin, I.; Atasever, A. The Prohibitive Effect of Lactoperoxidase System (LPS) on Some Pathogen Fungi and Bacteria. Afr. J. Pharm. Pharmacol. 2010, 4 (9), 671–677.(118) Malkin, R.; Malmström, R.; Vänngård, T. The Requirement of the “Non‐blue” Copper (II) for the Activity of Fungal Laccase. FEBS Lett. 1968, 1 (1), 50–54.(119) Castillo, K. F.; Bello-Vieda, N. J.; Nuñez-Dallos, N. G.; Pastrana, H. F.; Celis, A. M.; Restrepo, S.; Hurtado, J. J.; Ávila, A. G. Metal Complex Derivatives of Azole: A Study on Their Synthesis, Characterization, and Antibacterial and Antifungal Activities. J. Braz. Chem. Soc. 2016, 27.(120) Bello-Vieda, N. J.; Pastrana, H. F.; Garavito, M. F.; Ávila, A. G.; Celis, A. M.; Muñoz-Castro, A.; Restrepo, S.; Hurtado, J. J. Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles. Molecules 2018, 23 (2). https://doi.org/10.3390/molecules23020361.(121) Sanchez-Delgado, R. A.; Anzellotti, A. Metal Complexes as Chemotherapeutic Agents Against Tropical Diseases: Trypanosomiasis, Malaria and Leishmaniasis. Mini Rev. Med. Chem. 2004, 4 (1), 23–30. https://doi.org/10.2174/1389557043487493.(122) Murcia, R. A.; Leal, S. M.; Roa, M. V.; Nagles, E.; Muñoz-Castro, A.; Hurtado, J. J. Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules 2018, 23 (8). https://doi.org/10.3390/molecules23082013.(123) Zhang, G.-F.; Dou, Y.-L.; She, J.-B.; Yin, M.-H. Synthesis and Crystal Structure of a Copper Coordination Polymer [(Cu(Btapo)2BrCH3OH)+Br−]n (Btapo=1,3-Bis(Benzotriazol-1-Yl) Propan-2-Ol). J. Chem. Crystallogr. 2007, 37 (1), 63–67. https://doi.org/10.1007/s10870-006-9152-y.(124) Geary, W. J. The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 1971, 7 (1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0.(125) Katritzky, A. R.; Ramsden, C. A.; Joule, J. A.; Zhdankin, V. V. Handbook of Heterocyclic Chemistry; Elsevier, 2010.(126) Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier, 2017.(127) Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, 2004.(128) Rubim, J.; Gutz, I. G. R.; Sala, O.; Orville-Thomas, W. J. Surface Enhanced Raman Spectra of Benzotriazole Adsorbed on a Copper Electrode. J. Mol. Struct. 1983, 100, 571–583. https://doi.org/10.1016/0022-2860(83)90114-X.(129) Bigotto, A.; Nand Pandey§, A.; Zerbo, C. Polarized Infrared and Raman Spectra and Ab-Initio Calculations of Benzotriazole. Spectrosc. Lett. 1996, 29 (3), 511–522. https://doi.org/10.1080/00387019608006667.(130) Chan, H. Y. H.; Weaver, M. J. A Vibrational Structural Analysis of Benzotriazole Adsorption and Phase Film Formation on Copper Using Surface-Enhanced Raman Spectroscopy. Langmuir 1999, 15 (9), 3348–3355. https://doi.org/10.1021/la981724f.(131) Metikoš‐Huković, M.; Babić, R.; Marinović, A. Spectrochemical Characterization of Benzotriazole on Copper. J. Electrochem. Soc. 1998, 145 (12), 4045. https://doi.org/10.1149/1.1838912.(132) Thomas, S.; Venkateswaran, S.; Kapoor, S.; D’Cunha, R.; Mukherjee, T. Surface Enhanced Raman Scattering of Benzotriazole: A Molecular Orientational Study. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2004, 60 (1), 25–29. https://doi.org/10.1016/S1386-1425(03)00213-0.(133) Mathey, Y.; Greig, D. R.; Shriver, D. F. Variable-Temperature Raman and Infrared Spectra of the Copper Acetate Dimer Cu2(O2CCH3)4(H2O)2 and Its Derivatives. Inorg. Chem. 1982, 21 (9), 3409–3413. https://doi.org/10.1021/ic00139a028.(134) Applegarth, L. M. S. G. A.; Corbeil, C. R.; Mercer, D. J. W.; Pye, C. C.; Tremaine, P. R. Raman and Ab Initio Investigation of Aqueous Cu(I) Chloride Complexes from 25 to 80 °C. J. Phys. Chem. B 2014, 118 (1), 204–214. https://doi.org/10.1021/jp406580q.(135) Agulló-Rueda, F.; Calleja, J. M.; Martini, M.; Spinolo, G.; Cariati, F. Raman and Infrared Spectra of Transition Metal Halide Hexahydrates. J. Raman Spectrosc. 1987, 18 (7), 485–491. https://doi.org/10.1002/jrs.1250180707.(136) Billes, F.; Ziegler, I.; Mikosch, H. Vibrational Spectroscopic Study of Sodium-1,2,4-Triazole, an Important Intermediate Compound in the Synthesis of Several Active Substances. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016, 153, 349–362. https://doi.org/10.1016/j.saa.2015.08.014.(137) Billes, F.; Endrédi, H.; Keresztury, G. Vibrational Spectroscopy of Triazoles and Tetrazole. J. Mol. Struct. THEOCHEM 2000, 530 (1), 183–200. https://doi.org/10.1016/S0166-1280(00)00340-7.(138) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; John Wiley & Sons, 1999.(139) Titiš, J.; Hudák, J.; Kožíšek, J.; Krutošíková, A.; Moncol’, J.; Tarabová, D.; Boča, R. Structural, Spectral and Magnetic Properties of Carboxylato Cobalt(II) Complexes with Heterocyclic N-Donor Ligands: Reconstruction of Magnetic Parameters from Electronic Spectra. Inorganica Chim. Acta 2012, 388, 106–113. https://doi.org/10.1016/j.ica.2012.03.036.(140) Atkins, P. Shriver and Atkins’ Inorganic Chemistry; Oxford University Press, USA, 2010.(141) Deswal, Y.; Asija, S.; Kumar, D.; Jindal, D. K.; Chandan, G.; Panwar, V.; Saroya, S.; Kumar, N. Transition Metal Complexes of Triazole-Based Bioactive Ligands: Synthesis, Spectral Characterization, Antimicrobial, Anticancer and Molecular Docking Studies. Res. Chem. Intermed. 2022, 48 (2), 703–729. https://doi.org/10.1007/s11164-021-04621-5.(142) Abdel-Rahman, L. H.; Abu-Dief, A. M.; Ismael, M.; Mohamed, M. A. A.; Hashem, N. A. Synthesis, Structure Elucidation, Biological Screening, Molecular Modeling and DNA Binding of Some Cu(II) Chelates Incorporating Imines Derived from Amino Acids. J. Mol. Struct. 2016, 1103, 232–244. https://doi.org/10.1016/j.molstruc.2015.09.039.(143) Adam, M. S. S.; Abdel-Rahman, L. H.; Abu-Dief, A. M.; Hashem, N. A. Synthesis, Catalysis, Antimicrobial Activity, and DNA Interactions of New Cu(II)-Schiff Base Complexes. Inorg. Nano-Met. Chem. 2020, 50 (3), 136–150. https://doi.org/10.1080/24701556.2019.1672735.(144) Abu-Dief, A. M.; Abdel-Rahman, L. H.; Hashem, N. A.; Newair, E. F. Structure Explication, Biological Evaluation, DNA Interaction, Electrochemistry and Antioxidant Activity of Iron (II) Tri-and Tetra-Dentate Schiff Base Amino Acid Complexes. Sohag J. Sci. 2021, 6 (2), 9–25.(145) van Lenthe, E.; Snijders, J. G.; Baerends, E. J. The Zero‐order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105 (15), 6505–6516. https://doi.org/10.1063/1.472460.(146) van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. Relativistic Regular Two-Component Hamiltonians. Int. J. Quantum Chem. 1996, 57 (3), 281–293. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U.(147) Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54 (23), 16533–16539. https://doi.org/10.1103/PhysRevB.54.16533.(148) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.(149) Van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. J. Comput. Chem. 2003, 24 (9), 1142–1156. https://doi.org/10.1002/jcc.10255.(150) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.(151) Johnson, E. R.; Becke, A. D. A Post-Hartree–Fock Model of Intermolecular Interactions. J. Chem. Phys. 2005, 123 (2), 024101. https://doi.org/10.1063/1.1949201.(152) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. https://doi.org/10.1002/jcc.21759.(153) Andrada, D. M.; Foroutan-Nejad, C. Energy Components in Energy Decomposition Analysis (EDA) Are Path Functions; Why Does It Matter? Phys. Chem. Chem. Phys. 2020, 22 (39), 22459–22464. https://doi.org/10.1039/D0CP04016A.(154) Ziegler, T.; Rauk, A. On the Calculation of Bonding Energies by the Hartree Fock Slater Method. Theor. Chim. Acta 1977, 46 (1), 1–10. https://doi.org/10.1007/BF00551648.(155) Morokuma, K. Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O. J. Chem. Phys. 2003, 55 (3), 1236–1244. https://doi.org/10.1063/1.1676210.(156) Kitaura, K.; Morokuma, K. A New Energy Decomposition Scheme for Molecular Interactions within the Hartree-Fock Approximation. Int. J. Quantum Chem. 1976, 10 (2), 325–340. https://doi.org/10.1002/qua.560100211.(157) Vyboishchikov, S. F.; Krapp, A.; Frenking, G. Two Complementary Molecular Energy Decomposition Schemes: The Mayer and Ziegler–Rauk Methods in Comparison. J. Chem. Phys. 2008, 129 (14), 144111. https://doi.org/10.1063/1.2989805.(158) Zhao, L.; von Hopffgarten, M.; Andrada, D. M.; Frenking, G. Energy Decomposition Analysis. WIREs Comput. Mol. Sci. 2018, 8 (3), e1345. https://doi.org/10.1002/wcms.1345.(159) García-Santamarina, S.; Thiele, D. J. Copper at the Fungal Pathogen-Host Axis *. J. Biol. Chem. 2015, 290 (31), 18945–18953. https://doi.org/10.1074/jbc.R115.649129.(160) Li, C. X.; Gleason, J. E.; Zhang, S. X.; Bruno, V. M.; Cormack, B. P.; Culotta, V. C. Candida Albicans Adapts to Host Copper during Infection by Swapping Metal Cofactors for Superoxide Dismutase. Proc. Natl. Acad. Sci. 2015, 112 (38), E5336–E5342. https://doi.org/10.1073/pnas.1513447112.(161) Schwartz Jennifer A.; Olarte Karen T.; Michalek Jamie L.; Jandu Gurjinder S.; Michel Sarah L. J.; Bruno Vincent M. Regulation of Copper Toxicity by Candida Albicans GPA2. Eukaryot. Cell 2013, 12 (7), 954–961. https://doi.org/10.1128/ec.00344-12.(162) Nair, M. S.; Upadhyaya, I.; Amalaradjou, M. A. R.; Venkitanarayanan, K. Antimicrobial Food Additives and Disinfectants. In Foodborne Pathogens and Antibiotic Resistance; 2016; pp 275–301. https://doi.org/10.1002/9781119139188.ch12.(163) Ravindran, R.; R, M.; Fazil, S.; Devi, A. S. Synthesis, Spectroscopic and Biological Studies of Metal Complexes of an ONO Donor Pyrazolylhydrazone – Crystal Structure of Ligand and Co(II) Complex. J. Indian Chem. Soc. 2022, 99 (4), 100389. https://doi.org/10.1016/j.jics.2022.100389.(164) Obaleye, J. A.; Ajibola, A. A.; Bernardus, V. B.; Hosten, E. C. Synthesis, X-Ray Crystallography, Spectroscopic and in Vitro Antimicrobial Studies of a New Cu(II) Complex of Trichloroacetic Acid and Imidazole. J. Mol. Struct. 2020, 1203, 127435. https://doi.org/10.1016/j.molstruc.2019.127435.(165) Kalarani, R.; Sankarganesh, M.; Kumar, G. G. V.; Kalanithi, M. Synthesis, Spectral, DFT Calculation, Sensor, Antimicrobial and DNA Binding Studies of Co(II), Cu(II) and Zn(II) Metal Complexes with 2-Amino Benzimidazole Schiff Base. J. Mol. Struct. 2020, 1206, 127725. https://doi.org/10.1016/j.molstruc.2020.127725.(166) Fudulu, A.; Olar, R.; Maxim, C.; Scăeţeanu, G. V.; Bleotu, C.; Matei, L.; Chifiriuc, M. C.; Badea, M. New Cobalt (II) Complexes with Imidazole Derivatives: Antimicrobial Efficiency against Planktonic and Adherent Microbes and In Vitro Cytotoxicity Features. Molecules 2021, 26 (1). https://doi.org/10.3390/molecules26010055.(167) Dias, B. B.; da Silva Dantas, F. G.; Galvão, F.; Cupozak-Pinheiro, W. J.; Wender, H.; Pizzuti, L.; Rosa, P. P.; Tenório, K. V.; Gatto, C. C.; Negri, M.; Casagrande, G. A.; de Oliveira, K. M. P. Synthesis, Structural Characterization, and Prospects for New Cobalt (II) Complexes with Thiocarbamoyl-Pyrazoline Ligands as Promising Antifungal Agents. J. Inorg. Biochem. 2020, 213, 111277. https://doi.org/10.1016/j.jinorgbio.2020.111277.(168) Stevanović, N. Lj.; Aleksic, I.; Kljun, J.; Skaro Bogojevic, S.; Veselinovic, A.; Nikodinovic-Runic, J.; Turel, I.; Djuran, M. I.; Glišić, B. Đ. Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential. Pharmaceuticals 2021, 14 (1). https://doi.org/10.3390/ph14010024.(169) Bresson, C.; Darolles, C.; Carmona, A.; Gautier, C.; Sage, N.; Roudeau, S.; Ortega, R.; Ansoborlo, E.; Malard, V. Cobalt Chloride Speciation, Mechanisms of Cytotoxicity on Human Pulmonary Cells, and Synergistic Toxicity with Zinc. Metallomics 2013, 5 (2), 133–143. https://doi.org/10.1039/c3mt20196a.(170) Simonsen, L. O.; Harbak, H.; Bennekou, P. Cobalt Metabolism and Toxicology—A Brief Update. Sci. Total Environ. 2012, 432, 210–215. https://doi.org/10.1016/j.scitotenv.2012.06.009.(171) G Lippi; M Franchini; G C Guidi. Cobalt Chloride Administration in Athletes: A New Perspective in Blood Doping? Br. J. Sports Med. 2005, 39 (11), 872. https://doi.org/10.1136/bjsm.2005.019232.(172) Oyagbemi, A.; Omobowale, T.; Awoyomi, O.; Ajibade, T.; Falayi, O.; Ogunpolu, B.; Okotie, U.; Asenuga, E.; Adejumobi, O.; Hassan, F.; Ola-Davies, O.; Saba, A.; Adedapo, A.; Yakubu, M. Cobalt Chloride Toxicity Elicited Hypertension and Cardiac Complication via Induction of Oxidative Stress and Upregulation of COX-2/Bax Signaling Pathway. Hum. Exp. Toxicol. 2019, 38 (5), 519–532. https://doi.org/10.1177/0960327118812158.(173) Gómez-Arnaiz, S.; Tate, R. J.; Grant, M. H. Cytotoxicity of Cobalt Chloride in Brain Cell Lines - a Comparison between Astrocytoma and Neuroblastoma Cells. Toxicol. In Vitro 2020, 68, 104958. https://doi.org/10.1016/j.tiv.2020.104958.(174) Kasprzak, K. S.; Zastawny, T. H.; North, S. L.; Riggs, C. W.; Diwan, B. A.; Rice, J. M.; Dizdaroglu, M. Oxidative DNA Base Damage in Renal, Hepatic, and Pulmonary Chromatin of Rats after Intraperitoneal Injection of Cobalt(II) Acetate. Chem. Res. Toxicol. 1994, 7 (3), 329–335. https://doi.org/10.1021/tx00039a009.(175) Speijers, G. J. A.; Krajnc, E. I.; Berkvens, J. M.; van Logten, M. J. Acute Oral Toxicity of Inorganic Cobalt Compounds in Rats. Food Chem. Toxicol. 1982, 20 (3), 311–314. https://doi.org/10.1016/S0278-6915(82)80298-6.201624437Publicationhttps://scholar.google.es/citations?user=jXtWpzEAAAAJvirtual::18186-1https://scholar.google.es/citations?user=jXtWpzEAAAAJ0000-0002-0511-9719virtual::18186-10000-0002-0511-9719https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001192175virtual::18186-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001192175https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000568201virtual::18188-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000568201047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::18186-1047f74b0-09ef-4525-a0a8-b17aaa7ac91e047f74b0-09ef-4525-a0a8-b17aaa7ac91evirtual::18186-17e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::18188-17e1de7b1-7670-4e86-81ca-90331b57ff5e7e1de7b1-7670-4e86-81ca-90331b57ff5evirtual::18188-1ORIGINALSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica.pdfSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica.pdfRestricción de acceso debido a la publicación de resultados en revistas internacionales indexadas. Después de dicha publicación se dará acceso al documento.application/pdf20009766https://repositorio.uniandes.edu.co/bitstreams/3cd5302b-0248-45ee-8564-69eae7f69f75/downloadb1270d0bac829a11e97a96175eadcd79MD51Autorización entrega de tesis - Sistema de bibliotecas (Aval Asesor).pdfAutorización entrega de tesis - Sistema de bibliotecas (Aval Asesor).pdfHIDEapplication/pdf277694https://repositorio.uniandes.edu.co/bitstreams/4269f1c5-8867-495e-a453-da3a4494d7be/download07aeaf742de07f3a48559b2477f6e9abMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/c2e4d275-d749-4669-add2-0863f7276f76/downloadae9e573a68e7f92501b6913cc846c39fMD52TEXTSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica.pdf.txtSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica.pdf.txtExtracted texttext/plain101594https://repositorio.uniandes.edu.co/bitstreams/2b1dccbb-dafe-489b-8b99-333538be4721/download542dbb161000397e04bc6c6912fb740fMD54Autorización entrega de tesis - Sistema de bibliotecas (Aval Asesor).pdf.txtAutorización entrega de tesis - Sistema de bibliotecas (Aval Asesor).pdf.txtExtracted texttext/plain2047https://repositorio.uniandes.edu.co/bitstreams/38b0c1ca-bd48-4fad-8c0a-1be6f2a7abd5/download242b39adc1621d93ac7c0e35cca4e6e3MD56THUMBNAILSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica.pdf.jpgSíntesis de complejos de cobre(II) y cobalto(II) con ligandos triazoles y benzotriazoles y su potencial actividad antifúngica.pdf.jpgGenerated Thumbnailimage/jpeg8792https://repositorio.uniandes.edu.co/bitstreams/b18b7a35-fed0-4734-a1a6-ea449b082bab/downloade868f94546def3a3c32e51bc4633d02cMD55Autorización entrega de tesis - Sistema de bibliotecas (Aval Asesor).pdf.jpgAutorización entrega de tesis - Sistema de bibliotecas (Aval Asesor).pdf.jpgGenerated Thumbnailimage/jpeg10883https://repositorio.uniandes.edu.co/bitstreams/22c56c22-e7ff-4977-8fd5-4ac78304d709/download531a8bd7699640e53574101e6fe7771aMD571992/74304oai:repositorio.uniandes.edu.co:1992/743042024-08-26 15:22:50.754https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |