Implementation of machine learning strategies in resonant ultrasound spectroscopy

The elastic reaction of a material is dictated by its tensor of elastic constants. These elastic constants are a measurement of the material's interatomic forces, i.e., they are defined as second derivatives of the free energy with respect to strain in different symmetries, which makes them a u...

Full description

Autores:
Giraldo Grueso, Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/53548
Acceso en línea:
http://hdl.handle.net/1992/53548
Palabra clave:
Espectroscopía de resonancia ultrasónica
Cuerpos deformables (Física)
Aprendizaje automático (Inteligencia artificial)
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_0506018c68bd3b1724a46b5e8e283e1b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/53548
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Implementation of machine learning strategies in resonant ultrasound spectroscopy
title Implementation of machine learning strategies in resonant ultrasound spectroscopy
spellingShingle Implementation of machine learning strategies in resonant ultrasound spectroscopy
Espectroscopía de resonancia ultrasónica
Cuerpos deformables (Física)
Aprendizaje automático (Inteligencia artificial)
Física
title_short Implementation of machine learning strategies in resonant ultrasound spectroscopy
title_full Implementation of machine learning strategies in resonant ultrasound spectroscopy
title_fullStr Implementation of machine learning strategies in resonant ultrasound spectroscopy
title_full_unstemmed Implementation of machine learning strategies in resonant ultrasound spectroscopy
title_sort Implementation of machine learning strategies in resonant ultrasound spectroscopy
dc.creator.fl_str_mv Giraldo Grueso, Felipe
dc.contributor.advisor.none.fl_str_mv Giraldo Gallo, Paula Liliana
dc.contributor.author.none.fl_str_mv Giraldo Grueso, Felipe
dc.subject.armarc.none.fl_str_mv Espectroscopía de resonancia ultrasónica
Cuerpos deformables (Física)
Aprendizaje automático (Inteligencia artificial)
topic Espectroscopía de resonancia ultrasónica
Cuerpos deformables (Física)
Aprendizaje automático (Inteligencia artificial)
Física
dc.subject.themes.none.fl_str_mv Física
description The elastic reaction of a material is dictated by its tensor of elastic constants. These elastic constants are a measurement of the material's interatomic forces, i.e., they are defined as second derivatives of the free energy with respect to strain in different symmetries, which makes them a useful tool to study the atomic environment of a crystal lattice. Experimental techniques such as resonant ultrasound spectroscopy (RUS) have proven to be very valuable in the determination of the elastic moduli of a material. RUS uses the resonance modes of elastic bodies to infer different material properties such as their elastic moduli. This experimental technique is divided into two different procedures known as the forward problem, which deals with the determination of the resonance modes from the elastic moduli of the body being studied, and the inverse problem which determines the elastic moduli from the experimental measurements of the resonance modes. In this project, a new approach to the inverse problem in RUS is presented through the use of regression trees in the context of machine learning. The results obtained show that the implementation of machine learning strategies in RUS can reduce the variance of the results achieved (when compared to traditional solutions) and can eliminate the need to have initial guesses for the elastic moduli when solving the inverse problem.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-03T16:27:16Z
dc.date.available.none.fl_str_mv 2021-11-03T16:27:16Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/53548
dc.identifier.pdf.none.fl_str_mv 24527.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/53548
identifier_str_mv 24527.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 61 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3963f425-72e9-424e-9f94-1255d51bea54/download
https://repositorio.uniandes.edu.co/bitstreams/928c3cdf-52ce-4c34-911c-8e2dd4cc3514/download
https://repositorio.uniandes.edu.co/bitstreams/504e6c9e-1a16-414a-a893-bc0377090bc7/download
bitstream.checksum.fl_str_mv 9b1329c189807f76ef564df9527c01ab
cfca0c6d76778b5a00182d90da983250
7ef346ed41a8ed5f83dbf216485b34e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133982836359168
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gallo, Paula Lilianavirtual::11658-1Giraldo Grueso, Felipef58ed331-54f3-4f3a-886b-1215e4599e025002021-11-03T16:27:16Z2021-11-03T16:27:16Z2021http://hdl.handle.net/1992/5354824527.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The elastic reaction of a material is dictated by its tensor of elastic constants. These elastic constants are a measurement of the material's interatomic forces, i.e., they are defined as second derivatives of the free energy with respect to strain in different symmetries, which makes them a useful tool to study the atomic environment of a crystal lattice. Experimental techniques such as resonant ultrasound spectroscopy (RUS) have proven to be very valuable in the determination of the elastic moduli of a material. RUS uses the resonance modes of elastic bodies to infer different material properties such as their elastic moduli. This experimental technique is divided into two different procedures known as the forward problem, which deals with the determination of the resonance modes from the elastic moduli of the body being studied, and the inverse problem which determines the elastic moduli from the experimental measurements of the resonance modes. In this project, a new approach to the inverse problem in RUS is presented through the use of regression trees in the context of machine learning. The results obtained show that the implementation of machine learning strategies in RUS can reduce the variance of the results achieved (when compared to traditional solutions) and can eliminate the need to have initial guesses for the elastic moduli when solving the inverse problem.La reacción elástica de un material viene dictada por su tensor de constantes elásticas. Estas constantes elásticas son una medida de las fuerzas interatómicas del material, es decir, se definen como segundas derivadas de la energía libre con respecto a la deformación en diferentes simetrías, lo que las convierte en una herramienta útil para estudiar el entorno atómico de una red cristalina. técnicas experimentales como la espectroscopia de resonancia ultrasónica (RUS) han demostrado ser muy valiosas en la determinación de los módulos elásticos de un material. RUS usa los modos de resonancia de los cuerpos elásticos para inferir diferentes propiedades de los materiales, como sus constantes elásticas. Esta técnica experimental se divide en dos procedimientos diferentes conocidos como el problema frontal, que trata de la determinación de los modos de resonancia a partir de los módulos elásticos del cuerpo estudiado, y el problema inverso que determina los módulos elásticos a partir de las medidas experimentales de los modos de resonancia. En este proyecto se presenta una nueva aproximación al problema inverso en RUS mediante el uso de árboles de regresión en el contexto del aprendizaje automático. Los resultados obtenidos muestran que la implementación de estrategias de aprendizaje automático en RUS puede reducir la varianza de los resultados obtenidos (en comparación con las soluciones tradicionales) y puede eliminar la necesidad de tener conjeturas iniciales para los módulos elásticos al resolver el problema inverso.FísicoPregrado61 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaImplementation of machine learning strategies in resonant ultrasound spectroscopyTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPEspectroscopía de resonancia ultrasónicaCuerpos deformables (Física)Aprendizaje automático (Inteligencia artificial)Física201631172Publication734116d8-ad5b-4ae9-bde5-2eed399996c7virtual::11658-1734116d8-ad5b-4ae9-bde5-2eed399996c7virtual::11658-1THUMBNAIL24527.pdf.jpg24527.pdf.jpgIM Thumbnailimage/jpeg6367https://repositorio.uniandes.edu.co/bitstreams/3963f425-72e9-424e-9f94-1255d51bea54/download9b1329c189807f76ef564df9527c01abMD55TEXT24527.pdf.txt24527.pdf.txtExtracted texttext/plain102029https://repositorio.uniandes.edu.co/bitstreams/928c3cdf-52ce-4c34-911c-8e2dd4cc3514/downloadcfca0c6d76778b5a00182d90da983250MD54ORIGINAL24527.pdfapplication/pdf1643173https://repositorio.uniandes.edu.co/bitstreams/504e6c9e-1a16-414a-a893-bc0377090bc7/download7ef346ed41a8ed5f83dbf216485b34e4MD511992/53548oai:repositorio.uniandes.edu.co:1992/535482024-03-13 14:29:17.15http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co