Implementation of machine learning strategies in resonant ultrasound spectroscopy
The elastic reaction of a material is dictated by its tensor of elastic constants. These elastic constants are a measurement of the material's interatomic forces, i.e., they are defined as second derivatives of the free energy with respect to strain in different symmetries, which makes them a u...
- Autores:
-
Giraldo Grueso, Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/53548
- Acceso en línea:
- http://hdl.handle.net/1992/53548
- Palabra clave:
- Espectroscopía de resonancia ultrasónica
Cuerpos deformables (Física)
Aprendizaje automático (Inteligencia artificial)
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_0506018c68bd3b1724a46b5e8e283e1b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/53548 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
title |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
spellingShingle |
Implementation of machine learning strategies in resonant ultrasound spectroscopy Espectroscopía de resonancia ultrasónica Cuerpos deformables (Física) Aprendizaje automático (Inteligencia artificial) Física |
title_short |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
title_full |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
title_fullStr |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
title_full_unstemmed |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
title_sort |
Implementation of machine learning strategies in resonant ultrasound spectroscopy |
dc.creator.fl_str_mv |
Giraldo Grueso, Felipe |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Gallo, Paula Liliana |
dc.contributor.author.none.fl_str_mv |
Giraldo Grueso, Felipe |
dc.subject.armarc.none.fl_str_mv |
Espectroscopía de resonancia ultrasónica Cuerpos deformables (Física) Aprendizaje automático (Inteligencia artificial) |
topic |
Espectroscopía de resonancia ultrasónica Cuerpos deformables (Física) Aprendizaje automático (Inteligencia artificial) Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
The elastic reaction of a material is dictated by its tensor of elastic constants. These elastic constants are a measurement of the material's interatomic forces, i.e., they are defined as second derivatives of the free energy with respect to strain in different symmetries, which makes them a useful tool to study the atomic environment of a crystal lattice. Experimental techniques such as resonant ultrasound spectroscopy (RUS) have proven to be very valuable in the determination of the elastic moduli of a material. RUS uses the resonance modes of elastic bodies to infer different material properties such as their elastic moduli. This experimental technique is divided into two different procedures known as the forward problem, which deals with the determination of the resonance modes from the elastic moduli of the body being studied, and the inverse problem which determines the elastic moduli from the experimental measurements of the resonance modes. In this project, a new approach to the inverse problem in RUS is presented through the use of regression trees in the context of machine learning. The results obtained show that the implementation of machine learning strategies in RUS can reduce the variance of the results achieved (when compared to traditional solutions) and can eliminate the need to have initial guesses for the elastic moduli when solving the inverse problem. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-03T16:27:16Z |
dc.date.available.none.fl_str_mv |
2021-11-03T16:27:16Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/53548 |
dc.identifier.pdf.none.fl_str_mv |
24527.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/53548 |
identifier_str_mv |
24527.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
61 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Física |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Física |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/3963f425-72e9-424e-9f94-1255d51bea54/download https://repositorio.uniandes.edu.co/bitstreams/928c3cdf-52ce-4c34-911c-8e2dd4cc3514/download https://repositorio.uniandes.edu.co/bitstreams/504e6c9e-1a16-414a-a893-bc0377090bc7/download |
bitstream.checksum.fl_str_mv |
9b1329c189807f76ef564df9527c01ab cfca0c6d76778b5a00182d90da983250 7ef346ed41a8ed5f83dbf216485b34e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133982836359168 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gallo, Paula Lilianavirtual::11658-1Giraldo Grueso, Felipef58ed331-54f3-4f3a-886b-1215e4599e025002021-11-03T16:27:16Z2021-11-03T16:27:16Z2021http://hdl.handle.net/1992/5354824527.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The elastic reaction of a material is dictated by its tensor of elastic constants. These elastic constants are a measurement of the material's interatomic forces, i.e., they are defined as second derivatives of the free energy with respect to strain in different symmetries, which makes them a useful tool to study the atomic environment of a crystal lattice. Experimental techniques such as resonant ultrasound spectroscopy (RUS) have proven to be very valuable in the determination of the elastic moduli of a material. RUS uses the resonance modes of elastic bodies to infer different material properties such as their elastic moduli. This experimental technique is divided into two different procedures known as the forward problem, which deals with the determination of the resonance modes from the elastic moduli of the body being studied, and the inverse problem which determines the elastic moduli from the experimental measurements of the resonance modes. In this project, a new approach to the inverse problem in RUS is presented through the use of regression trees in the context of machine learning. The results obtained show that the implementation of machine learning strategies in RUS can reduce the variance of the results achieved (when compared to traditional solutions) and can eliminate the need to have initial guesses for the elastic moduli when solving the inverse problem.La reacción elástica de un material viene dictada por su tensor de constantes elásticas. Estas constantes elásticas son una medida de las fuerzas interatómicas del material, es decir, se definen como segundas derivadas de la energía libre con respecto a la deformación en diferentes simetrías, lo que las convierte en una herramienta útil para estudiar el entorno atómico de una red cristalina. técnicas experimentales como la espectroscopia de resonancia ultrasónica (RUS) han demostrado ser muy valiosas en la determinación de los módulos elásticos de un material. RUS usa los modos de resonancia de los cuerpos elásticos para inferir diferentes propiedades de los materiales, como sus constantes elásticas. Esta técnica experimental se divide en dos procedimientos diferentes conocidos como el problema frontal, que trata de la determinación de los modos de resonancia a partir de los módulos elásticos del cuerpo estudiado, y el problema inverso que determina los módulos elásticos a partir de las medidas experimentales de los modos de resonancia. En este proyecto se presenta una nueva aproximación al problema inverso en RUS mediante el uso de árboles de regresión en el contexto del aprendizaje automático. Los resultados obtenidos muestran que la implementación de estrategias de aprendizaje automático en RUS puede reducir la varianza de los resultados obtenidos (en comparación con las soluciones tradicionales) y puede eliminar la necesidad de tener conjeturas iniciales para los módulos elásticos al resolver el problema inverso.FísicoPregrado61 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaImplementation of machine learning strategies in resonant ultrasound spectroscopyTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPEspectroscopía de resonancia ultrasónicaCuerpos deformables (Física)Aprendizaje automático (Inteligencia artificial)Física201631172Publication734116d8-ad5b-4ae9-bde5-2eed399996c7virtual::11658-1734116d8-ad5b-4ae9-bde5-2eed399996c7virtual::11658-1THUMBNAIL24527.pdf.jpg24527.pdf.jpgIM Thumbnailimage/jpeg6367https://repositorio.uniandes.edu.co/bitstreams/3963f425-72e9-424e-9f94-1255d51bea54/download9b1329c189807f76ef564df9527c01abMD55TEXT24527.pdf.txt24527.pdf.txtExtracted texttext/plain102029https://repositorio.uniandes.edu.co/bitstreams/928c3cdf-52ce-4c34-911c-8e2dd4cc3514/downloadcfca0c6d76778b5a00182d90da983250MD54ORIGINAL24527.pdfapplication/pdf1643173https://repositorio.uniandes.edu.co/bitstreams/504e6c9e-1a16-414a-a893-bc0377090bc7/download7ef346ed41a8ed5f83dbf216485b34e4MD511992/53548oai:repositorio.uniandes.edu.co:1992/535482024-03-13 14:29:17.15http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |