Biomass classification by cluster analysis based on compositional data
Solid biomass waste has found various applications in the field of biorefining, which aims to obtain added value from organic industrial byproducts which would otherwise be discarded. The choice of conversion pathways best suited for a given type of biomass is dependent on its composition, since dif...
- Autores:
-
Toro Delgado, Juan Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/49059
- Acceso en línea:
- http://hdl.handle.net/1992/49059
- Palabra clave:
- Biomasa
Ingeniería bioquímica
Microbiología
Análisis cluster
Aprovechamiento de residuos
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_02258176cbb3dd054f740a880e73f9a0 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/49059 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Biomass classification by cluster analysis based on compositional data |
title |
Biomass classification by cluster analysis based on compositional data |
spellingShingle |
Biomass classification by cluster analysis based on compositional data Biomasa Ingeniería bioquímica Microbiología Análisis cluster Aprovechamiento de residuos Ingeniería |
title_short |
Biomass classification by cluster analysis based on compositional data |
title_full |
Biomass classification by cluster analysis based on compositional data |
title_fullStr |
Biomass classification by cluster analysis based on compositional data |
title_full_unstemmed |
Biomass classification by cluster analysis based on compositional data |
title_sort |
Biomass classification by cluster analysis based on compositional data |
dc.creator.fl_str_mv |
Toro Delgado, Juan Andrés |
dc.contributor.advisor.none.fl_str_mv |
Durán Aranguren, Daniel David Sierra Ramírez, Rocio |
dc.contributor.author.none.fl_str_mv |
Toro Delgado, Juan Andrés |
dc.subject.armarc.es_CO.fl_str_mv |
Biomasa Ingeniería bioquímica Microbiología Análisis cluster Aprovechamiento de residuos |
topic |
Biomasa Ingeniería bioquímica Microbiología Análisis cluster Aprovechamiento de residuos Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Solid biomass waste has found various applications in the field of biorefining, which aims to obtain added value from organic industrial byproducts which would otherwise be discarded. The choice of conversion pathways best suited for a given type of biomass is dependent on its composition, since different biorefining techniques benefit from having more or less of certain components. This study aims to compile three datasets of biomass compositional data (NREL LAPs compositional data of fruit waste, proximate analysis, and ultimate analysis) and apply clustering analysis in order to classify the data into distinct groupings. The average composition of the groups can then be studied and suitable biorefining pathways can be proposed for each group. The results obtained demonstrate how these unsupervised learning methods give rise to clusters that make sense in terms of biomass categories. The groups obtained for both the NREL and proximate analysis compositional data each comprise types of biomass with high amounts of an individual component (hemicellulose, lignin+protein, cellulose, extractives, and ash for NREL LAP data; ash, volatile matter, and fixed carbon for proximate analysis data), while ultimate analysis data was grouped mainly based on its carbon to oxygen ratio. Various conversion pathways were then proposed for each group based on their average composition and current research of biorefining techniques |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-18T12:40:09Z |
dc.date.available.none.fl_str_mv |
2021-02-18T12:40:09Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/49059 |
dc.identifier.pdf.none.fl_str_mv |
u833768.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/49059 |
identifier_str_mv |
u833768.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
36 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería Química |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Química y de Alimentos |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/48f25b29-3149-4449-b6f9-61a9182c0164/download https://repositorio.uniandes.edu.co/bitstreams/cebf9078-ddba-48fd-9c3d-ff90f56eb390/download https://repositorio.uniandes.edu.co/bitstreams/00bbe6dd-736c-467f-b206-80a54dd89e62/download |
bitstream.checksum.fl_str_mv |
895bb36dbd9c9c8fbe41927072dd35a3 e23d3c0fe4786f3436b1079015e476ae c893647e0bdf0048935819067942a53e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818112057097060352 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Durán Aranguren, Daniel David98ae7b7e-3abc-4599-b3d4-883f1c02339d400Sierra Ramírez, Rociovirtual::16754-1Toro Delgado, Juan Andrés0a4b1c8b-fd23-4154-b520-7be8c8e295ab4002021-02-18T12:40:09Z2021-02-18T12:40:09Z2020http://hdl.handle.net/1992/49059u833768.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Solid biomass waste has found various applications in the field of biorefining, which aims to obtain added value from organic industrial byproducts which would otherwise be discarded. The choice of conversion pathways best suited for a given type of biomass is dependent on its composition, since different biorefining techniques benefit from having more or less of certain components. This study aims to compile three datasets of biomass compositional data (NREL LAPs compositional data of fruit waste, proximate analysis, and ultimate analysis) and apply clustering analysis in order to classify the data into distinct groupings. The average composition of the groups can then be studied and suitable biorefining pathways can be proposed for each group. The results obtained demonstrate how these unsupervised learning methods give rise to clusters that make sense in terms of biomass categories. The groups obtained for both the NREL and proximate analysis compositional data each comprise types of biomass with high amounts of an individual component (hemicellulose, lignin+protein, cellulose, extractives, and ash for NREL LAP data; ash, volatile matter, and fixed carbon for proximate analysis data), while ultimate analysis data was grouped mainly based on its carbon to oxygen ratio. Various conversion pathways were then proposed for each group based on their average composition and current research of biorefining techniques"Los desechos de biomasa sólida han encontrado diversas aplicaciones en el campo de la biorrefinería, que tiene por objeto obtener un valor añadido a partir de residuos orgánicos que de otro modo serían desechados. La elección de las vías de conversión más adecuadas para un determinado tipo de biomasa depende de su composición, ya que diferentes técnicas de biorrefinación se benefician de tener más o menos de ciertos componentes. Este estudio tiene por objeto recopilar tres conjuntos de datos de composición de biomasa (datos de composición de los LAPs de la NREL de residuos de frutas, análisis próximo y análisis último) y llevar a cabo un análisis de agrupación para clasificar los datos en distintas agrupaciones. Habiendo obtenido estos resultados se puede estudiar la composición promedio de cada grupo y proponer vías de biorrefinanciación adecuadas. Los resultados obtenidos demuestran cómo estos métodos de aprendizaje no supervisados dan lugar a agrupaciones que tienen sentido en términos de categorías de biomasa. Los grupos obtenidos tanto para los datos de composición de la NREL como para los del análisis próximo comprenden cada uno tipos de biomasa con grandes cantidades de un componente individual (hemicelulosa, lignina+proteína, celulosa, extractos y cenizas para los datos de la NREL; cenizas, materia volátil y carbono fijo para los datos del análisis próximo), mientras que los datos del análisis último se agruparon principalmente en función de su relación carbono/oxígeno. Por último, se propusieron diversas vías de conversión para cada grupo basado en de su composición promedio y la investigación actual en técnicas de biorrefinación."--Tomado del Formato de Documento de GradoIngeniero QuímicoPregrado36 hojasapplication/pdfengUniversidad de los AndesIngeniería QuímicaFacultad de IngenieríaDepartamento de Ingeniería Química y de Alimentosinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaBiomass classification by cluster analysis based on compositional dataTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPBiomasaIngeniería bioquímicaMicrobiologíaAnálisis clusterAprovechamiento de residuosIngenieríaPublicationhttps://scholar.google.es/citations?user=2vO8IrIAAAAJvirtual::16754-10000-0002-2074-7772virtual::16754-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001335625virtual::16754-163cc4434-a603-4f55-ba7c-3ed214b9fd0evirtual::16754-163cc4434-a603-4f55-ba7c-3ed214b9fd0evirtual::16754-1TEXTu833768.pdf.txtu833768.pdf.txtExtracted texttext/plain86186https://repositorio.uniandes.edu.co/bitstreams/48f25b29-3149-4449-b6f9-61a9182c0164/download895bb36dbd9c9c8fbe41927072dd35a3MD54THUMBNAILu833768.pdf.jpgu833768.pdf.jpgIM Thumbnailimage/jpeg7311https://repositorio.uniandes.edu.co/bitstreams/cebf9078-ddba-48fd-9c3d-ff90f56eb390/downloade23d3c0fe4786f3436b1079015e476aeMD55ORIGINALu833768.pdfapplication/pdf2091304https://repositorio.uniandes.edu.co/bitstreams/00bbe6dd-736c-467f-b206-80a54dd89e62/downloadc893647e0bdf0048935819067942a53eMD511992/49059oai:repositorio.uniandes.edu.co:1992/490592024-03-13 15:48:49.035http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |