Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates
Actinobacteria produce a broad range of natural products (NP), encoded by biosynthetic gene clusters (BCG), with diverse biological activities and special pharmaceutical potential. However, a link between BGC prediction and metabolic pathway design has not been proposed. Genome mining of six Actinob...
- Autores:
-
Otero Rodríguez, Diego Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/34271
- Acceso en línea:
- http://hdl.handle.net/1992/34271
- Palabra clave:
- Metabolitos microbianos - Investigaciones
Productos naturales - Análisis químico - Investigaciones
Biología computacional - Investigaciones
Biología
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_0081bb416774eecbe13cf92a8df2fe24 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/34271 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
title |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
spellingShingle |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates Metabolitos microbianos - Investigaciones Productos naturales - Análisis químico - Investigaciones Biología computacional - Investigaciones Biología |
title_short |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
title_full |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
title_fullStr |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
title_full_unstemmed |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
title_sort |
Genome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolates |
dc.creator.fl_str_mv |
Otero Rodríguez, Diego Andrés |
dc.contributor.advisor.none.fl_str_mv |
Zambrano Eder, María Mercedes Reyes Muñoz, Alejandro |
dc.contributor.author.none.fl_str_mv |
Otero Rodríguez, Diego Andrés |
dc.contributor.jury.none.fl_str_mv |
Restrepo Restrepo, Silvia Estévez-Bretón Riveros, Carlos Manuel |
dc.subject.keyword.es_CO.fl_str_mv |
Metabolitos microbianos - Investigaciones Productos naturales - Análisis químico - Investigaciones Biología computacional - Investigaciones |
topic |
Metabolitos microbianos - Investigaciones Productos naturales - Análisis químico - Investigaciones Biología computacional - Investigaciones Biología |
dc.subject.themes.none.fl_str_mv |
Biología |
description |
Actinobacteria produce a broad range of natural products (NP), encoded by biosynthetic gene clusters (BCG), with diverse biological activities and special pharmaceutical potential. However, a link between BGC prediction and metabolic pathway design has not been proposed. Genome mining of six Actinobacterial strains, isolated from Colombian environments, revealed 502 gene clusters encoding the biosynthesis of a variety of secondary metabolites, including PKS, NRPS, lanthipeptides and siderophores. Several optimization algorithms where then applied to find alternative, more thermodynamically efficient pathways for NP production. Despite the application of promising new tools, the results indicate that information in databases and modelling still requires improvement for future prediction and optimization of pathways regarding secondary metabolite production. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T09:00:56Z |
dc.date.available.none.fl_str_mv |
2020-06-10T09:00:56Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/34271 |
dc.identifier.pdf.none.fl_str_mv |
u807255.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/34271 |
identifier_str_mv |
u807255.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
34 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Biología Computacional |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Biología |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/89652858-3c0a-4f6c-a5d3-ea9b8e7ab939/download https://repositorio.uniandes.edu.co/bitstreams/c7674ba8-9d33-4e1f-ac14-2b7fb502fa3e/download https://repositorio.uniandes.edu.co/bitstreams/f2deaec7-4554-4f2a-9602-d3d2e37ff4f2/download |
bitstream.checksum.fl_str_mv |
804d6559fb7a2fd64514a84a47f30c88 f68c55e086b2acd1ffad779155f8f63e 740e9b43ec309fafed7db2e75af674d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133898890510336 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zambrano Eder, María Mercedes2864709d-4964-4d01-81c6-f52f482c82d0500Reyes Muñoz, Alejandrovirtual::6413-1Otero Rodríguez, Diego Andrés80d3aa79-eed7-4e98-bbce-dc262cec5b24500Restrepo Restrepo, SilviaEstévez-Bretón Riveros, Carlos Manuel2020-06-10T09:00:56Z2020-06-10T09:00:56Z2017http://hdl.handle.net/1992/34271u807255.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Actinobacteria produce a broad range of natural products (NP), encoded by biosynthetic gene clusters (BCG), with diverse biological activities and special pharmaceutical potential. However, a link between BGC prediction and metabolic pathway design has not been proposed. Genome mining of six Actinobacterial strains, isolated from Colombian environments, revealed 502 gene clusters encoding the biosynthesis of a variety of secondary metabolites, including PKS, NRPS, lanthipeptides and siderophores. Several optimization algorithms where then applied to find alternative, more thermodynamically efficient pathways for NP production. Despite the application of promising new tools, the results indicate that information in databases and modelling still requires improvement for future prediction and optimization of pathways regarding secondary metabolite production."Las Actinobacterias producen un amplio espectro de Productos Naturales (PNs) sintetizados a partir de Clusters de Genes Biosintéticos. Estos PNs tienen un potencial especial en la industria farmacéutica debido a su actividad biológica. Sin embargo, un link entre dichos clusters y el diseño de rutas metabólicas en los que están involucrados, aún no se ha descrito. Se realizó minería de genoma en seis cepas de Actinobacterias aisladas de ambientes colombianos, lo cual reveló 502 clusters de genes biosintéticos que codifican la biosíntesis de una gran variedad de metabolitos secundarios como PKS, NRPS, lantiopéptidos y sideróforos. Luego, se aplicaron varios algoritmos de optimización para encontrar rutas metabólicas alternas de producción de PNs más termodinámicamente eficientes. A pesar de la aplicación de estas herramientas, los resultados indicaron que la información en las bases de datos y el modelamiento aún requiere mejoramiento para realizar modelamiento de vías de producción de metabolitos secundarios."--Tomado del Formato de Documento de Grado.Magíster en Biología ComputacionalMaestría34 hojasapplication/pdfengUniandesMaestría en Biología ComputacionalFacultad de CienciasDepartamento de Biologíainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaGenome mining for the identification of secondary metabolites and alternative metabolic pathway modelling in Actinobacteria isolatesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMMetabolitos microbianos - InvestigacionesProductos naturales - Análisis químico - InvestigacionesBiología computacional - InvestigacionesBiologíaPublicationhttps://scholar.google.es/citations?user=hbXF8UEAAAAJvirtual::6413-10000-0003-2907-3265virtual::6413-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000395927virtual::6413-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::6413-1f71489e5-69f6-4e6b-90a6-c6b1d3fecec7virtual::6413-1ORIGINALu807255.pdfapplication/pdf1265929https://repositorio.uniandes.edu.co/bitstreams/89652858-3c0a-4f6c-a5d3-ea9b8e7ab939/download804d6559fb7a2fd64514a84a47f30c88MD51THUMBNAILu807255.pdf.jpgu807255.pdf.jpgIM Thumbnailimage/jpeg16083https://repositorio.uniandes.edu.co/bitstreams/c7674ba8-9d33-4e1f-ac14-2b7fb502fa3e/downloadf68c55e086b2acd1ffad779155f8f63eMD55TEXTu807255.pdf.txtu807255.pdf.txtExtracted texttext/plain67416https://repositorio.uniandes.edu.co/bitstreams/f2deaec7-4554-4f2a-9602-d3d2e37ff4f2/download740e9b43ec309fafed7db2e75af674d7MD541992/34271oai:repositorio.uniandes.edu.co:1992/342712024-03-13 13:10:39.945http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |