Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio
The objective of this work is to study the feasibility of measuring magnetic fields from the polarization spectroscopy method in cesium atoms. To fulfill the proposed objective, a simulation of the polarization spectroscopy signal of the D2 line of the 133Cs atom was performed and an experimental se...
- Autores:
-
Martínez Bustamante, Juan Ignacio
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/62681
- Acceso en línea:
- http://hdl.handle.net/1992/62681
- Palabra clave:
- Espectroscopia de polarización
Magnetometría
Interacción luz-materia
Láser
Efecto Zeeman
Constante de Verdet
Cesio
Óptica cuántica
Física
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNIANDES2_00330d4d2903aa30b68dd0d254eb6ba5 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/62681 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
title |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
spellingShingle |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio Espectroscopia de polarización Magnetometría Interacción luz-materia Láser Efecto Zeeman Constante de Verdet Cesio Óptica cuántica Física |
title_short |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
title_full |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
title_fullStr |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
title_full_unstemmed |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
title_sort |
Viabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de Cesio |
dc.creator.fl_str_mv |
Martínez Bustamante, Juan Ignacio |
dc.contributor.advisor.none.fl_str_mv |
Núñez Portela, Mayerlin |
dc.contributor.author.none.fl_str_mv |
Martínez Bustamante, Juan Ignacio |
dc.contributor.jury.none.fl_str_mv |
Ávila Bernal, Carlos Arturo Núñez Portela, Mayerlin |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Grupo de Óptica Cuántica |
dc.subject.keyword.none.fl_str_mv |
Espectroscopia de polarización Magnetometría Interacción luz-materia Láser Efecto Zeeman Constante de Verdet Cesio Óptica cuántica |
topic |
Espectroscopia de polarización Magnetometría Interacción luz-materia Láser Efecto Zeeman Constante de Verdet Cesio Óptica cuántica Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
The objective of this work is to study the feasibility of measuring magnetic fields from the polarization spectroscopy method in cesium atoms. To fulfill the proposed objective, a simulation of the polarization spectroscopy signal of the D2 line of the 133Cs atom was performed and an experimental setup was implemented to record a signal for the same case. To the implemented experimental setup was added a set of three-axis Helmholtz coils generating different magnetic fields (Bz) on the 133Cs sample. For each field (Bz) a polarization spectroscopy signal was taken and the total of the signals was used to determine the feasibility of using the shape of a given signal to estimate (Bz). It was observed that there are two parameters sensitive to magnetic field variations (Bz) that can be obtained from a signal. The first is the resonance frequency for the transition between the Zeeman sublevels |6^2 S_{1/2},4,4> and |6^2 P_{3/2}, 5, 5>. In this case, the splitting of the levels due to the Zeeman Effect is proportional to the magnetic field present following the following constant of proportionality: dv4-->v5(Bz)/dBz = (1,945 ± 0,007) MHz/G. The second parameter is the signal amplitude for the case where the laser frequency is kept in resonance with the frequency of some transition before the splitting, i.e., for a magnetic field Bz = 0. In the latter case, the 133Cs atoms must be optically pumped with a circularly polarized beam of light (¿+) whose frequency is resonant with the transition (6^2 S_{1/2}, F = 4) --> (6^2 P_{3/2}, F = 5). This generates an anisotropy of the medium that can be associated with the Macaluso-Corbino Effect (resonant version of the Faraday Effect). Under this scenario, the value of Verdet's constant (V) of 133Cs was arrived at as V = (99 ± 40) rad/(T · m), this value is comparable to those reported for other magneto-optically active materials. From the results, a scheme for measuring magnetic fields in real-time and another for the creation of ultra-stable lasers of controllable frequency are proposed. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-13T19:33:52Z |
dc.date.available.none.fl_str_mv |
2022-10-13T19:33:52Z |
dc.date.issued.none.fl_str_mv |
2022-06-08 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/62681 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/62681 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Morgan Mitchell. Quantum limits to the energy resolution of field sensors. Bulletin of the American Physical Society, 65, 2020. Amila Ariyaratne, Dolev Bluvstein, Bryan A Myers, and Ania C Bleszynski Jayich. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nature communications, 9(1):1-7, 2018. Elena Boto, Sofie S Meyer, Vishal Shah, Orang Alem, Svenja Knappe, Peter Kruger, T Mark Fromhold, Mark Lim, Paul M Glover, Peter G Morris, et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149:404-414, 2017. Christopher Stephen Arridge, Jonathan P Eastwood, Caitriona M Jackman, G-K Poh, James A Slavin, Michelle F Thomsen, Nicolas Andre, Xianzhe Jia, Ariah Kidder, Lau- rent Lamy, et al. Cassini in situ observations of long-duration magnetic reconnection in saturn's magnetotail. Nature Physics, 12(3):268-271, 2016. Richard L Goode, Koshiro Nakamura, Kiyofumi Gyo, and Hiroshi Aritomo. Comments on "acoustic transfer characteristics in human middle ears studied by a squid magneto- meter method"[j. acoust. soc. am. 8 2, 1646-1654 (1987)]. The Journal of the Acoustical Society of America, 86(6):2446-2449, 1989. Catherine P Foley, KE Leslie, R Binks, Christoper Lewis, Wayne Murray, GJ Sloggett, S Lam, B Sankrithyan, N Savvides, A Katzaros, et al. Field trials using hts squid mag- netometers for ground-based and airborne geophysical applications. IEEE transactions on applied superconductivity, 9(2):3786-3792, 1999. MI Bichurin, VM Petrov, RV Petrov, AS Tatarenko, and A Grosz. High sensitivity magnetometers, smart sensors, measurement and instrumentation, 2016. Michael Faraday. On the magnetization of light and the illumination of magnetic lines of force. Philosophical Transactions of the Royal Society of London, 136:1-20, 1846. Damiano Macaluso and Orso Mario Corbino. Sopra una nuova azione che la luce subis- ce attraversando alcuni vapori metallici in un campo magnetico. Il Nuovo Cimento, 8(1):257-258, 1898. Damiano Macaluso, Orso Mario Corbino, and L Magri. Sulla relazione tra il fenomeno di zeemann e la rotazione magnetica anomala del piano di polarizzazione della luce. Il Nuovo Cimento (1895-1900), 9(1):384-389, 1899. Dmitry Budker, Wojciech Gawlik, DF Kimball, SM Rochester, VV Yashchuk, and A Weis. Resonant nonlinear magneto-optical effects in atoms. Reviews of modern physics, 74(4):1153, 2002. Asaf Grosz, Michael J Haji-Sheikh, and Subhas C Mukhopadhyay. High sensitivity magnetometers, volume 19. Springer, 2017. CP Pearman, CS Adams, SG Cox, PF Griffin, DA Smith, and IG Hughes. Polariza- tion spectroscopy of a closed atomic transition: applications to laser frequency locking. Journal of Physics B: Atomic, Molecular and Optical Physics, 35(24):5141, 2002. C Wieman and Th W Ha'nsch. Doppler-free laser polarization spectroscopy. Physical Review Letters, 36(20):1170, 1976. Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg. Atom-photon interactions: basic processes and applications. 1998. N. Manrique Nieto. Estabilización en frecuencia de láser centrado en transición atómica de la línea D2 del cesio. 2020. Wolfgang Demtroder. Atoms, molecules and photons, volume 3. Springer, 2010. Daniel A Steck. Cesium d line data. disponible en: https://steck.us/alkalidata/cesiumnumbers.pdf, 2003. Wolfgang Demtroder. Photons: An introduction to atomic, molecular and quantum physics, 2010. Jun John Sakurai and Eugene D Commins. Modern quantum mechanics, revised edition, 1995. Alan Robert Edmonds. Angular momentum in quantum mechanics. Princeton university press, 2016. DM Brink, GR Satchler, and Michael Danos. Angular momentum. Physics Today, 16(6):80, 1963. Margaret L Harris. Realisation of a cold mixture of rubidium and caesium. PhD thesis, Durham University, 2008. ML Harris, CS Adams, SL Cornish, IC McLeod, E Tarleton, and IG Hughes. Polarization spectroscopy in rubidium and cesium. Physical Review A, 73(6):062509, 2006. Liu Qiang, Zeng Xianjin, Zhang Junhai, and Sun Weimin. Polarization spectroscopy in cesium. In 2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser TechnologyOptoelectronics Technology (ASOT), pages 200-203. IEEE, 2010. Harold J Metcalf and Peter van der Straten. Laser cooling and trapping of atoms. JOSA B, 20(5):887-908, 2003. C. A. Ortiz Cardona. Láseres ultra-estables para aplicaciones en metrología de tiempo y frecuencia. phd thesis. 2018. Christopher J Foot. Atomic physics, volume 7. OUP Oxford, 2004. Peter J Mohr, Barry N Taylor, and David B Newell. Codata recommended values of the fundamental physical constants: 2006. Journal of Physical and Chemical Reference Data, 80(3):633-1284, 2008. Ennio Arimondo, M Inguscio, and P Violino. Experimental determinations of the hyperfine structure in the alkali atoms. Reviews of Modern Physics, 49(1):31, 1977. Daniel A Steck. Quantum and atom optics. 2007. Wolfgang Demtroder. Laser spectroscopy 1: basic principles. Springer, 2014. Wolfgang Demtroder. Laser spectroscopy 2: experimental techniques. Springer, 2015. Yutaka Yoshikawa, Takeshi Umeki, Takuro Mukae, Yoshio Torii, and Takahiro Kuga. Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor. Applied Optics, 42(33):6645-6649, 2003. [35] Ariel Lipson, Stephen G Lipson, and Henry Lipson. Optical physics. Cambridge Uni- versity Press, 2010. J. Alvarez Velásquez. Coupling the spatial and polarization degrees of freedom of light - applications in measurement theory and open quantum systems. 2014. Edward Collett. Field guide to polarization. Spie Bellingham, WA, 2005. Emmanuel Klinger. Selective reflection spectroscopy of alkali vapors confined in nanocells and emerging sensing applications. PhD thesis, Universit e Bourgogne Franche-Comté Institute for Physical Research (Ashtarak), 2019. Sarita Kumari and Sarbani Chakraborty. Study of different magneto-optic materials for current sensing applications. Journal of Sensors and Sensor Systems, 7(1):421-431, 2018. |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
87 |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/98988a0c-ba66-4c8f-a81f-0649a3d11e59/download https://repositorio.uniandes.edu.co/bitstreams/a503a88e-63bd-4446-b0f6-42f2c82682d1/download https://repositorio.uniandes.edu.co/bitstreams/99512fb5-1a22-4e08-8fae-f4df6e719be6/download https://repositorio.uniandes.edu.co/bitstreams/ab94a7f2-17ab-4b8e-816e-6468da0b5535/download https://repositorio.uniandes.edu.co/bitstreams/6a8c7aff-278d-4a75-b042-5a76ee708320/download https://repositorio.uniandes.edu.co/bitstreams/5cf145ca-cc8b-46b9-abc1-b623fe72219d/download https://repositorio.uniandes.edu.co/bitstreams/7779449c-a639-4a33-be7f-0e64842bf659/download https://repositorio.uniandes.edu.co/bitstreams/9a8f6b05-a485-4bd4-9b95-17b1f23ad8bc/download |
bitstream.checksum.fl_str_mv |
cab778113de6ae0b91f4fb1597697d9d 4491fe1afb58beaaef41a73cf7ff2e27 5aa5c691a1ffe97abd12c2966efcb8d6 b622236bb16402b3144258e8c9fea8ef f06bda99defa5a243a1708591be65223 7dd3f3f23cfdbc0b356415469b0ef47a 3c4840f221b86eb125621aeb5ccba079 84a900c9dd4b2a10095a94649e1ce116 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134054591463424 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Núñez Portela, Mayerlin02f7dc63-2209-40a5-b74a-671fcddf5a30600Martínez Bustamante, Juan Ignacio5d7d5091-85e8-4698-9b1f-1631dd8cf32f600Ávila Bernal, Carlos ArturoNúñez Portela, MayerlinGrupo de Óptica Cuántica2022-10-13T19:33:52Z2022-10-13T19:33:52Z2022-06-08http://hdl.handle.net/1992/62681instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The objective of this work is to study the feasibility of measuring magnetic fields from the polarization spectroscopy method in cesium atoms. To fulfill the proposed objective, a simulation of the polarization spectroscopy signal of the D2 line of the 133Cs atom was performed and an experimental setup was implemented to record a signal for the same case. To the implemented experimental setup was added a set of three-axis Helmholtz coils generating different magnetic fields (Bz) on the 133Cs sample. For each field (Bz) a polarization spectroscopy signal was taken and the total of the signals was used to determine the feasibility of using the shape of a given signal to estimate (Bz). It was observed that there are two parameters sensitive to magnetic field variations (Bz) that can be obtained from a signal. The first is the resonance frequency for the transition between the Zeeman sublevels |6^2 S_{1/2},4,4> and |6^2 P_{3/2}, 5, 5>. In this case, the splitting of the levels due to the Zeeman Effect is proportional to the magnetic field present following the following constant of proportionality: dv4-->v5(Bz)/dBz = (1,945 ± 0,007) MHz/G. The second parameter is the signal amplitude for the case where the laser frequency is kept in resonance with the frequency of some transition before the splitting, i.e., for a magnetic field Bz = 0. In the latter case, the 133Cs atoms must be optically pumped with a circularly polarized beam of light (¿+) whose frequency is resonant with the transition (6^2 S_{1/2}, F = 4) --> (6^2 P_{3/2}, F = 5). This generates an anisotropy of the medium that can be associated with the Macaluso-Corbino Effect (resonant version of the Faraday Effect). Under this scenario, the value of Verdet's constant (V) of 133Cs was arrived at as V = (99 ± 40) rad/(T · m), this value is comparable to those reported for other magneto-optically active materials. From the results, a scheme for measuring magnetic fields in real-time and another for the creation of ultra-stable lasers of controllable frequency are proposed.Este trabajo tiene como objetivo estudiar la viabilidad de medir campos magnéticos a partir del método de espectroscopia de polarización en átomos de Cesio. En pro de cumplir con el objetivo propuesto, se realizó una simulación de la señal de espectroscopia de polarización de la línea D2 del átomo de 133Cs y se implementó un montaje experimental con el cual se registró una señal para el mismo caso. Al montaje experimental implementado se le agregó un conjunto de bobinas de Helmholtz de tres ejes que genera diferentes campos magnéticos (Bz) sobre la muestra de 133Cs. Por cada campo (Bz) se tomó una señal de espectroscopia de polarización y se usó el total de las señales para determinar la viabilidad de usar la forma de una señal dada para estimar (Bz). Se observó que hay dos parámetros sensibles a variaciones del campo magnético (Bz) que se pueden obtener a partir de una señal. El primero es la frecuencia de resonancia para la transición entre los subniveles de Zeeman |6^2 S_{1/2},4,4> y |6^2 P_{3/2}, 5, 5>. En este caso, el desdoblamiento de los niveles debido al Efecto Zeeman es proporcional al campo magnético presente siguiendo la siguiente constante de proporcionalidad: dv4-->v5(Bz)/dBz = (1,945 ± 0,007) MHz/G. El segundo parámetro es la amplitud de la señal para el caso en el que la frecuencia del láser se mantiene en resonancia con la frecuencia de alguna transición antes del desdoblamiento, es decir, para un campo magnético Bz = 0. En este ultimo caso, los átomos de 133Cs deben ser bombeados ópticamente con un haz de luz de polarización circular derecha (+) cuya frecuencia es resonante con la transición (6^2 S_{1/2},F = 4) --> (6^2 P_{3/2},F = 5). Esto genera una anisotropía del medio que se puede asociar al Efecto Macaluso-Corbino (versión resonante del Efecto Faraday). Bajo este escenario, se llegó a que el valor de la constante de Verdet (V) del 133Cs es V = (99 ± 40) rad/(T · m), este valor es comparable con los reportados para otros materiales magneto- ópticamente activos. A partir de los resultados se propone un esquema para medir campos magnéticos en tiempo real y otro para la creación de láseres ultra estables de frecuencia controlable.FísicoPregradoÓptica Cuántica87application/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaViabilidad de medir campos magnéticos externos mediante espectroscopía de polarización del átomo de CesioTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEspectroscopia de polarizaciónMagnetometríaInteracción luz-materiaLáserEfecto ZeemanConstante de VerdetCesioÓptica cuánticaFísicaMorgan Mitchell. Quantum limits to the energy resolution of field sensors. Bulletin of the American Physical Society, 65, 2020.Amila Ariyaratne, Dolev Bluvstein, Bryan A Myers, and Ania C Bleszynski Jayich. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nature communications, 9(1):1-7, 2018.Elena Boto, Sofie S Meyer, Vishal Shah, Orang Alem, Svenja Knappe, Peter Kruger, T Mark Fromhold, Mark Lim, Paul M Glover, Peter G Morris, et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149:404-414, 2017.Christopher Stephen Arridge, Jonathan P Eastwood, Caitriona M Jackman, G-K Poh, James A Slavin, Michelle F Thomsen, Nicolas Andre, Xianzhe Jia, Ariah Kidder, Lau- rent Lamy, et al. Cassini in situ observations of long-duration magnetic reconnection in saturn's magnetotail. Nature Physics, 12(3):268-271, 2016.Richard L Goode, Koshiro Nakamura, Kiyofumi Gyo, and Hiroshi Aritomo. Comments on "acoustic transfer characteristics in human middle ears studied by a squid magneto- meter method"[j. acoust. soc. am. 8 2, 1646-1654 (1987)]. The Journal of the Acoustical Society of America, 86(6):2446-2449, 1989.Catherine P Foley, KE Leslie, R Binks, Christoper Lewis, Wayne Murray, GJ Sloggett, S Lam, B Sankrithyan, N Savvides, A Katzaros, et al. Field trials using hts squid mag- netometers for ground-based and airborne geophysical applications. IEEE transactions on applied superconductivity, 9(2):3786-3792, 1999.MI Bichurin, VM Petrov, RV Petrov, AS Tatarenko, and A Grosz. High sensitivity magnetometers, smart sensors, measurement and instrumentation, 2016.Michael Faraday. On the magnetization of light and the illumination of magnetic lines of force. Philosophical Transactions of the Royal Society of London, 136:1-20, 1846.Damiano Macaluso and Orso Mario Corbino. Sopra una nuova azione che la luce subis- ce attraversando alcuni vapori metallici in un campo magnetico. Il Nuovo Cimento, 8(1):257-258, 1898.Damiano Macaluso, Orso Mario Corbino, and L Magri. Sulla relazione tra il fenomeno di zeemann e la rotazione magnetica anomala del piano di polarizzazione della luce. Il Nuovo Cimento (1895-1900), 9(1):384-389, 1899.Dmitry Budker, Wojciech Gawlik, DF Kimball, SM Rochester, VV Yashchuk, and A Weis. Resonant nonlinear magneto-optical effects in atoms. Reviews of modern physics, 74(4):1153, 2002.Asaf Grosz, Michael J Haji-Sheikh, and Subhas C Mukhopadhyay. High sensitivity magnetometers, volume 19. Springer, 2017.CP Pearman, CS Adams, SG Cox, PF Griffin, DA Smith, and IG Hughes. Polariza- tion spectroscopy of a closed atomic transition: applications to laser frequency locking. Journal of Physics B: Atomic, Molecular and Optical Physics, 35(24):5141, 2002.C Wieman and Th W Ha'nsch. Doppler-free laser polarization spectroscopy. Physical Review Letters, 36(20):1170, 1976.Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg. Atom-photon interactions: basic processes and applications. 1998.N. Manrique Nieto. Estabilización en frecuencia de láser centrado en transición atómica de la línea D2 del cesio. 2020.Wolfgang Demtroder. Atoms, molecules and photons, volume 3. Springer, 2010.Daniel A Steck. Cesium d line data. disponible en: https://steck.us/alkalidata/cesiumnumbers.pdf, 2003.Wolfgang Demtroder. Photons: An introduction to atomic, molecular and quantum physics, 2010.Jun John Sakurai and Eugene D Commins. Modern quantum mechanics, revised edition, 1995.Alan Robert Edmonds. Angular momentum in quantum mechanics. Princeton university press, 2016.DM Brink, GR Satchler, and Michael Danos. Angular momentum. Physics Today, 16(6):80, 1963.Margaret L Harris. Realisation of a cold mixture of rubidium and caesium. PhD thesis, Durham University, 2008.ML Harris, CS Adams, SL Cornish, IC McLeod, E Tarleton, and IG Hughes. Polarization spectroscopy in rubidium and cesium. Physical Review A, 73(6):062509, 2006.Liu Qiang, Zeng Xianjin, Zhang Junhai, and Sun Weimin. Polarization spectroscopy in cesium. In 2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser TechnologyOptoelectronics Technology (ASOT), pages 200-203. IEEE, 2010.Harold J Metcalf and Peter van der Straten. Laser cooling and trapping of atoms. JOSA B, 20(5):887-908, 2003.C. A. Ortiz Cardona. Láseres ultra-estables para aplicaciones en metrología de tiempo y frecuencia. phd thesis. 2018.Christopher J Foot. Atomic physics, volume 7. OUP Oxford, 2004.Peter J Mohr, Barry N Taylor, and David B Newell. Codata recommended values of the fundamental physical constants: 2006. Journal of Physical and Chemical Reference Data, 80(3):633-1284, 2008.Ennio Arimondo, M Inguscio, and P Violino. Experimental determinations of the hyperfine structure in the alkali atoms. Reviews of Modern Physics, 49(1):31, 1977.Daniel A Steck. Quantum and atom optics. 2007.Wolfgang Demtroder. Laser spectroscopy 1: basic principles. Springer, 2014.Wolfgang Demtroder. Laser spectroscopy 2: experimental techniques. Springer, 2015.Yutaka Yoshikawa, Takeshi Umeki, Takuro Mukae, Yoshio Torii, and Takahiro Kuga. Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor. Applied Optics, 42(33):6645-6649, 2003.[35] Ariel Lipson, Stephen G Lipson, and Henry Lipson. Optical physics. Cambridge Uni- versity Press, 2010.J. Alvarez Velásquez. Coupling the spatial and polarization degrees of freedom of light - applications in measurement theory and open quantum systems. 2014.Edward Collett. Field guide to polarization. Spie Bellingham, WA, 2005.Emmanuel Klinger. Selective reflection spectroscopy of alkali vapors confined in nanocells and emerging sensing applications. PhD thesis, Universit e Bourgogne Franche-Comté Institute for Physical Research (Ashtarak), 2019.Sarita Kumari and Sarbani Chakraborty. Study of different magneto-optic materials for current sensing applications. Journal of Sensors and Sensor Systems, 7(1):421-431, 2018.201513259PublicationTEXTMartinezB_JuanI-Proyecto_Final.pdf.txtMartinezB_JuanI-Proyecto_Final.pdf.txtExtracted texttext/plain134931https://repositorio.uniandes.edu.co/bitstreams/98988a0c-ba66-4c8f-a81f-0649a3d11e59/downloadcab778113de6ae0b91f4fb1597697d9dMD55093f8a4d-ddc8-4528-9179-b78a09426111 (1).pdf.txt093f8a4d-ddc8-4528-9179-b78a09426111 (1).pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/a503a88e-63bd-4446-b0f6-42f2c82682d1/download4491fe1afb58beaaef41a73cf7ff2e27MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/99512fb5-1a22-4e08-8fae-f4df6e719be6/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALMartinezB_JuanI-Proyecto_Final.pdfMartinezB_JuanI-Proyecto_Final.pdfDocumento de Proyecto Finalapplication/pdf50184606https://repositorio.uniandes.edu.co/bitstreams/ab94a7f2-17ab-4b8e-816e-6468da0b5535/downloadb622236bb16402b3144258e8c9fea8efMD53093f8a4d-ddc8-4528-9179-b78a09426111 (1).pdf093f8a4d-ddc8-4528-9179-b78a09426111 (1).pdfHIDEapplication/pdf202554https://repositorio.uniandes.edu.co/bitstreams/6a8c7aff-278d-4a75-b042-5a76ee708320/downloadf06bda99defa5a243a1708591be65223MD54THUMBNAILMartinezB_JuanI-Proyecto_Final.pdf.jpgMartinezB_JuanI-Proyecto_Final.pdf.jpgIM Thumbnailimage/jpeg8843https://repositorio.uniandes.edu.co/bitstreams/5cf145ca-cc8b-46b9-abc1-b623fe72219d/download7dd3f3f23cfdbc0b356415469b0ef47aMD56093f8a4d-ddc8-4528-9179-b78a09426111 (1).pdf.jpg093f8a4d-ddc8-4528-9179-b78a09426111 (1).pdf.jpgIM Thumbnailimage/jpeg15865https://repositorio.uniandes.edu.co/bitstreams/7779449c-a639-4a33-be7f-0e64842bf659/download3c4840f221b86eb125621aeb5ccba079MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/9a8f6b05-a485-4bd4-9b95-17b1f23ad8bc/download84a900c9dd4b2a10095a94649e1ce116MD521992/62681oai:repositorio.uniandes.edu.co:1992/626812023-10-10 19:27:42.695http://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |