Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia

El carcinoma hepatocelular es la neoplasia primaria maligna más común del hígado, presentando una alta mortalidad y tasa de recurrencia lo que lo convierte en un verdadero problema de salud pública a nivel mundial. LI-RADS es un sistema que permite categorizar el riesgo de CHC de las lesiones hepáti...

Full description

Autores:
Carrascal Peñaranda, Daniela Fernanda
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/13934
Acceso en línea:
https://hdl.handle.net/20.500.12495/13934
Palabra clave:
Carcinoma hepatocelular
Lesiones hepáticas
LI-RADS
Hepatocellular carcinoma
Liver observations
LI-RADS
WN 100
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_fff110dac41d20a7949b6cfd1f55a586
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/13934
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
dc.title.translated.none.fl_str_mv Association of the range of variability of threshold growth as feature in intermediate risk observations for the development of hepatocellular carcinoma in a reference center, Bogotá-Colombia
title Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
spellingShingle Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
Carcinoma hepatocelular
Lesiones hepáticas
LI-RADS
Hepatocellular carcinoma
Liver observations
LI-RADS
WN 100
title_short Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
title_full Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
title_fullStr Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
title_full_unstemmed Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
title_sort Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-Colombia
dc.creator.fl_str_mv Carrascal Peñaranda, Daniela Fernanda
dc.contributor.advisor.none.fl_str_mv Lineros, Alberto
Aguirre Matallana, Diego Andrés
dc.contributor.author.none.fl_str_mv Carrascal Peñaranda, Daniela Fernanda
dc.contributor.orcid.none.fl_str_mv Carrascal-Penaranda, Daniela [0000-0002-9852-0375]
dc.subject.none.fl_str_mv Carcinoma hepatocelular
Lesiones hepáticas
LI-RADS
topic Carcinoma hepatocelular
Lesiones hepáticas
LI-RADS
Hepatocellular carcinoma
Liver observations
LI-RADS
WN 100
dc.subject.keywords.none.fl_str_mv Hepatocellular carcinoma
Liver observations
LI-RADS
dc.subject.nlm.none.fl_str_mv WN 100
description El carcinoma hepatocelular es la neoplasia primaria maligna más común del hígado, presentando una alta mortalidad y tasa de recurrencia lo que lo convierte en un verdadero problema de salud pública a nivel mundial. LI-RADS es un sistema que permite categorizar el riesgo de CHC de las lesiones hepáticas en este grupo de pacientes, utilizando criterios mayores, uno de ellos, el umbral de crecimiento, definido como un aumento ≥50% del tamaño de la lesión en un periodo de seguimiento ≤6 meses, ha teniendo un rol controversial a través de sus diferentes versiones por su definición variable, percibida como excluyente y su uso poco frecuente. Este concepto es clave en lesiones hepáticas de riesgo indeterminado (categoría LI-RADS 3), ya que su positividad establece inequívocamente el diagnóstico no invasivo de CHC. El estudio buscó la asociación de la variabilidad en el umbral de crecimiento de lesiones indeterminadas y el desarrollo de CHC, así como su asociación como variables sociodemográficas, clínicas e imagenológicas. Se seleccionó una muestra de lesiones LI-RADS 3 por métodos de imagen CT-RM adquiridos en el departamento de Imágenes Diagnósticas FSFB, en el periodo comprendido entre enero 01, 2018 y agosto 31, 2024. Se evaluaron un total de 283 lesiones hepáticas, de las cuales 111 lesiones en 49 pacientes cumplieron con los criterios de inclusión. El 41.4% presentaron crecimiento, predominando en los rangos 11-20% (16.07%) y 1-10% (12.5%). No se observó asociación significativa entre el crecimiento <50% y el desarrollo de CHC. Sin embargo, la presencia de lesiones concomitantes de mayor categoría (LI-RADS 4 o 5) en el mismo estudio, incrementó significativamente el riesgo de desarrollar CHC (OR: 26.89; p=0.006). Estos resultados subrayando la necesidad de priorizar el enfoque integral del manejo en estos pacientes y permitiendo una aproximación al pronóstico en términos del comportamiento biológico en estas lesiones LI-RADS 3 en población colombiana, orientando estrategias de seguimiento y tratamiento personalizado.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-12T15:20:24Z
dc.date.available.none.fl_str_mv 2025-02-12T15:20:24Z
dc.date.issued.none.fl_str_mv 2025-01
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/13934
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/13934
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol. 2022 Nov;86:622–32.
2. Estimated number of new cases in 2020, World, both sexes, all ages [Internet]. 2020. Available from: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0
3. Kojiro M, Nakashima T. Pathology of Hepatocellular Carcinoma. In: Okuda K, Ishak KG, editors. Neoplasms of the Liver [Internet]. Tokyo: Springer Japan; 1987 [cited 2024 Jan 17]. p. 81–104. Available from: http://link.springer.com/10.1007/978-4-431-68349-0_7
4. Hepatocellular carcinoma - search results - PubMed [Internet]. PubMed. 2024. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=hepatocellular%20carcinoma&timeline=expanded
5. Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, et al. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med. 2020 Nov 25;9(12):3817.
6. Eddowes PJ, McDonald N, Davies N, Semple SIK, Kendall TJ, Hodson J, et al. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non‐alcoholic fatty liver disease. Aliment Pharmacol Ther. 2018 Mar;47(5):631–44.
7. Liang Y, Xu F, Guo Y, Lai L, Jiang X, Wei X, et al. Diagnostic performance of LI-RADS for MRI and CT detection of HCC: A systematic review and diagnostic meta-analysis. Eur J Radiol. 2021 Jan;134:109404.
8. Liver Imaging Reporting & Data System (LI-RADS®) [Internet]. American College of Radiology. 2011. Available from: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS
9. LI-RADS PARA CT / RM® v2018 [Internet]. American College of Radiology. Liver Imaging Reporting and Data System.; 2018. Available from: https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/LI-RADS-2018-Core.pdf
10. Li Y, Ni X, Liu X, Yang C, Wang Y, Lu X, et al. Prognosis of Primary Liver Cancer Based on LI-RADS Classification with Extracellular Agent-Enhanced MRI. J Hepatocell Carcinoma. 2023 Mar;Volume 10:399–411.
11. Chernyak V, Sirlin CB. CT/MRI Manual. Chapter 16. Imaging features. [Internet]. Liver Imaging Reporting & Data System (LI-RADS®); 2018. Available from: https://www.acr.org/-/media/ACR/Files/Clinical-Resources/LIRADS/Chapter-16-Imaging-features.pdf
12. Rates per 100 000, incidence, males and females, in 2012 for Liver cancer in Colombia [Internet]. GLOBOCAN. World Health Organization. Available from: Rates per 100 000, incidence, males and females, in 2012
13. Rich NE, Yopp AC, Singal AG, Murphy CC. Hepatocellular Carcinoma Incidence Is Decreasing Among Younger Adults in the United States. Clin Gastroenterol Hepatol. 2020 Jan;18(1):242-248.e5.
14. Naveau S, Giraud V, Borotto E, Aubert A, Capron F, Chaput J. Excess weight risk factor for alcoholic liver disease. Hepatology. 1997 Jan;25(1):108–11.
15. Loomba R, Yang HI, Su J, Brenner D, Barrett-Connor E, Iloeje U, et al. Synergism Between Obesity and Alcohol in Increasing the Risk of Hepatocellular Carcinoma: A Prospective Cohort Study. Am J Epidemiol. 2013 Feb 15;177(4):333–42.
16. Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PKH, et al. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology. 2023 Apr;164(5):766–82.
17. Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep. 2021 Aug;3(4):100316.
18. Kim KM, Shim SG, Sinn DH, Song JE, Kim BS, Kim HG. Child-Pugh, MELD, MELD-Na, and ALBI scores: which liver function models best predicts prognosis for HCC patient with ascites? Scand J Gastroenterol. 2020 Aug 2;55(8):951–7.
19. Imai K, Takai K, Unome S, Miwa T, Hanai T, Suetsugu A, et al. FIB‑4 index and NAFLD fibrosis score are useful indicators for screening high‑risk groups of non‑viral hepatocellular carcinoma. Mol Clin Oncol. 2023 Aug 24;19(4):80.
20. Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, et al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology. 2018 Dec;289(3):816–30.
21. Petruzzi N, Mitchell D, Guglielmo F, O’Kane P, Deshmukh S, Roth C, et al. Hepatocellular Carcinoma Likelihood on MRI Exams. Acad Radiol. 2013 Jun;20(6):694–8.
22. Fraum TJ, Tsai R, Rohe E, Ludwig DR, Salter A, Nalbantoglu Ilk, et al. Differentiation of Hepatocellular Carcinoma from Other Hepatic Malignancies in Patients at Risk: Diagnostic Performance of the Liver Imaging Reporting and Data System Version 2014. Radiology. 2018 Jan;286(1):158–72.
23. Liu W, Qin J, Guo R, Xie S, Jiang H, Wang X, et al. Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol. 2018 Feb;59(2):140–6.
24. Liu X, Jiang H, Chen J, Zhou Y, Huang Z, Song B. Gadoxetic acid disodium–enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: A meta‐analysis. Liver Transpl. 2017 Dec;23(12):1505–18.
25. Ranathunga D, Osman H, Islam N, McInnes MDF, Munir J, Van Der Pol CB, et al. Progression Rates of LR-2 and LR-3 Observations on MRI to Higher LI-RADS Categories in Patients at High Risk of Hepatocellular Carcinoma: A Retrospective Study. Am J Roentgenol. 2022 Mar;218(3):462–70.
26. Chernyak V, Kobi M, Flusberg M, Fruitman KC, Sirlin CB. Effect of threshold growth as a major feature on LI-RADS categorization. Abdom Radiol. 2017 Aug;42(8):2089–100
27. Choi SJ, Choi SH, Kim DW, Kwag M, Byun JH, Won HJ, et al. Value of threshold growth as a major diagnostic feature of hepatocellular carcinoma in LI-RADS. J Hepatol. 2023 Mar;78(3):596–603.
28. Parra NS, Ross HM, Khan A, Wu M, Goldberg R, Shah L, et al. Advancements in the Diagnosis of Hepatocellular Carcinoma. Int J Transl Med. 2023 Jan 11;3(1):51–65.
29. Stata Statistical Software: Release 18. College Station, TX: StataCorp LLC.;
30. Liu X, Ni X, Li Y, Yang C, Wang Y, Ma C, et al. Diagnostic Performance of LI-RADS Version 2018 for Primary Liver Cancer in Patients With Liver Cirrhosis on Enhanced MRI. Front Oncol. 2022 Jul 1;12:934045.
31. Mettikanont P, Kalluri A, Bittermann T, Phillips N, Loza BL, Rosen M, et al. The Course of LIRADS 3 and 4 Hepatic Abnormalities as Correlated With Explant Pathology: A Single Center Experience. J Clin Exp Hepatol. 2022 Jul;12(4):1048–56.
32. Zhou J, Zhang Y, Zhang J, Chen J, Jiang H, Zhang L, et al. New strategy of LI-RADS v2018 to improve the sensitivity for small hepatocellular carcinoma ≤ 3.0 cm on extracellular-contrast enhanced MRI. Eur J Radiol. 2024 Dec;181:111830.
33. Kanneganti M, Marrero JA, Parikh ND, Kanwal F, Yokoo T, Mendiratta‐Lala M, et al. Clinical outcomes of patients with Liver Imaging Reporting and Data System 3 or Liver Imaging Reporting and Data System 4 observations in patients with cirrhosis: A systematic review. Liver Transpl. 2022 Dec;28(12):1865–75.
34. Lee S, Kim YY, Shin J, Son WJ, Roh YH, Choi JY, et al. Percentages of Hepatocellular Carcinoma in LI-RADS Categories with CT and MRI: A Systematic Review and Meta-Analysis. Radiology. 2023 Apr 1;307(1):e220646.
35. Gupta A, Das A, Majumder K, Arora N, Mayo HG, Singh PP, et al. Obesity is Independently Associated With Increased Risk of Hepatocellular Cancer–related Mortality: A Systematic Review and Meta-Analysis. Am J Clin Oncol. 2018 Sep;41(9):874–81.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Especialización en Radiología e Imágenes Diagnósticas
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/3c9a2f89-6da6-4506-abaf-ad5dcae06214/download
https://repositorio.unbosque.edu.co/bitstreams/6c6902e9-9882-45ef-be71-9e88f4020ccd/download
https://repositorio.unbosque.edu.co/bitstreams/6b488a48-248a-4d53-955f-7866fc19e2c6/download
https://repositorio.unbosque.edu.co/bitstreams/8e4fc3c4-43c2-4617-bf58-f63f7c872bcf/download
https://repositorio.unbosque.edu.co/bitstreams/cfa4c3bc-d104-42d9-b627-904bf73f5ad7/download
https://repositorio.unbosque.edu.co/bitstreams/82162c52-81fa-44d2-bc5e-15d6ae8b4305/download
https://repositorio.unbosque.edu.co/bitstreams/f412438c-a8cd-4503-8e48-c2b57ca6fb3d/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
eab03996222f9e9b629b51d60e064ef2
b1498ed7f5f0a5b6109ef4592ca53762
e42ef928c6bb6e8135a272c812c91725
3b6ce8e9e36c89875e8cf39962fe8920
604f84152e265acf430382cf89d855eb
1ad4e869d9c542c3491c9461db9ff458
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1828164514316550144
spelling Lineros, AlbertoAguirre Matallana, Diego AndrésCarrascal Peñaranda, Daniela FernandaCarrascal-Penaranda, Daniela [0000-0002-9852-0375]2025-02-12T15:20:24Z2025-02-12T15:20:24Z2025-01https://hdl.handle.net/20.500.12495/13934instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl carcinoma hepatocelular es la neoplasia primaria maligna más común del hígado, presentando una alta mortalidad y tasa de recurrencia lo que lo convierte en un verdadero problema de salud pública a nivel mundial. LI-RADS es un sistema que permite categorizar el riesgo de CHC de las lesiones hepáticas en este grupo de pacientes, utilizando criterios mayores, uno de ellos, el umbral de crecimiento, definido como un aumento ≥50% del tamaño de la lesión en un periodo de seguimiento ≤6 meses, ha teniendo un rol controversial a través de sus diferentes versiones por su definición variable, percibida como excluyente y su uso poco frecuente. Este concepto es clave en lesiones hepáticas de riesgo indeterminado (categoría LI-RADS 3), ya que su positividad establece inequívocamente el diagnóstico no invasivo de CHC. El estudio buscó la asociación de la variabilidad en el umbral de crecimiento de lesiones indeterminadas y el desarrollo de CHC, así como su asociación como variables sociodemográficas, clínicas e imagenológicas. Se seleccionó una muestra de lesiones LI-RADS 3 por métodos de imagen CT-RM adquiridos en el departamento de Imágenes Diagnósticas FSFB, en el periodo comprendido entre enero 01, 2018 y agosto 31, 2024. Se evaluaron un total de 283 lesiones hepáticas, de las cuales 111 lesiones en 49 pacientes cumplieron con los criterios de inclusión. El 41.4% presentaron crecimiento, predominando en los rangos 11-20% (16.07%) y 1-10% (12.5%). No se observó asociación significativa entre el crecimiento <50% y el desarrollo de CHC. Sin embargo, la presencia de lesiones concomitantes de mayor categoría (LI-RADS 4 o 5) en el mismo estudio, incrementó significativamente el riesgo de desarrollar CHC (OR: 26.89; p=0.006). Estos resultados subrayando la necesidad de priorizar el enfoque integral del manejo en estos pacientes y permitiendo una aproximación al pronóstico en términos del comportamiento biológico en estas lesiones LI-RADS 3 en población colombiana, orientando estrategias de seguimiento y tratamiento personalizado.Hospital Universitario Fundación Santa Fe de BogotáEspecialista en Radiología e Imágenes DiagnósticasEspecializaciónHepatocellular carcinoma is the most common primary malignant neoplasm of the liver, presenting a high mortality and recurrence rate which makes it a serious public health problem worldwide. LI-RADS is a system that allows categorizing the HCC risk of liver lesions in this group of patients, using major criteria, one of them, the growth threshold, defined as an increase ≥50% of the lesion size in a follow-up period ≤6 months, has had a controversial role through its different versions due to its variable definition, perceived as excluding and its infrequent use. This concept is key in indeterminate risk liver lesions (LI-RADS category 3), as its positivity unequivocally establishes the noninvasive diagnosis of HCC. The study sought the association of variability in the growth threshold of indeterminate lesions and the development of HCC, as well as its association as sociodemographic, clinical and imaging variables. A sample of LI-RADS 3 lesions was selected by CT-MRI imaging methods acquired in the Diagnostic Imaging department FSFB, in the period from January 01, 2018 to August 31, 2024. A total of 283 liver lesions were evaluated, of which 111 lesions in 49 patients met the inclusion criteria. A total of 41.4% presented growth, predominantly in the ranges 11-20% (16.07%) and 1-10% (12.5%). No significant association was observed between growth <50% and the development of HCC. However, the presence of concomitant higher category lesions (LI-RADS 4 or 5) in the same study significantly increased the risk of developing HCC (OR: 26.89; p=0.006). These results underline the need to prioritize the integral approach to the management of these patients and allow an approximation to the prognosis in terms of biological behavior in these LI-RADS 3 lesions in the Colombian population, guiding follow-up strategies and personalized treatment.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Carcinoma hepatocelularLesiones hepáticasLI-RADSHepatocellular carcinomaLiver observationsLI-RADSWN 100Asociación del rango de variabilidad del crecimiento como criterio diagnóstico en lesiones de riesgo intermedio para desarrollo de carcinoma hepatocelular en un centro de referencia, Bogotá-ColombiaAssociation of the range of variability of threshold growth as feature in intermediate risk observations for the development of hepatocellular carcinoma in a reference center, Bogotá-ColombiaEspecialización en Radiología e Imágenes DiagnósticasUniversidad El BosqueFacultad de MedicinaTesis/Trabajo de grado - Monografía - Especializaciónhttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol. 2022 Nov;86:622–32.2. Estimated number of new cases in 2020, World, both sexes, all ages [Internet]. 2020. Available from: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=03. Kojiro M, Nakashima T. Pathology of Hepatocellular Carcinoma. In: Okuda K, Ishak KG, editors. Neoplasms of the Liver [Internet]. Tokyo: Springer Japan; 1987 [cited 2024 Jan 17]. p. 81–104. Available from: http://link.springer.com/10.1007/978-4-431-68349-0_74. Hepatocellular carcinoma - search results - PubMed [Internet]. PubMed. 2024. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=hepatocellular%20carcinoma&timeline=expanded5. Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, et al. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med. 2020 Nov 25;9(12):3817.6. Eddowes PJ, McDonald N, Davies N, Semple SIK, Kendall TJ, Hodson J, et al. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non‐alcoholic fatty liver disease. Aliment Pharmacol Ther. 2018 Mar;47(5):631–44.7. Liang Y, Xu F, Guo Y, Lai L, Jiang X, Wei X, et al. Diagnostic performance of LI-RADS for MRI and CT detection of HCC: A systematic review and diagnostic meta-analysis. Eur J Radiol. 2021 Jan;134:109404.8. Liver Imaging Reporting & Data System (LI-RADS®) [Internet]. American College of Radiology. 2011. Available from: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS9. LI-RADS PARA CT / RM® v2018 [Internet]. American College of Radiology. Liver Imaging Reporting and Data System.; 2018. Available from: https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/LI-RADS-2018-Core.pdf10. Li Y, Ni X, Liu X, Yang C, Wang Y, Lu X, et al. Prognosis of Primary Liver Cancer Based on LI-RADS Classification with Extracellular Agent-Enhanced MRI. J Hepatocell Carcinoma. 2023 Mar;Volume 10:399–411.11. Chernyak V, Sirlin CB. CT/MRI Manual. Chapter 16. Imaging features. [Internet]. Liver Imaging Reporting & Data System (LI-RADS®); 2018. Available from: https://www.acr.org/-/media/ACR/Files/Clinical-Resources/LIRADS/Chapter-16-Imaging-features.pdf12. Rates per 100 000, incidence, males and females, in 2012 for Liver cancer in Colombia [Internet]. GLOBOCAN. World Health Organization. Available from: Rates per 100 000, incidence, males and females, in 201213. Rich NE, Yopp AC, Singal AG, Murphy CC. Hepatocellular Carcinoma Incidence Is Decreasing Among Younger Adults in the United States. Clin Gastroenterol Hepatol. 2020 Jan;18(1):242-248.e5.14. Naveau S, Giraud V, Borotto E, Aubert A, Capron F, Chaput J. Excess weight risk factor for alcoholic liver disease. Hepatology. 1997 Jan;25(1):108–11.15. Loomba R, Yang HI, Su J, Brenner D, Barrett-Connor E, Iloeje U, et al. Synergism Between Obesity and Alcohol in Increasing the Risk of Hepatocellular Carcinoma: A Prospective Cohort Study. Am J Epidemiol. 2013 Feb 15;177(4):333–42.16. Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PKH, et al. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology. 2023 Apr;164(5):766–82.17. Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep. 2021 Aug;3(4):100316.18. Kim KM, Shim SG, Sinn DH, Song JE, Kim BS, Kim HG. Child-Pugh, MELD, MELD-Na, and ALBI scores: which liver function models best predicts prognosis for HCC patient with ascites? Scand J Gastroenterol. 2020 Aug 2;55(8):951–7.19. Imai K, Takai K, Unome S, Miwa T, Hanai T, Suetsugu A, et al. FIB‑4 index and NAFLD fibrosis score are useful indicators for screening high‑risk groups of non‑viral hepatocellular carcinoma. Mol Clin Oncol. 2023 Aug 24;19(4):80.20. Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, et al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology. 2018 Dec;289(3):816–30.21. Petruzzi N, Mitchell D, Guglielmo F, O’Kane P, Deshmukh S, Roth C, et al. Hepatocellular Carcinoma Likelihood on MRI Exams. Acad Radiol. 2013 Jun;20(6):694–8.22. Fraum TJ, Tsai R, Rohe E, Ludwig DR, Salter A, Nalbantoglu Ilk, et al. Differentiation of Hepatocellular Carcinoma from Other Hepatic Malignancies in Patients at Risk: Diagnostic Performance of the Liver Imaging Reporting and Data System Version 2014. Radiology. 2018 Jan;286(1):158–72.23. Liu W, Qin J, Guo R, Xie S, Jiang H, Wang X, et al. Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol. 2018 Feb;59(2):140–6.24. Liu X, Jiang H, Chen J, Zhou Y, Huang Z, Song B. Gadoxetic acid disodium–enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: A meta‐analysis. Liver Transpl. 2017 Dec;23(12):1505–18.25. Ranathunga D, Osman H, Islam N, McInnes MDF, Munir J, Van Der Pol CB, et al. Progression Rates of LR-2 and LR-3 Observations on MRI to Higher LI-RADS Categories in Patients at High Risk of Hepatocellular Carcinoma: A Retrospective Study. Am J Roentgenol. 2022 Mar;218(3):462–70.26. Chernyak V, Kobi M, Flusberg M, Fruitman KC, Sirlin CB. Effect of threshold growth as a major feature on LI-RADS categorization. Abdom Radiol. 2017 Aug;42(8):2089–10027. Choi SJ, Choi SH, Kim DW, Kwag M, Byun JH, Won HJ, et al. Value of threshold growth as a major diagnostic feature of hepatocellular carcinoma in LI-RADS. J Hepatol. 2023 Mar;78(3):596–603.28. Parra NS, Ross HM, Khan A, Wu M, Goldberg R, Shah L, et al. Advancements in the Diagnosis of Hepatocellular Carcinoma. Int J Transl Med. 2023 Jan 11;3(1):51–65.29. Stata Statistical Software: Release 18. College Station, TX: StataCorp LLC.;30. Liu X, Ni X, Li Y, Yang C, Wang Y, Ma C, et al. Diagnostic Performance of LI-RADS Version 2018 for Primary Liver Cancer in Patients With Liver Cirrhosis on Enhanced MRI. Front Oncol. 2022 Jul 1;12:934045.31. Mettikanont P, Kalluri A, Bittermann T, Phillips N, Loza BL, Rosen M, et al. The Course of LIRADS 3 and 4 Hepatic Abnormalities as Correlated With Explant Pathology: A Single Center Experience. J Clin Exp Hepatol. 2022 Jul;12(4):1048–56.32. Zhou J, Zhang Y, Zhang J, Chen J, Jiang H, Zhang L, et al. New strategy of LI-RADS v2018 to improve the sensitivity for small hepatocellular carcinoma ≤ 3.0 cm on extracellular-contrast enhanced MRI. Eur J Radiol. 2024 Dec;181:111830.33. Kanneganti M, Marrero JA, Parikh ND, Kanwal F, Yokoo T, Mendiratta‐Lala M, et al. Clinical outcomes of patients with Liver Imaging Reporting and Data System 3 or Liver Imaging Reporting and Data System 4 observations in patients with cirrhosis: A systematic review. Liver Transpl. 2022 Dec;28(12):1865–75.34. Lee S, Kim YY, Shin J, Son WJ, Roh YH, Choi JY, et al. Percentages of Hepatocellular Carcinoma in LI-RADS Categories with CT and MRI: A Systematic Review and Meta-Analysis. Radiology. 2023 Apr 1;307(1):e220646.35. Gupta A, Das A, Majumder K, Arora N, Mayo HG, Singh PP, et al. Obesity is Independently Associated With Increased Risk of Hepatocellular Cancer–related Mortality: A Systematic Review and Meta-Analysis. Am J Clin Oncol. 2018 Sep;41(9):874–81.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/3c9a2f89-6da6-4506-abaf-ad5dcae06214/download17cc15b951e7cc6b3728a574117320f9MD52Carta de autorizacion.pdfapplication/pdf190212https://repositorio.unbosque.edu.co/bitstreams/6c6902e9-9882-45ef-be71-9e88f4020ccd/downloadeab03996222f9e9b629b51d60e064ef2MD59Anexo 1 Acta de aprobacion.pdfapplication/pdf190328https://repositorio.unbosque.edu.co/bitstreams/6b488a48-248a-4d53-955f-7866fc19e2c6/downloadb1498ed7f5f0a5b6109ef4592ca53762MD510ORIGINALTrabajo de grado.pdfapplication/pdf846473https://repositorio.unbosque.edu.co/bitstreams/8e4fc3c4-43c2-4617-bf58-f63f7c872bcf/downloade42ef928c6bb6e8135a272c812c91725MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/cfa4c3bc-d104-42d9-b627-904bf73f5ad7/download3b6ce8e9e36c89875e8cf39962fe8920MD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain81640https://repositorio.unbosque.edu.co/bitstreams/82162c52-81fa-44d2-bc5e-15d6ae8b4305/download604f84152e265acf430382cf89d855ebMD511THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3333https://repositorio.unbosque.edu.co/bitstreams/f412438c-a8cd-4503-8e48-c2b57ca6fb3d/download1ad4e869d9c542c3491c9461db9ff458MD51220.500.12495/13934oai:repositorio.unbosque.edu.co:20.500.12495/139342025-02-13 03:05:58.286http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2028-02-10https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=