Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales

Antecedentes: Las enterobacterias forman parte del microbiota normal gastrointestinal, y actúan como microbiota oportunista en la cavidad oral, suelen complicar el tratamiento de enfermedades orales que requieren tratamiento antibiótico debido a la resistencia antibiótica asociada a genes como mph(A...

Full description

Autores:
Llerena Quinche, Isabella Sofia
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12942
Acceso en línea:
https://hdl.handle.net/20.500.12495/12942
Palabra clave:
Enterobacterias
Cavidad oral
Azitromicina
Resistencia antibiotica
Enterobacteria
Oral cavity
Azitromycin
Antibiotic resistance
WU 100
Rights
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNBOSQUE2_fdc32f433d0194c30c99fc755e3a1cac
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12942
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
dc.title.translated.none.fl_str_mv Evaluation of susceptibility to azithromycin in enteric bacilli isolated from the oral cavity
title Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
spellingShingle Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
Enterobacterias
Cavidad oral
Azitromicina
Resistencia antibiotica
Enterobacteria
Oral cavity
Azitromycin
Antibiotic resistance
WU 100
title_short Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
title_full Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
title_fullStr Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
title_full_unstemmed Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
title_sort Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras orales
dc.creator.fl_str_mv Llerena Quinche, Isabella Sofia
dc.contributor.advisor.none.fl_str_mv Neuta Poveda, Yineth
Catillo, Diana Marcela
Lafaurie, Gloria
dc.contributor.author.none.fl_str_mv Llerena Quinche, Isabella Sofia
dc.subject.none.fl_str_mv Enterobacterias
Cavidad oral
Azitromicina
Resistencia antibiotica
topic Enterobacterias
Cavidad oral
Azitromicina
Resistencia antibiotica
Enterobacteria
Oral cavity
Azitromycin
Antibiotic resistance
WU 100
dc.subject.keywords.none.fl_str_mv Enterobacteria
Oral cavity
Azitromycin
Antibiotic resistance
dc.subject.nlm.none.fl_str_mv WU 100
description Antecedentes: Las enterobacterias forman parte del microbiota normal gastrointestinal, y actúan como microbiota oportunista en la cavidad oral, suelen complicar el tratamiento de enfermedades orales que requieren tratamiento antibiótico debido a la resistencia antibiótica asociada a genes como mph(A). Aunque se reportan bajos niveles de actividad frente a enterobacterias en macrólidos, la azitromicina ha demostrado buen efecto frente a estas. Sin embargo, existen pocos reportes asociados con resistencia a azitromicina en enterobacterias de origen oral. Objetivo: Evaluar la susceptibilidad antibiótica a azitromicina y la presencia del gen mph(A) en bacilos entéricos aislados de cavidad oral. Métodos: Estudio descriptivo observacional en el que se evaluaron 90 aislamientos clínicos de bacilos entéricos provenientes de muestras de saliva almacenadas de pacientes quienes participaron en estudios previos y dieron su consentimiento para utilizar estos microorganismos en investigaciones posteriores. Se realizó identificación bioquímica de géneros y especies utilizando la galería bioquímica Crystal E/NF. Se determinó la susceptibilidad a azitromicina por micro dilución en caldo de acuerdo con los lineamientos el CLSI 2022 utilizando como control la cepa Staphylococcus aureus ATCC 29213, y se evaluó la presencia del gen mph (A) por PCR convencional. Se determinó la frecuencia relativa y absoluta de géneros y especies, y se estableció la MIC50 y MIC90 teniendo en cuenta los puntos de corte reportados por el CLSI 2022. Resultados: Los aislamientos identificados fueron Enterobacter cloacae (27,8%), Klebsiella oxytoca (20%), Serratia marcescens(14,4%), Klebsiella pneumoniae (11,1%), Serratia liquefaciens (6.7%), Enterobacter gergoviae (5,6%) y Klebsiella aerogenes(1,1%). El 21,1% de los aislamientos fueron sensibles, el 32,2% fueron intermedios y el 46,7% fueron resistentes a azitromicina. Las especies más resistentes fueron Klebsiella aerogenes (100%), Klebsiella oxytoca (66,7%), Cronobacter sakazakii (66,7%) y Enterobacter cloacae (52%). Enterobacter gergoviae mostró una alta sensibilidad (60%). Conclusión: Un alto porcentaje de los aislamientos fueron resistentes a la azitromicina, aunque no hubo asociación con el gen mhp (A), lo que sugiere la presencia de otros mecanismos de resistencia que deben investigarse.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-04T17:53:04Z
dc.date.available.none.fl_str_mv 2024-09-04T17:53:04Z
dc.date.issued.none.fl_str_mv 2024-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_970fb48d4fbd8a85
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12942
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12942
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Addy, L. D., & Martin, M. V. (2004). Azithromycin and dentistry—a useful agent?. British dental journal, 197(3), 141-143.
Ahmadi, H., Ebrahimi, A., & Ahmadi, F. (2021). Antibiotic therapy in dentistry. International Journal of Dentistry, 20-21.
Ajenifuja, O. A., & Oni, O. (2022). Susceptibility pattern of enteric bacteria isolated during raining season in some areas of Ado-Ekiti to macrolide antibiotics. Microbes and Infectious Diseases, 3(1), 149-159.
Ardila Medina, Carlos Martín. (2010). Asociación potencial entre enterobacterias presentes en periodontitis y enfermedades sistémicas. Acta Odontológica Venezolana, 48(1), 108-113.
Ardila Medina, C.M., Alzate Vega, J., & Guzmán Zuluaga, I.C. (2013). Asociación de Prevotella intermedia/nigrescens, bacilos entéricos gram-negativos y parámetros clínicos en periodontitis crónica. Avances en Periodoncia e Implantología Oral, 25(3), 165-170.
Basic, A., Blomqvist, S., Charalampakis, G., & Dahlén, G. (2024). Antibiotic resistance among Aerobic Gram-Negative Bacilli isolated from patients with oral inflammatory dysbiotic conditions—a retrospective study. Frontiers in Dental Medicine, 5, 1293202.
Bakheit, A. H., Al-Hadiya, B. M., & Abd-Elgalil, A. A. (2014). Azithromycin. Profiles of drug substances, excipients and related methodology, 39, 1-40.
Botero, J. E., & Bedoya, E. (2010). Determinantes del diagnóstico periodontal. Revista clínica de periodoncia, implantología y rehabilitación oral, 3(2), 94-99.
Brito MG, Fernandes FI, Rocha F, Texeira V, Barroso FC (2016). Prevalence and Susceptibility of Enterobacteriaceae Isolated from the Saliva of Students from the Northeast of Brazil. Global Journal of Medical Research: C Microbiology and Pathology, 16, 13-17.
Cercenado, E. (2011). Enterococcus: resistencias fenotípicas y genotípicas y epidemiología en España. Enfermedades infecciosas y microbiología clínica, 29, 59-65.
Gomes, C., Martínez-Puchol, S., Palma, N., Horna, G., Ruiz-Roldán, L., Pons, M. J., & Ruiz, J. (2017). Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Critical reviews in microbiology, 43(1), 1-30.
Cobos-Trigueros, N., Ateka, O., Pitart, C., & Vila, J. (2009). Macrólidos y cetólidos. Enfermedades infecciosas y Microbiología clínica, 27(7), 412-418.
Contreras, A., Moreno, S. M., Jaramillo, A., Peláez, M., Duque, A., Botero, J. E., & Slots, J. (2015). Periodontal microbiology in Latin America. Periodontology 2000, 67(1), 58–86.
Crielaard, W., Zaura, E., Schuller, A. A., Huse, S. M., Montijn, R. C., & Keijser, B. J. F. (2011). Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics, 4(1), 1-13.
Da Mata Jardin, Omaira J & F, Sandra & Rodriguez, Margarita & de Waard, Jacobus. (2016). Resistance mechanisms of rapid growing mycobacteria. INHRR. 47. 95-124.
Davin-Regli, A., Lavigne, J. P., & Pagès, J. M. (2019). Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clinical microbiology reviews, 32(4), e00002-19.
Faccone, D., Campos, J., Vinas, M. R., & Melano, R. G. (2016). Emergence of azithromycin resistance mediated by the mph (A) gene in Salmonella Typhimurium clinical isolates in Latin America. J Antimicrob Chemother, 71, 3400-8.
Furlan, J. P. R., & Stehling, E. G. (2023). Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens, 12(11), 1335.
Gallacher, D. J., Zhang, L., Aboklaish, A. F., Mitchell, E., Wach, R., Marchesi, J. R., & Kotecha, S. (2024). Baseline azithromycin resistance in the gut microbiota of preterm born infants. Pediatric Research, 95(1), 205-212.
Gómez, C., Martínez-Puchol, S., Palma, N., Horna, G., Ruiz-Roldán, L., Pons, M. J., & Ruiz, J. (2017). Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Critical reviews in microbiology, 43(1), 1-30.
Gómez, C., Ruiz-Roldán, L., Mateu, J., Ochoa, T. J., & Ruiz, J. (2019). Azithromycin resistance levels and mechanisms in Escherichia coli. Scientific Reports, 9(1).
González-Torralba, A., García-Esteban, C., & Alós, J. I. (2018). Enteropatógenos y antibióticos. Enfermedades Infecciosas y Microbiología Clínica, 36(1), 47-54.
Jepsen, K., Falk, W., Brune, F., Cosgarea, R., Fimmers, R., Bekeredjian-Ding, I., & Jepsen, S. (2022). Prevalence and antibiotic susceptibility trends of selected enterobacteriaceae, enterococci, and candida albicans in the subgingival microbiota of German periodontitis patients: a retrospective surveillance study. Antibiotics, 11(3), 385.
Kastner, U., & Guggenbichler, J. P. (2001). Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection, 29(5), 251-256
Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and emerging methods of antibiotic susceptibility testing. Diagnostics, 9(2), 49.
Lafaurie, G. I., Contreras, A., Baron, A., Botero, J., Mayorga‐Fayad, I., Jaramillo, A., ... & Arce, R. (2007). Demographic, clinical, and microbial aspects of chronic and aggressive periodontitis in Colombia: a multicenter study. Journal of periodontology, 78(4), 629-639.
Leão-vasconcelos, L. S. N. D. O., Lima, A. B. M., Costa, D. D. M., Rocha-Vilefort, L. O., Oliveira, A. C. A. D., Gonçalves, N. F., ... & Prado-Palos, M. A. (2015). Enterobacteriaceae isolates from the oral cavity of workers in a Brazilian oncology hospital. Revista do Instituto de Medicina Tropical de São Paulo, 57, 121-127.
Lenz, K. D., Klosterman, K. E., Mukundan, H., & Kubicek-Sutherland, J. Z. (2021). Macrolides: from toxins to therapeutics. Toxins, 13(5), 347.
Liu, X., Yang, X., Ye, L., Chan, E. W. C., & Chen, S. (2022). Genetic Characterization of a Conjugative Plasmid That Encodes Azithromycin Resistance in Enterobacteriaceae. Microbiology Spectrum, e00788-22.
López Velandia, D. P., Torres Caycedo, M. I., & Prada Quiroga, C. F. (2016). Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Universidad y salud, 18(1), 190.
Mayorga-Fayad, I., Lafaurie, G. I., Contreras, A., Castillo, D. M., Barón, A., & Aya, M. D. R. (2007). Microflora subgingival en periodontitis crónica y agresiva en Bogotá, Colombia: un acercamiento epidemiológico. Biomédica, 27(1), 21-33.
Mercer, D. K., Torres, M. D., Duay, S. S., Lovie, E., Simpson, L., von Köckritz-Blickwede, M., ... & Angeles-Boza, A. M. (2020). Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Frontiers in cellular and infection microbiology, 326.
Nguyen, M. C. P., Woerther, P.-L., Bouvet, M., Andremont, A., Leclercq, R., & Canu, A. (2009). Escherichia coli as Reservoir for Macrolide Resistance Genes. Emerging Infectious Diseases, 15(10), 1648-1650.
Patel, P. H., & Hashmi, M. F. (2022). Macrolides. In StatPearls [Internet]. StatPearls Publishing.
Pawlowski, A. C., Stogios, P. J., Koteva, K., Skarina, T., Evdokimova, E., Savchenko, A., & Wright, G. D. (2018). The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nature Communications, 9(1), 112.
Quintana, Sandra Margarita, Díaz Sjostrom, Pedro, Arias Socarrás, Dunier, & Mazón Baldeón, Gloria Marlene. (2017). Microbiota de los ecosistemas de la cavidad bucal. Revista Cubana de Estomatología, 54(1), 84-99.
Ramírez, A., Morcillo, N., Imperiale, B., Araque, M., & De Waard, J. H. (2018). Comparación y evaluación de métodos cuantitativos para determinar la susceptibilidad antimicrobiana de cepas del complejo Mycobacterium abscessus. Revista Ciencias de la Salud, 16(1), 69-81.
Rosales, E. P. (2018). Interpretación de los estudios de susceptibilidad antimicrobiana. ARS MEDICA Revista de Ciencias Médicas, 26(3).
Rozwadowski, M., & Gawel, D. (2022). Molecular factors and mechanisms driving multidrug resistance in uropathogenic Escherichia coli—An update. Genes, 13(8), 1397
Sánchez, P., Muñoz, R., & Gutiérrez, N. P. (2012). Resistencia bacteriana a los antibióticos: mecanismos de transferencia. Spei Domus, 8(17)
Sangama Fuchs, J. L., & Pereyra Reaño, R. (2018). Prevalencia de β-lactamasas de espectro extendido en enterobacterias aisladas en el Servicio de Microbiología del Hospital Regional de Loreto desde enero a junio del 2017.
Scardina, G. A., Ruggieri, A., Carini, F., Valenza, V., & Messina, P. (2007). Macrolides Antibiotics in Odontostomatological Practice: Past, Present and Future. RESEARCH JOURNAL OF BIOLOGICAL SCIENCES, 2, 643-649.
Segura‐Egea, J. J., Gould, K., Şen, B. H., Jonasson, P., Cotti, E., Mazzoni, A., ... & Dummer, P. M. H. (2017). Antibiotics in Endodontics: a review. International endodontic journal, 50(12), 1169-1184.
Teshome, A., Girma, B., & Aniley, Z. (2020). The efficacy of azithromycin on cyclosporine-induced gingival enlargement: Systematic review and meta-analysis. Journal of Oral Biology and Craniofacial Research, 10(2), 214-219.
Vieira, A. R., Hiller, N. L., Powell, E., Kim, L. H. ‐. J., Spirk, T., Modesto, A., & Kreft, R. (2019). Profiling microorganisms in whole saliva of children with and without dental caries. Clinical and Experimental Dental Research, 5(4), 438-446.
dc.rights.en.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http:/purl.org/coar/access_right/c_abf2/
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
http:/purl.org/coar/access_right/c_abf2/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Odontología
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/b27dd2f4-ef64-4fe8-a13a-7934ff637e51/download
https://repositorio.unbosque.edu.co/bitstreams/73bc15a4-d0f0-4ae1-ba7c-a7d11eb9e66a/download
https://repositorio.unbosque.edu.co/bitstreams/07f3057d-1785-49a2-a134-26d70bc22635/download
https://repositorio.unbosque.edu.co/bitstreams/3de2c531-2d1f-42ca-be15-ee57a9226bc6/download
https://repositorio.unbosque.edu.co/bitstreams/5d6459e6-4eee-4951-b2fb-b04701f3fd68/download
https://repositorio.unbosque.edu.co/bitstreams/8b03d52a-5c65-4fe2-af31-12ceb0bb97ea/download
https://repositorio.unbosque.edu.co/bitstreams/2be112fc-eeb4-4d1a-a2ab-f2ee09006f8e/download
https://repositorio.unbosque.edu.co/bitstreams/ea01c7e1-2f16-4999-9e89-cbc8f5d3e747/download
bitstream.checksum.fl_str_mv 172674427815a8699bd1d535011cd981
17cc15b951e7cc6b3728a574117320f9
fc8a34297f80d9f6740097581e0bf8d6
221eebab909e058a278cd8f2abe53bcf
57fbd33707b56c63c827f8d9f5342f1a
313ea3fe4cd627df823c57a0f12776e5
f9aa9691f319024f69d38087ca4b1b46
199e10a0d0b8d97eb423fb5296b11c37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100710646611968
spelling Neuta Poveda, YinethCatillo, Diana MarcelaLafaurie, GloriaLlerena Quinche, Isabella Sofia2024-09-04T17:53:04Z2024-09-04T17:53:04Z2024-05https://hdl.handle.net/20.500.12495/12942instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coAntecedentes: Las enterobacterias forman parte del microbiota normal gastrointestinal, y actúan como microbiota oportunista en la cavidad oral, suelen complicar el tratamiento de enfermedades orales que requieren tratamiento antibiótico debido a la resistencia antibiótica asociada a genes como mph(A). Aunque se reportan bajos niveles de actividad frente a enterobacterias en macrólidos, la azitromicina ha demostrado buen efecto frente a estas. Sin embargo, existen pocos reportes asociados con resistencia a azitromicina en enterobacterias de origen oral. Objetivo: Evaluar la susceptibilidad antibiótica a azitromicina y la presencia del gen mph(A) en bacilos entéricos aislados de cavidad oral. Métodos: Estudio descriptivo observacional en el que se evaluaron 90 aislamientos clínicos de bacilos entéricos provenientes de muestras de saliva almacenadas de pacientes quienes participaron en estudios previos y dieron su consentimiento para utilizar estos microorganismos en investigaciones posteriores. Se realizó identificación bioquímica de géneros y especies utilizando la galería bioquímica Crystal E/NF. Se determinó la susceptibilidad a azitromicina por micro dilución en caldo de acuerdo con los lineamientos el CLSI 2022 utilizando como control la cepa Staphylococcus aureus ATCC 29213, y se evaluó la presencia del gen mph (A) por PCR convencional. Se determinó la frecuencia relativa y absoluta de géneros y especies, y se estableció la MIC50 y MIC90 teniendo en cuenta los puntos de corte reportados por el CLSI 2022. Resultados: Los aislamientos identificados fueron Enterobacter cloacae (27,8%), Klebsiella oxytoca (20%), Serratia marcescens(14,4%), Klebsiella pneumoniae (11,1%), Serratia liquefaciens (6.7%), Enterobacter gergoviae (5,6%) y Klebsiella aerogenes(1,1%). El 21,1% de los aislamientos fueron sensibles, el 32,2% fueron intermedios y el 46,7% fueron resistentes a azitromicina. Las especies más resistentes fueron Klebsiella aerogenes (100%), Klebsiella oxytoca (66,7%), Cronobacter sakazakii (66,7%) y Enterobacter cloacae (52%). Enterobacter gergoviae mostró una alta sensibilidad (60%). Conclusión: Un alto porcentaje de los aislamientos fueron resistentes a la azitromicina, aunque no hubo asociación con el gen mhp (A), lo que sugiere la presencia de otros mecanismos de resistencia que deben investigarse.Grupo de investigacion UIBO, Unidad de Investigacion Basica OralOdontólogoPregradoBackground: Enterobacteria are part of the normal gastrointestinal microbiota and act as opportunistic microbiota in the oral cavity, often complicating the treatment of oral diseases that require antibiotic therapy due to antibiotic resistance associated with genes like mph(A). Although macrolides generally show low activity against enterobacteria, azithromycin has demonstrated good efficacy against these bacteria.. However, few reports are associated with azithromycin resistance in enterobacteria of oral origin. Objective: To evaluate the antibiotic susceptibility to azithromycin and the presence of the mph(A) gene in enteric rods isolated from the oral cavity. Methods: This observational descriptive study evaluated 90 clinical isolates of enteric rods from stored saliva samples of patients who participated in previous studies and consented to use these microorganisms in subsequent research. Biochemical genus and species identification were performed using the Crystal E/NF biochemical gallery. Susceptibility to azithromycin was determined by broth microdilution according to CLSI 2022 guidelines, using Staphylococcus aureus ATCC 29213 as the control strain, and the presence of the mph(A) gene was assessed by conventional PCR. The relative and absolute frequencies of genera and species were determined, and MIC50 and MIC90 were established based on CLSI 2022 cutoff points. Results: The isolates were identified as Enterobacter cloacae (27.8%), Klebsiella oxytoca (20%), Serratia marcescens (14.4%), Klebsiella pneumoniae (11.1%), Serratia liquefaciens (6.7%), Enterobacter gergoviae (5.6%) and Klebsiella aerogenes (1.1%). Of the isolates, 21.1% were susceptible to azithromycin, 32.2% were intermediate, and 46.67% were resistant. The most resistant species were Klebsiella aerogenes (100%), Klebsiella oxytoca (66.7%), Cronobacter sakazakii (66.7%) and Enterobacter cloacae (52%). Enterobacter gergoviae showed high sensitivity (60%). Conclusion: Most isolates were resistant to azithromycin, with no association with the mph(A) gene, suggesting the presence of other resistance mechanisms that need to be investigated.application/pdfAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttp:/purl.org/coar/access_right/c_abf2/http://purl.org/coar/access_right/c_abf2EnterobacteriasCavidad oralAzitromicinaResistencia antibioticaEnterobacteriaOral cavityAzitromycinAntibiotic resistanceWU 100Detección de resistencia a azitromicina en aislamientos de bacilos entericos a partir de muestras oralesEvaluation of susceptibility to azithromycin in enteric bacilli isolated from the oral cavityOdontologíaUniversidad El BosqueFacultad de OdontologíaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Addy, L. D., & Martin, M. V. (2004). Azithromycin and dentistry—a useful agent?. British dental journal, 197(3), 141-143.Ahmadi, H., Ebrahimi, A., & Ahmadi, F. (2021). Antibiotic therapy in dentistry. International Journal of Dentistry, 20-21.Ajenifuja, O. A., & Oni, O. (2022). Susceptibility pattern of enteric bacteria isolated during raining season in some areas of Ado-Ekiti to macrolide antibiotics. Microbes and Infectious Diseases, 3(1), 149-159.Ardila Medina, Carlos Martín. (2010). Asociación potencial entre enterobacterias presentes en periodontitis y enfermedades sistémicas. Acta Odontológica Venezolana, 48(1), 108-113.Ardila Medina, C.M., Alzate Vega, J., & Guzmán Zuluaga, I.C. (2013). Asociación de Prevotella intermedia/nigrescens, bacilos entéricos gram-negativos y parámetros clínicos en periodontitis crónica. Avances en Periodoncia e Implantología Oral, 25(3), 165-170.Basic, A., Blomqvist, S., Charalampakis, G., & Dahlén, G. (2024). Antibiotic resistance among Aerobic Gram-Negative Bacilli isolated from patients with oral inflammatory dysbiotic conditions—a retrospective study. Frontiers in Dental Medicine, 5, 1293202.Bakheit, A. H., Al-Hadiya, B. M., & Abd-Elgalil, A. A. (2014). Azithromycin. Profiles of drug substances, excipients and related methodology, 39, 1-40.Botero, J. E., & Bedoya, E. (2010). Determinantes del diagnóstico periodontal. Revista clínica de periodoncia, implantología y rehabilitación oral, 3(2), 94-99.Brito MG, Fernandes FI, Rocha F, Texeira V, Barroso FC (2016). Prevalence and Susceptibility of Enterobacteriaceae Isolated from the Saliva of Students from the Northeast of Brazil. Global Journal of Medical Research: C Microbiology and Pathology, 16, 13-17.Cercenado, E. (2011). Enterococcus: resistencias fenotípicas y genotípicas y epidemiología en España. Enfermedades infecciosas y microbiología clínica, 29, 59-65.Gomes, C., Martínez-Puchol, S., Palma, N., Horna, G., Ruiz-Roldán, L., Pons, M. J., & Ruiz, J. (2017). Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Critical reviews in microbiology, 43(1), 1-30.Cobos-Trigueros, N., Ateka, O., Pitart, C., & Vila, J. (2009). Macrólidos y cetólidos. Enfermedades infecciosas y Microbiología clínica, 27(7), 412-418.Contreras, A., Moreno, S. M., Jaramillo, A., Peláez, M., Duque, A., Botero, J. E., & Slots, J. (2015). Periodontal microbiology in Latin America. Periodontology 2000, 67(1), 58–86.Crielaard, W., Zaura, E., Schuller, A. A., Huse, S. M., Montijn, R. C., & Keijser, B. J. F. (2011). Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics, 4(1), 1-13.Da Mata Jardin, Omaira J & F, Sandra & Rodriguez, Margarita & de Waard, Jacobus. (2016). Resistance mechanisms of rapid growing mycobacteria. INHRR. 47. 95-124.Davin-Regli, A., Lavigne, J. P., & Pagès, J. M. (2019). Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clinical microbiology reviews, 32(4), e00002-19.Faccone, D., Campos, J., Vinas, M. R., & Melano, R. G. (2016). Emergence of azithromycin resistance mediated by the mph (A) gene in Salmonella Typhimurium clinical isolates in Latin America. J Antimicrob Chemother, 71, 3400-8.Furlan, J. P. R., & Stehling, E. G. (2023). Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens, 12(11), 1335.Gallacher, D. J., Zhang, L., Aboklaish, A. F., Mitchell, E., Wach, R., Marchesi, J. R., & Kotecha, S. (2024). Baseline azithromycin resistance in the gut microbiota of preterm born infants. Pediatric Research, 95(1), 205-212.Gómez, C., Martínez-Puchol, S., Palma, N., Horna, G., Ruiz-Roldán, L., Pons, M. J., & Ruiz, J. (2017). Macrolide resistance mechanisms in Enterobacteriaceae: focus on azithromycin. Critical reviews in microbiology, 43(1), 1-30.Gómez, C., Ruiz-Roldán, L., Mateu, J., Ochoa, T. J., & Ruiz, J. (2019). Azithromycin resistance levels and mechanisms in Escherichia coli. Scientific Reports, 9(1).González-Torralba, A., García-Esteban, C., & Alós, J. I. (2018). Enteropatógenos y antibióticos. Enfermedades Infecciosas y Microbiología Clínica, 36(1), 47-54.Jepsen, K., Falk, W., Brune, F., Cosgarea, R., Fimmers, R., Bekeredjian-Ding, I., & Jepsen, S. (2022). Prevalence and antibiotic susceptibility trends of selected enterobacteriaceae, enterococci, and candida albicans in the subgingival microbiota of German periodontitis patients: a retrospective surveillance study. Antibiotics, 11(3), 385.Kastner, U., & Guggenbichler, J. P. (2001). Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection, 29(5), 251-256Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and emerging methods of antibiotic susceptibility testing. Diagnostics, 9(2), 49.Lafaurie, G. I., Contreras, A., Baron, A., Botero, J., Mayorga‐Fayad, I., Jaramillo, A., ... & Arce, R. (2007). Demographic, clinical, and microbial aspects of chronic and aggressive periodontitis in Colombia: a multicenter study. Journal of periodontology, 78(4), 629-639.Leão-vasconcelos, L. S. N. D. O., Lima, A. B. M., Costa, D. D. M., Rocha-Vilefort, L. O., Oliveira, A. C. A. D., Gonçalves, N. F., ... & Prado-Palos, M. A. (2015). Enterobacteriaceae isolates from the oral cavity of workers in a Brazilian oncology hospital. Revista do Instituto de Medicina Tropical de São Paulo, 57, 121-127.Lenz, K. D., Klosterman, K. E., Mukundan, H., & Kubicek-Sutherland, J. Z. (2021). Macrolides: from toxins to therapeutics. Toxins, 13(5), 347.Liu, X., Yang, X., Ye, L., Chan, E. W. C., & Chen, S. (2022). Genetic Characterization of a Conjugative Plasmid That Encodes Azithromycin Resistance in Enterobacteriaceae. Microbiology Spectrum, e00788-22.López Velandia, D. P., Torres Caycedo, M. I., & Prada Quiroga, C. F. (2016). Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Universidad y salud, 18(1), 190.Mayorga-Fayad, I., Lafaurie, G. I., Contreras, A., Castillo, D. M., Barón, A., & Aya, M. D. R. (2007). Microflora subgingival en periodontitis crónica y agresiva en Bogotá, Colombia: un acercamiento epidemiológico. Biomédica, 27(1), 21-33.Mercer, D. K., Torres, M. D., Duay, S. S., Lovie, E., Simpson, L., von Köckritz-Blickwede, M., ... & Angeles-Boza, A. M. (2020). Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Frontiers in cellular and infection microbiology, 326.Nguyen, M. C. P., Woerther, P.-L., Bouvet, M., Andremont, A., Leclercq, R., & Canu, A. (2009). Escherichia coli as Reservoir for Macrolide Resistance Genes. Emerging Infectious Diseases, 15(10), 1648-1650.Patel, P. H., & Hashmi, M. F. (2022). Macrolides. In StatPearls [Internet]. StatPearls Publishing.Pawlowski, A. C., Stogios, P. J., Koteva, K., Skarina, T., Evdokimova, E., Savchenko, A., & Wright, G. D. (2018). The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nature Communications, 9(1), 112.Quintana, Sandra Margarita, Díaz Sjostrom, Pedro, Arias Socarrás, Dunier, & Mazón Baldeón, Gloria Marlene. (2017). Microbiota de los ecosistemas de la cavidad bucal. Revista Cubana de Estomatología, 54(1), 84-99.Ramírez, A., Morcillo, N., Imperiale, B., Araque, M., & De Waard, J. H. (2018). Comparación y evaluación de métodos cuantitativos para determinar la susceptibilidad antimicrobiana de cepas del complejo Mycobacterium abscessus. Revista Ciencias de la Salud, 16(1), 69-81.Rosales, E. P. (2018). Interpretación de los estudios de susceptibilidad antimicrobiana. ARS MEDICA Revista de Ciencias Médicas, 26(3).Rozwadowski, M., & Gawel, D. (2022). Molecular factors and mechanisms driving multidrug resistance in uropathogenic Escherichia coli—An update. Genes, 13(8), 1397Sánchez, P., Muñoz, R., & Gutiérrez, N. P. (2012). Resistencia bacteriana a los antibióticos: mecanismos de transferencia. Spei Domus, 8(17)Sangama Fuchs, J. L., & Pereyra Reaño, R. (2018). Prevalencia de β-lactamasas de espectro extendido en enterobacterias aisladas en el Servicio de Microbiología del Hospital Regional de Loreto desde enero a junio del 2017.Scardina, G. A., Ruggieri, A., Carini, F., Valenza, V., & Messina, P. (2007). Macrolides Antibiotics in Odontostomatological Practice: Past, Present and Future. RESEARCH JOURNAL OF BIOLOGICAL SCIENCES, 2, 643-649.Segura‐Egea, J. J., Gould, K., Şen, B. H., Jonasson, P., Cotti, E., Mazzoni, A., ... & Dummer, P. M. H. (2017). Antibiotics in Endodontics: a review. International endodontic journal, 50(12), 1169-1184.Teshome, A., Girma, B., & Aniley, Z. (2020). The efficacy of azithromycin on cyclosporine-induced gingival enlargement: Systematic review and meta-analysis. Journal of Oral Biology and Craniofacial Research, 10(2), 214-219.Vieira, A. R., Hiller, N. L., Powell, E., Kim, L. H. ‐. J., Spirk, T., Modesto, A., & Kreft, R. (2019). Profiling microorganisms in whole saliva of children with and without dental caries. Clinical and Experimental Dental Research, 5(4), 438-446.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf917540https://repositorio.unbosque.edu.co/bitstreams/b27dd2f4-ef64-4fe8-a13a-7934ff637e51/download172674427815a8699bd1d535011cd981MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/73bc15a4-d0f0-4ae1-ba7c-a7d11eb9e66a/download17cc15b951e7cc6b3728a574117320f9MD55Anexo 1 Acta de aprobación.pdfapplication/pdf189758https://repositorio.unbosque.edu.co/bitstreams/07f3057d-1785-49a2-a134-26d70bc22635/downloadfc8a34297f80d9f6740097581e0bf8d6MD57Anexo 2 Formato Biblioteca.pdfapplication/pdf320954https://repositorio.unbosque.edu.co/bitstreams/3de2c531-2d1f-42ca-be15-ee57a9226bc6/download221eebab909e058a278cd8f2abe53bcfMD58Carta de autorización.pdfapplication/pdf206619https://repositorio.unbosque.edu.co/bitstreams/5d6459e6-4eee-4951-b2fb-b04701f3fd68/download57fbd33707b56c63c827f8d9f5342f1aMD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81019https://repositorio.unbosque.edu.co/bitstreams/8b03d52a-5c65-4fe2-af31-12ceb0bb97ea/download313ea3fe4cd627df823c57a0f12776e5MD56TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain72374https://repositorio.unbosque.edu.co/bitstreams/2be112fc-eeb4-4d1a-a2ab-f2ee09006f8e/downloadf9aa9691f319024f69d38087ca4b1b46MD510THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2746https://repositorio.unbosque.edu.co/bitstreams/ea01c7e1-2f16-4999-9e89-cbc8f5d3e747/download199e10a0d0b8d97eb423fb5296b11c37MD51120.500.12495/12942oai:repositorio.unbosque.edu.co:20.500.12495/129422024-09-05 03:02:11.38http://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=