Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno
En respuesta a la creciente demanda de tecnologías innovadoras para el diagnóstico y tratamiento de enfermedades, el proyecto se enfocó en la síntesis y caracterización de nanopartículas de sílice mesoporosa mediante el método Sol-Gel y basadas en parámetros previamente estandarizados en la fase I d...
- Autores:
-
Triana Chambueta, Valentina
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2024
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/12145
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/12145
- Palabra clave:
- Nanopartículas
Síntesis
Sílice
Ibuprofeno
Carga
Purificación
615.19
Nanoparticles
Synthesis
Silica
Ibuprofen
Load
Purification
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNBOSQUE2_f92af799acf9ed19949ac4e416e23811 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/12145 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
dc.title.translated.none.fl_str_mv |
Obtaining and characterization of mesoporous nanoparticles from the Sol-Gel method loaded with ibuprofen |
title |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
spellingShingle |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno Nanopartículas Síntesis Sílice Ibuprofeno Carga Purificación 615.19 Nanoparticles Synthesis Silica Ibuprofen Load Purification |
title_short |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
title_full |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
title_fullStr |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
title_full_unstemmed |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
title_sort |
Obtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofeno |
dc.creator.fl_str_mv |
Triana Chambueta, Valentina |
dc.contributor.advisor.none.fl_str_mv |
Jiménez Cruz, Ronald Andrés |
dc.contributor.author.none.fl_str_mv |
Triana Chambueta, Valentina |
dc.subject.none.fl_str_mv |
Nanopartículas Síntesis Sílice Ibuprofeno Carga Purificación |
topic |
Nanopartículas Síntesis Sílice Ibuprofeno Carga Purificación 615.19 Nanoparticles Synthesis Silica Ibuprofen Load Purification |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Nanoparticles Synthesis Silica Ibuprofen Load Purification |
description |
En respuesta a la creciente demanda de tecnologías innovadoras para el diagnóstico y tratamiento de enfermedades, el proyecto se enfocó en la síntesis y caracterización de nanopartículas de sílice mesoporosa mediante el método Sol-Gel y basadas en parámetros previamente estandarizados en la fase I del proyecto demostrando su potencial para la liberación prolongada de fármacos. Estas nanopartículas se purifican bajo dos condiciones, por medio de lavados y calcinación; además de probar tres cargas con Ibuprofeno como fármaco modelo a diferentes concentraciones (50, 100 y 150 mg). Se caracterizó mediante FIT-IR, SEM, XRD y DLS. De manera que se pudiera evaluar su eficiencia de encapsulación, se realizaron seis perfiles de liberación, mostrando que las nanopartículas cargadas luego de la calcinación liberan de manera controlada el fármaco y similar sin importar la concentración de la carga. Frente a las pruebas de reactividad biológica, estos prototipos presentan ligera actividad citotóxica y poca viabilidad celular respecto a la línea celular L929; lo que indica que a pesar de ser vehículos estables es necesario probarlo con diferentes fármacos y replantear parámetros (temperatura de calcinación o concentración de carga) que permitan una reactividad biológica sin actividad citotóxica. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-17T21:16:08Z |
dc.date.available.none.fl_str_mv |
2024-05-17T21:16:08Z |
dc.date.issued.none.fl_str_mv |
2024-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/12145 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/12145 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. [Enlace: https://doi.org/10.1038/nmat3776] C. Zhang, H. Xie, Z. Zhang, B. Wen, H. Cao, Y. Bai, Q. Che, J. Guo y Z. Su, "Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine," Front. Pharmacol., vol. 13, p. 829796, Jan. 28, 2022. DOI: 10.3389/fphar.2022.829796. Smith A, et al. (2021). Influence of purification methods on the structural and cytotoxic properties of Ibuprofen-loaded mesoporous silica nanoparticles. Journal of Nanoparticle Research, 25(6), 150. Jones B, et al. (2020). Effect of purification methods on the biological properties of Ibuprofen-loaded mesoporous silica nanoparticles. International Journal of Nanomedicine, 15, 7895-7903 Smith A, et al. (2019). Comparative Study of Ibuprofen-Loaded Mesoporous Silica Nanoparticles Prepared by Adsorption and Encapsulation Methods: Impact on Drug Release Behavior. Nanomedicine: Nanotechnology, Biology, and Medicine, 15(3), 327-335. Chen Y, et al. (2020). Comparison of Ibuprofen-Loaded Mesoporous Silica Nanoparticles Prepared by Different Methods: Effect of Drug Loading Techniques on Drug Release Behavior. Journal of Nanoscience and Nanotechnology, 20(7), 4177-4183. Smith A, et al. (2019). Comparative Study of Ibuprofen-Loaded Mesoporous Silica Nanoparticles Prepared by Adsorption and Encapsulation Methods: Impact on Drug Release Behavior. Nanomedicine: Nanotechnology, Biology, and Medicine, 15(3), 327-335. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-1198. doi:10.1111/jphp.13112 FDA, "Aspectos destacados de la información de prescripción", 2021. [En línea]. Disponible en:https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022348s021lbl.pdf M. Abualhasan, M. Assali, A. N. Zaid, R. Tarayra, A. Hamdan y R. Ardah, "Synthesis and formulation of ibuprofen pro-drugs for 689 enhanced transdermal absorption," en International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, pp. 352-354, 2015. K. Trzeciak, A. Chotera-Ouda, I. I. Bak-Sypien y M. J. Potrzebowski, "Mesoporous Silica Particles as Drug Delivery Systems—The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes," Pharmaceutics, vol. 13, p. 950, 2021. DOI: 10.3390/pharmaceutics13070950. Z. C. Wang, D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. J. Ansari, I. H. Shewael, G. H. Valiev E. Kianfar, "Nanomaterial by Sol-Gel Method: Synthesis and Application," Adv. Mater. Sci. Eng., vol. 2021, artículo ID 5102014, pp. 1-8, dic. 2021. DOI: 10.1155/2021/5102014 Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Ramani, R. (2013). Sol-gel synthesis of silica nanoparticles and its controlled drug release application. International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 857-861. [Enlace:https://innovareacademics.in/journals/index.php/ijpps/article/view/3457]. Llinas, M. & Sanchez, D. (2013). Nanopartículas de sílice: preparación y aplicaciones en biomedicina. https://core.ac.uk/download/pdf/39152365.pdf. Zanella, Rodolfo. (2012). Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 5(1), 69-81. Epub 30 de agosto de 2021. Recuperado en 13 de marzo de 2024, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-56912012000100069&lng=es&tlng=es M. Abualhasan, M. Assali, A.N.Zaid, R. Tarayra, A. Hamdan y R.Argah, “Synthesis and formulation of ibuprofen pro-drugs for enhanced transdermal absorption, “Int. J. Pharm. Sci., 2015. https://.redalyc.org/pdf/4760/476047266002 M. M. Ashour, M. Mabrouk, I. E. Soliman, H. H. Beherei, y K. M. Tohamy, "Mesoporous silica nanoparticles prepared by different methods for biomedical applications: Comparative study," IET Nanobiotechnol., May 15(3):291-300. DOI: 10.1049/nbt2.12023 N. Ugemuge, Y.R. Parauha, and S.J. Dhoble, "Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes," in Energy Materials, edited by S.J. Dhoble, N. Thejo Kalyani, B. Vengadaesvaran, and Abdul Kariem Arof (Elsevier, 2021), pp. 445-480, ISBN 9780128237106, https://doi.org/10.1016/B978-0-12-823710-6.00017-0 Ashour MM, Mabrouk M, Soliman IE, Beherei HH, Tohamy KM. Mesoporous silica nanoparticles prepared by different methods for biomedical applications: Comparative study. IET Nanobiotechnol. 2021 May;15(3):291-300. doi: 10.1049/nbt2.12023. Epub 2021 Feb 22. PMID: 34694665; PMCID: PMC8675824. K. Trzeciak, A. Chotera-Ouda, I. I. Bak-Sypien y M. J. Potrzebowski, "Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes," Pharmaceutics, vol. 13, no. 7, p. 950, jun. 2021. DOI: 10.3390/pharmaceutics13070950. R. Schmid, N. Neffgen, and M. Lindén, "Straightforward adsorption-based formulation of mesoporous silica nanoparticles for drug delivery applications," Journal of Colloid and Interface Science, vol. 640, pp. 961-974, 2023, ISSN 0021-9797,https://doi.org/10.1016/j.jcis.2023.03.012 A. Chávez, "Citotoxicidad y mecanismos de toxicidad de nanopartículas inorgánicas emergentes," 2016. [En línea]. Disponible: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/2135/1/TESIS%20ADRIAN%20CHAVEZ%20C.pdf Chen, H., Zhen, Z., Tang, W., Todd, T., Chuang, Y.J., Wang, L., Pan, Z., & Xie, J. (2013). Label-Free Luminescent Mesoporous Silica Nanoparticles for Imaging and Drug Delivery. Theranostics, 3(9), 650-657. doi: 10.7150/thno.6668. M. H. J. H. Al-Atia, H. K. Saeed, A. R. Fliayh y A. J. Addie, "Investigating the effects of calcination temperatures on the structure of modified nanosilica prepared by sol–gel," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 520, pp. 590-596, 2017. DOI: 10.1016/j.colsurfa.2017.02.020. A. Gupta, M. Quadros y M. Momin, "Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery," J. Drug Deliv. Sci. Technol., vol. 81, p. 104305, 2023. DOI: 10.1016/j.jddst.2023.10430 K. Yoncheva, M. Popova, A. Szegedi, J. Mihaly, B. Tzankov, N. Lambov, S. Konstantinov, V. Tzankova, F. Pessina y M. Valoti, "Functionalized mesoporous silica nanoparticles for oral delivery of budesonide," J. Solid State Chem., vol. 211, pp. 154-161, 2014. DOI: 10.1016/j.jssc.2013.12.020 Chen, S., Johnson, J., & Zorn, G. (2019). Understanding Burst Effects in Drug Release Kinetics. [Enlace: https://doi.org/10.1016/j.xphs.2019.06.018] Watermann, A., & Brieger, J. (2017). Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. Nanomaterials (Basel), 7(7), 189. doi: 10.3390/nano7070189 Abdulrazaq, H., Alwared, A., & Onyeaka, H. (2023). Ibuprofen Degradation from Synthetic Wastewater Using Photo-Fenton Process. Iraqi Journal of Chemical and Petroleum Engineering, 24, 107-114. doi: 10.31699/IJCPE.2023.4.11. Alvarez, C. C. (2019). Síntesis de sales de rifaximina y norfloxacina y su estudio estructural por difracción de rayos X de muestras policristalinas y monocristalinas. Trabajo de Investigación de Maestría en Química, Universidad Industrial de Santander, Facultad de Ciencias, Escuela de Química, Grupo de Investigación de Química Estructural (GIGUE) Trucano, P., & Batterman, B. W. (1970). Effects of porosity in powder diffraction. Journal of Applied Physics, 41(10), 3949-3953 Bellet, D., & Dolino, G. (1996). X-ray diffraction studies of porous silicon. Thin Solid Films, 276(1-2), 1-6 International Organization for Standardization, "Biological evaluation of medical devices -- Part 5: Tests for in vitro cytotoxicity," ISO Standard 10993-5:2009, 2009. [Online]. Available: https://www.iso.org/standard/36406.html. Gisbert-Garzarán, M., Manzano, M., Vallet-Regí, M., y Rodríguez, E., "Impact of silica-based nanodevices on the immune system: Applications and toxicological implications," Advanced Healthcare Materials, vol. 8, no. 2, artículo 1801153, 2019. [Online]. Disponible: https://doi.org/10.1002/adhm.201801153 Solórzano V, Franky L. Síntesis y caracterización de nanopartículas de sílice mesoporosa mediante el método sol-gel. Universidad El Bosque. 2023 Oct; 06. https://repositorio.unbosque.edu.co/server/api/core/bitstreams/cdde0e51-418a-4559-af9d 760 f60b688e9040/conten W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci., vol. 26, no. 1, pp. 62-69, 1968. [Online]. Available: https://doi.org/10.1016/0021-9797(68)90272-5 |
dc.rights.en.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/223aebd6-5acd-450d-8da9-06805a1c7dd8/download https://repositorio.unbosque.edu.co/bitstreams/df8526d3-6b90-4507-b56b-c4fe7ae57974/download https://repositorio.unbosque.edu.co/bitstreams/e0493a14-0c65-426d-a01a-82f77d5d9814/download https://repositorio.unbosque.edu.co/bitstreams/8b81413f-8dd3-4bb6-91c0-b3eb6b332afa/download https://repositorio.unbosque.edu.co/bitstreams/07e219ea-5833-4fb5-bafb-4dd73de99bac/download https://repositorio.unbosque.edu.co/bitstreams/69504a9f-baae-4461-a75b-fb7a0cb136b7/download https://repositorio.unbosque.edu.co/bitstreams/495babf7-b82b-4496-97cc-525748215588/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 8d57bb8b331221e746af2ee47ff2e060 f95ffb81b8d19b517b549d066c8105ab b28f11ba89108b6cadad7e99b89ebcc5 adb7af3ef071a784ffe1b544b9a344ab f4b78e0149cc5400a134bf7883eb2e51 6f827cec19ac1c9ddc04e5c54c3b9f6d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100802372894720 |
spelling |
Jiménez Cruz, Ronald AndrésTriana Chambueta, Valentina2024-05-17T21:16:08Z2024-05-17T21:16:08Z2024-05https://hdl.handle.net/20.500.12495/12145Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEn respuesta a la creciente demanda de tecnologías innovadoras para el diagnóstico y tratamiento de enfermedades, el proyecto se enfocó en la síntesis y caracterización de nanopartículas de sílice mesoporosa mediante el método Sol-Gel y basadas en parámetros previamente estandarizados en la fase I del proyecto demostrando su potencial para la liberación prolongada de fármacos. Estas nanopartículas se purifican bajo dos condiciones, por medio de lavados y calcinación; además de probar tres cargas con Ibuprofeno como fármaco modelo a diferentes concentraciones (50, 100 y 150 mg). Se caracterizó mediante FIT-IR, SEM, XRD y DLS. De manera que se pudiera evaluar su eficiencia de encapsulación, se realizaron seis perfiles de liberación, mostrando que las nanopartículas cargadas luego de la calcinación liberan de manera controlada el fármaco y similar sin importar la concentración de la carga. Frente a las pruebas de reactividad biológica, estos prototipos presentan ligera actividad citotóxica y poca viabilidad celular respecto a la línea celular L929; lo que indica que a pesar de ser vehículos estables es necesario probarlo con diferentes fármacos y replantear parámetros (temperatura de calcinación o concentración de carga) que permitan una reactividad biológica sin actividad citotóxica.PregradoQuímico FarmacéuticoIn response to the growing demand for innovative technologies for the diagnosis and treatment of diseases, the project focused on the synthesis and characterization of mesoporous silica nanoparticles using the Sol-Gel method and based on parameters previously standardized in phase I of the project demonstrating its potential for sustained drug release. These nanoparticles are purified under two conditions, through washing and calcination; in addition to testing three loads with Ibuprofen as a model drug at different concentrations (50, 100 and 150 mg). It was characterized by FIT-IR, SEM, XRD and DLS. So that their encapsulation efficiency could be evaluated, six release profiles were carried out, showing that the loaded nanoparticles after calcination release the drug in a controlled manner and the like regardless of the concentration of the load. Faced with biological reactivity tests, these prototypes present slight cytotoxic activity and little cell viability compared to the L929 cell line; which indicates that despite being stable vehicles, it is necessary to test them with different drugs and rethink parameters (calcination temperature or charge concentration) that allow biological reactivity without cytotoxic activity.application/pdfAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NanopartículasSíntesisSíliceIbuprofenoCargaPurificación615.19NanoparticlesSynthesisSilicaIbuprofenLoadPurificationObtención y caracterización de nanopartículas mesoporosas a partir del método Sol-Gel cargadas con ibuprofenoObtaining and characterization of mesoporous nanoparticles from the Sol-Gel method loaded with ibuprofenQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaMura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. [Enlace: https://doi.org/10.1038/nmat3776]C. Zhang, H. Xie, Z. Zhang, B. Wen, H. Cao, Y. Bai, Q. Che, J. Guo y Z. Su, "Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine," Front. Pharmacol., vol. 13, p. 829796, Jan. 28, 2022. DOI: 10.3389/fphar.2022.829796.Smith A, et al. (2021). Influence of purification methods on the structural and cytotoxic properties of Ibuprofen-loaded mesoporous silica nanoparticles. Journal of Nanoparticle Research, 25(6), 150.Jones B, et al. (2020). Effect of purification methods on the biological properties of Ibuprofen-loaded mesoporous silica nanoparticles. International Journal of Nanomedicine, 15, 7895-7903Smith A, et al. (2019). Comparative Study of Ibuprofen-Loaded Mesoporous Silica Nanoparticles Prepared by Adsorption and Encapsulation Methods: Impact on Drug Release Behavior. Nanomedicine: Nanotechnology, Biology, and Medicine, 15(3), 327-335.Chen Y, et al. (2020). Comparison of Ibuprofen-Loaded Mesoporous Silica Nanoparticles Prepared by Different Methods: Effect of Drug Loading Techniques on Drug Release Behavior. Journal of Nanoscience and Nanotechnology, 20(7), 4177-4183.Smith A, et al. (2019). Comparative Study of Ibuprofen-Loaded Mesoporous Silica Nanoparticles Prepared by Adsorption and Encapsulation Methods: Impact on Drug Release Behavior. Nanomedicine: Nanotechnology, Biology, and Medicine, 15(3), 327-335.Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-1198. doi:10.1111/jphp.13112FDA, "Aspectos destacados de la información de prescripción", 2021. [En línea]. Disponible en:https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022348s021lbl.pdfM. Abualhasan, M. Assali, A. N. Zaid, R. Tarayra, A. Hamdan y R. Ardah, "Synthesis and formulation of ibuprofen pro-drugs for 689 enhanced transdermal absorption," en International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, pp. 352-354, 2015.K. Trzeciak, A. Chotera-Ouda, I. I. Bak-Sypien y M. J. Potrzebowski, "Mesoporous Silica Particles as Drug Delivery Systems—The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes," Pharmaceutics, vol. 13, p. 950, 2021. DOI: 10.3390/pharmaceutics13070950.Z. C. Wang, D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. J. Ansari, I. H. Shewael, G. H. Valiev E. Kianfar, "Nanomaterial by Sol-Gel Method: Synthesis and Application," Adv. Mater. Sci. Eng., vol. 2021, artículo ID 5102014, pp. 1-8, dic. 2021. DOI: 10.1155/2021/5102014Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Ramani, R. (2013). Sol-gel synthesis of silica nanoparticles and its controlled drug release application. International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 857-861. [Enlace:https://innovareacademics.in/journals/index.php/ijpps/article/view/3457].Llinas, M. & Sanchez, D. (2013). Nanopartículas de sílice: preparación y aplicaciones en biomedicina. https://core.ac.uk/download/pdf/39152365.pdf.Zanella, Rodolfo. (2012). Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 5(1), 69-81. Epub 30 de agosto de 2021. Recuperado en 13 de marzo de 2024, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-56912012000100069&lng=es&tlng=esM. Abualhasan, M. Assali, A.N.Zaid, R. Tarayra, A. Hamdan y R.Argah, “Synthesis and formulation of ibuprofen pro-drugs for enhanced transdermal absorption, “Int. J. Pharm. Sci., 2015. https://.redalyc.org/pdf/4760/476047266002M. M. Ashour, M. Mabrouk, I. E. Soliman, H. H. Beherei, y K. M. Tohamy, "Mesoporous silica nanoparticles prepared by different methods for biomedical applications: Comparative study," IET Nanobiotechnol., May 15(3):291-300. DOI: 10.1049/nbt2.12023N. Ugemuge, Y.R. Parauha, and S.J. Dhoble, "Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes," in Energy Materials, edited by S.J. Dhoble, N. Thejo Kalyani, B. Vengadaesvaran, and Abdul Kariem Arof (Elsevier, 2021), pp. 445-480, ISBN 9780128237106, https://doi.org/10.1016/B978-0-12-823710-6.00017-0Ashour MM, Mabrouk M, Soliman IE, Beherei HH, Tohamy KM. Mesoporous silica nanoparticles prepared by different methods for biomedical applications: Comparative study. IET Nanobiotechnol. 2021 May;15(3):291-300. doi: 10.1049/nbt2.12023. Epub 2021 Feb 22. PMID: 34694665; PMCID: PMC8675824.K. Trzeciak, A. Chotera-Ouda, I. I. Bak-Sypien y M. J. Potrzebowski, "Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes," Pharmaceutics, vol. 13, no. 7, p. 950, jun. 2021. DOI: 10.3390/pharmaceutics13070950.R. Schmid, N. Neffgen, and M. Lindén, "Straightforward adsorption-based formulation of mesoporous silica nanoparticles for drug delivery applications," Journal of Colloid and Interface Science, vol. 640, pp. 961-974, 2023, ISSN 0021-9797,https://doi.org/10.1016/j.jcis.2023.03.012A. Chávez, "Citotoxicidad y mecanismos de toxicidad de nanopartículas inorgánicas emergentes," 2016. [En línea]. Disponible: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/2135/1/TESIS%20ADRIAN%20CHAVEZ%20C.pdfChen, H., Zhen, Z., Tang, W., Todd, T., Chuang, Y.J., Wang, L., Pan, Z., & Xie, J. (2013). Label-Free Luminescent Mesoporous Silica Nanoparticles for Imaging and Drug Delivery. Theranostics, 3(9), 650-657. doi: 10.7150/thno.6668.M. H. J. H. Al-Atia, H. K. Saeed, A. R. Fliayh y A. J. Addie, "Investigating the effects of calcination temperatures on the structure of modified nanosilica prepared by sol–gel," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 520, pp. 590-596, 2017. DOI: 10.1016/j.colsurfa.2017.02.020.A. Gupta, M. Quadros y M. Momin, "Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery," J. Drug Deliv. Sci. Technol., vol. 81, p. 104305, 2023. DOI: 10.1016/j.jddst.2023.10430K. Yoncheva, M. Popova, A. Szegedi, J. Mihaly, B. Tzankov, N. Lambov, S. Konstantinov, V. Tzankova, F. Pessina y M. Valoti, "Functionalized mesoporous silica nanoparticles for oral delivery of budesonide," J. Solid State Chem., vol. 211, pp. 154-161, 2014. DOI: 10.1016/j.jssc.2013.12.020Chen, S., Johnson, J., & Zorn, G. (2019). Understanding Burst Effects in Drug Release Kinetics. [Enlace: https://doi.org/10.1016/j.xphs.2019.06.018]Watermann, A., & Brieger, J. (2017). Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. Nanomaterials (Basel), 7(7), 189. doi: 10.3390/nano7070189Abdulrazaq, H., Alwared, A., & Onyeaka, H. (2023). Ibuprofen Degradation from Synthetic Wastewater Using Photo-Fenton Process. Iraqi Journal of Chemical and Petroleum Engineering, 24, 107-114. doi: 10.31699/IJCPE.2023.4.11.Alvarez, C. C. (2019). Síntesis de sales de rifaximina y norfloxacina y su estudio estructural por difracción de rayos X de muestras policristalinas y monocristalinas. Trabajo de Investigación de Maestría en Química, Universidad Industrial de Santander, Facultad de Ciencias, Escuela de Química, Grupo de Investigación de Química Estructural (GIGUE)Trucano, P., & Batterman, B. W. (1970). Effects of porosity in powder diffraction. Journal of Applied Physics, 41(10), 3949-3953Bellet, D., & Dolino, G. (1996). X-ray diffraction studies of porous silicon. Thin Solid Films, 276(1-2), 1-6International Organization for Standardization, "Biological evaluation of medical devices -- Part 5: Tests for in vitro cytotoxicity," ISO Standard 10993-5:2009, 2009. [Online]. Available: https://www.iso.org/standard/36406.html.Gisbert-Garzarán, M., Manzano, M., Vallet-Regí, M., y Rodríguez, E., "Impact of silica-based nanodevices on the immune system: Applications and toxicological implications," Advanced Healthcare Materials, vol. 8, no. 2, artículo 1801153, 2019. [Online]. Disponible: https://doi.org/10.1002/adhm.201801153Solórzano V, Franky L. Síntesis y caracterización de nanopartículas de sílice mesoporosa mediante el método sol-gel. Universidad El Bosque. 2023 Oct; 06. https://repositorio.unbosque.edu.co/server/api/core/bitstreams/cdde0e51-418a-4559-af9d 760 f60b688e9040/contenW. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci., vol. 26, no. 1, pp. 62-69, 1968. [Online]. Available: https://doi.org/10.1016/0021-9797(68)90272-5spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/223aebd6-5acd-450d-8da9-06805a1c7dd8/download17cc15b951e7cc6b3728a574117320f9MD51Anexo 1 Acta de aprobacion.pdfapplication/pdf646885https://repositorio.unbosque.edu.co/bitstreams/df8526d3-6b90-4507-b56b-c4fe7ae57974/download8d57bb8b331221e746af2ee47ff2e060MD513Carta de autorizacion.pdfapplication/pdf173220https://repositorio.unbosque.edu.co/bitstreams/e0493a14-0c65-426d-a01a-82f77d5d9814/downloadf95ffb81b8d19b517b549d066c8105abMD514ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1432743https://repositorio.unbosque.edu.co/bitstreams/8b81413f-8dd3-4bb6-91c0-b3eb6b332afa/downloadb28f11ba89108b6cadad7e99b89ebcc5MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81154https://repositorio.unbosque.edu.co/bitstreams/07e219ea-5833-4fb5-bafb-4dd73de99bac/downloadadb7af3ef071a784ffe1b544b9a344abMD56TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain67877https://repositorio.unbosque.edu.co/bitstreams/69504a9f-baae-4461-a75b-fb7a0cb136b7/downloadf4b78e0149cc5400a134bf7883eb2e51MD59THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4584https://repositorio.unbosque.edu.co/bitstreams/495babf7-b82b-4496-97cc-525748215588/download6f827cec19ac1c9ddc04e5c54c3b9f6dMD51020.500.12495/12145oai:repositorio.unbosque.edu.co:20.500.12495/121452024-07-04 10:20:52.314http://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |