A Green's function approach to topological insulator junctions with magnetic and superconducting regions

This work presents a Green’s function approach, originally implemented in graphene with well-defined edges, to the surface of a strong 3D Topological Insulator (TI) with a sequence of proximitizedsuperconducting (S) and ferromagnetic (F) surfaces. This consists of the derivation of the Green’sfuncti...

Full description

Autores:
Casas, Oscar E.
Gómez Páez, Shirley
Herrera, William J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/4592
Acceso en línea:
http://hdl.handle.net/20.500.12495/4592
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F1361-648X%2Fabafc9&v=fd09ea67
Palabra clave:
Andreev reflections
Green functions
Magnetic-superconducting junctions
Majorana states
Topological insulators
Rights
openAccess
License
Acceso abierto
id UNBOSQUE2_f3901f6da312a9fbaab3f2127faf9776
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/4592
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv A Green's function approach to topological insulator junctions with magnetic and superconducting regions
dc.title.translated.spa.fl_str_mv A Green's function approach to topological insulator junctions with magnetic and superconducting regions
title A Green's function approach to topological insulator junctions with magnetic and superconducting regions
spellingShingle A Green's function approach to topological insulator junctions with magnetic and superconducting regions
Andreev reflections
Green functions
Magnetic-superconducting junctions
Majorana states
Topological insulators
title_short A Green's function approach to topological insulator junctions with magnetic and superconducting regions
title_full A Green's function approach to topological insulator junctions with magnetic and superconducting regions
title_fullStr A Green's function approach to topological insulator junctions with magnetic and superconducting regions
title_full_unstemmed A Green's function approach to topological insulator junctions with magnetic and superconducting regions
title_sort A Green's function approach to topological insulator junctions with magnetic and superconducting regions
dc.creator.fl_str_mv Casas, Oscar E.
Gómez Páez, Shirley
Herrera, William J.
dc.contributor.author.none.fl_str_mv Casas, Oscar E.
Gómez Páez, Shirley
Herrera, William J.
dc.subject.keywords.spa.fl_str_mv Andreev reflections
Green functions
Magnetic-superconducting junctions
Majorana states
Topological insulators
topic Andreev reflections
Green functions
Magnetic-superconducting junctions
Majorana states
Topological insulators
description This work presents a Green’s function approach, originally implemented in graphene with well-defined edges, to the surface of a strong 3D Topological Insulator (TI) with a sequence of proximitizedsuperconducting (S) and ferromagnetic (F) surfaces. This consists of the derivation of the Green’sfunctions for each region by the asymptotic solutions method, and their coupling by a tight-bindingHamiltonian with the Dyson equation to obtain the full Green’s functions of the system. Thesefunctions allow the direct calculation of the momentum-resolved spectral density of states, the iden-tification of subgap interface states, and the derivation of the differential conductance for a widevariety of configurations of the junctions. We illustrate the application of this method for somesimple systems with two and three regions, finding the characteristic chiral state of the QuantumAnomalous Hall Effect (QAHE) at the NF interfaces, and chiral Majorana modes at the NS inter-faces. Finally, we discuss some geometrical effects present in three-region junctions such as weakFabry-P ́erot resonances and Andreev bound states.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-28T16:58:22Z
dc.date.available.none.fl_str_mv 2020-10-28T16:58:22Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1361-648X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/4592
dc.identifier.doi.none.fl_str_mv https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F1361-648X%2Fabafc9&v=fd09ea67
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
identifier_str_mv 1361-648X
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
url http://hdl.handle.net/20.500.12495/4592
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F1361-648X%2Fabafc9&v=fd09ea67
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Journal of physics condensed matter, 1361-648X, Vol. 32, Nro. 18, 2020
dc.relation.uri.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1361-648X/abafc9
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Acceso abierto
dc.rights.creativecommons.none.fl_str_mv 2020-09-01
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
2020-09-01
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute of Physics Publishing
dc.publisher.journal.spa.fl_str_mv Journal of physics condensed matter
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/38fa0146-e091-4f1b-bd7a-1eac40fe79bc/download
https://repositorio.unbosque.edu.co/bitstreams/4c1d071f-7a3f-4021-9b20-50abdfbafdeb/download
https://repositorio.unbosque.edu.co/bitstreams/2ebc0630-db7c-4515-9a93-74c0a8955fe7/download
https://repositorio.unbosque.edu.co/bitstreams/59def588-829a-456c-80eb-a5f0556dfe8d/download
bitstream.checksum.fl_str_mv 7210a811635d1799e7c05fee5d259be7
1faa7a9bdc11046e68ec94d865a060d4
8a4605be74aa9ea9d79846c1fba20a33
a3aae80a157f39c791890d676185834d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100830270259200
spelling Casas, Oscar E.Gómez Páez, ShirleyHerrera, William J.2020-10-28T16:58:22Z2020-10-28T16:58:22Z1361-648Xhttp://hdl.handle.net/20.500.12495/4592https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F1361-648X%2Fabafc9&v=fd09ea67instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengInstitute of Physics PublishingJournal of physics condensed matterJournal of physics condensed matter, 1361-648X, Vol. 32, Nro. 18, 2020https://iopscience.iop.org/article/10.1088/1361-648X/abafc9A Green's function approach to topological insulator junctions with magnetic and superconducting regionsA Green's function approach to topological insulator junctions with magnetic and superconducting regionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Andreev reflectionsGreen functionsMagnetic-superconducting junctionsMajorana statesTopological insulatorsThis work presents a Green’s function approach, originally implemented in graphene with well-defined edges, to the surface of a strong 3D Topological Insulator (TI) with a sequence of proximitizedsuperconducting (S) and ferromagnetic (F) surfaces. This consists of the derivation of the Green’sfunctions for each region by the asymptotic solutions method, and their coupling by a tight-bindingHamiltonian with the Dyson equation to obtain the full Green’s functions of the system. Thesefunctions allow the direct calculation of the momentum-resolved spectral density of states, the iden-tification of subgap interface states, and the derivation of the differential conductance for a widevariety of configurations of the junctions. We illustrate the application of this method for somesimple systems with two and three regions, finding the characteristic chiral state of the QuantumAnomalous Hall Effect (QAHE) at the NF interfaces, and chiral Majorana modes at the NS inter-faces. Finally, we discuss some geometrical effects present in three-region junctions such as weakFabry-P ́erot resonances and Andreev bound states.Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2020-09-01THUMBNAILOscar E. Casas, Shirley Gomez Paez_2020.pdf.jpgOscar E. Casas, Shirley Gomez Paez_2020.pdf.jpgimage/jpeg5775https://repositorio.unbosque.edu.co/bitstreams/38fa0146-e091-4f1b-bd7a-1eac40fe79bc/download7210a811635d1799e7c05fee5d259be7MD53ORIGINALOscar E. Casas, Shirley Gomez Paez_2020.pdfOscar E. Casas, Shirley Gomez Paez_2020.pdfapplication/pdf1654870https://repositorio.unbosque.edu.co/bitstreams/4c1d071f-7a3f-4021-9b20-50abdfbafdeb/download1faa7a9bdc11046e68ec94d865a060d4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/2ebc0630-db7c-4515-9a93-74c0a8955fe7/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOscar E. Casas, Shirley Gomez Paez_2020.pdf.txtOscar E. Casas, Shirley Gomez Paez_2020.pdf.txtExtracted texttext/plain77792https://repositorio.unbosque.edu.co/bitstreams/59def588-829a-456c-80eb-a5f0556dfe8d/downloada3aae80a157f39c791890d676185834dMD5420.500.12495/4592oai:repositorio.unbosque.edu.co:20.500.12495/45922024-02-07 11:03:33.69restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=