Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos

Teniendo en cuenta que una de las problemáticas que se presentan hoy en día en las industrias farmacéuticas es la baja biodisponibilidad de los fármacos debido a la baja solubilidad que presenta en el cuerpo humano, el presente documento pretende resaltar las características de la cocristalización c...

Full description

Autores:
Urrea Rojas, Anamaría
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12114
Acceso en línea:
https://hdl.handle.net/20.500.12495/12114
Palabra clave:
Cocristal
Solubilidad
Fármaco
Biodisponibilidad
615.19
Cocrystal
Solubility
Drug
Bioavailability
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNBOSQUE2_f3699674abc4c39ed8c585448ef70cc4
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12114
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
dc.title.translated.none.fl_str_mv Cocrystallization, an effective tool to improve drug solubility and bioavailability
title Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
spellingShingle Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
Cocristal
Solubilidad
Fármaco
Biodisponibilidad
615.19
Cocrystal
Solubility
Drug
Bioavailability
title_short Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
title_full Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
title_fullStr Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
title_full_unstemmed Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
title_sort Cocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacos
dc.creator.fl_str_mv Urrea Rojas, Anamaría
dc.contributor.advisor.none.fl_str_mv González Amaya, Jhon Alex
dc.contributor.author.none.fl_str_mv Urrea Rojas, Anamaría
dc.subject.none.fl_str_mv Cocristal
Solubilidad
Fármaco
Biodisponibilidad
topic Cocristal
Solubilidad
Fármaco
Biodisponibilidad
615.19
Cocrystal
Solubility
Drug
Bioavailability
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Cocrystal
Solubility
Drug
Bioavailability
description Teniendo en cuenta que una de las problemáticas que se presentan hoy en día en las industrias farmacéuticas es la baja biodisponibilidad de los fármacos debido a la baja solubilidad que presenta en el cuerpo humano, el presente documento pretende resaltar las características de la cocristalización como una posible solución a este inconveniente. Por consiguiente, se establece un marco referencial usando diferentes bases de datos con el cual se identifica las ventajas y desventajas de la cocristalización, en comparación con otras estrategias utilizadas para mejorar la biodisponibilidad de los fármacos. Los resultados muestran que la cocristalización ofrece ventajas significativas en la formulación de fármacos sólidos, permitiendo una mayor solubilidad y estabilidad. Se destaca que no solo aumenta, sino que también disminuye propiedades según las necesidades. Sin embargo, la complejidad en la selección del coformador y la producción a gran escala de las técnicas de síntesis son dificultades que se deben considerar. En conclusión, la cocristalización emerge como una alternativa prometedora para potenciar la solubilidad y estabilidad de los fármacos. No obstante, se necesita llevar a cabo una mayor cantidad de estudios para evaluar su viabilidad en la implementación a gran escala dentro de la industria farmacéutica en el futuro.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-15T00:22:11Z
dc.date.available.none.fl_str_mv 2024-05-15T00:22:11Z
dc.date.issued.none.fl_str_mv 2024-04
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12114
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12114
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Emami, S.; Siahi-Shadbad, M.; Adibkia, K.; Barzegar-Jalali, M. Recent Advances in Improving Oral Drug Bioavailability by Cocrystals. BioImpacts 2018, 8, 305–320, doi:10.15171/bi.2018.33.
Brittain, H.G. Pharmaceutical Cocrystals: The Coming Wave of New Drug Substances. J Pharm Sci 2013, 102, 311–317, doi:10.1002/jps.23402.
Dutt, B.; Choudhary, M.; Budhwar, V. Cocrystallization: An Innovative Route toward Better Medication. Journal of Reports in Pharmaceutical Sciences 2020, 9, 256–270.
Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Pro-spects. Acta Pharm Sin B 2015, 5, 442–453.
Berry, D.J.; Steed, J.W. Pharmaceutical Cocrystals, Salts and Multicomponent Systems; Intermolecular Inter-actions and Property Based Design. Adv Drug Deliv Rev 2017, 117, 3–24.
Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics 2018, 10.
Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical Cocrystals: A Review of Preparations, Physicochemical Properties and Applications. Acta Pharm Sin B 2021, 11, 2537–2564.
Garg, U.; Azim, Y. Challenges and Opportunities of Pharmaceutical Cocrystals: A Focused Review on Non-Steroidal Anti-Inflammatory Drugs. RSC Med Chem 2021, 12, 705–721.
Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical Aspects of Salt and Cocrystal Forms of APIs and Characterization Challenges. Adv Drug Deliv Rev 2017, 117, 86–110.
Patel, P. V.; Brahmbhatt, Hardik.; Upadhyay, U.M.; Shah, Viral. A Review on Increased Therapeutical Effi-ciency of Drugs by Pharmaceutical Cocrystal Approach. Int. J Pharm Sci Rev Res 2012, 16, 140–148.
Ainurofiq, A.; Putro, D.S.; Ramadhani, D.A.; Putra, G.M.; Do Espirito Santo, L.D.C. A Review on Solubility Enhancement Methods for Poorly Water-Soluble Drugs. Journal of Reports in Pharmaceutical Sciences 2021, 10, 137–147.
Pathak, K. Effective Formulation Strategies for Poorly Water Soluble Drugs. In Advances and Challenges in Pharmaceutical Technology: Materials, Process Development and Drug Delivery Strategies; Elsevier, 2021; pp. 181–228 ISBN 9780128200438.
Saha, U.; De, R.; Das, B. Interactions between Loaded Drugs and Surfactant Molecules in Micellar Drug De-livery Systems: A Critical Review. J Mol Liq 2023, 382.
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical Cocrystals and Poorly Soluble Drugs. Int J Pharm 2013, 453, 101–125.
Healy, A.M.; Worku, Z.A.; Kumar, D.; Madi, A.M. Pharmaceutical Solvates, Hydrates and Amorphous Forms: A Special Emphasis on Cocrystals. Adv Drug Deliv Rev 2017, 117, 25–46.
Garg, U.; Azim, Y. Challenges and Opportunities of Pharmaceutical Cocrystals: A Focused Review on Non-Steroidal Anti-Inflammatory Drugs. RSC Med Chem 2021, 12, 705–721.
Choudhury, H.; Gorain, B.; Madheswaran, T.; Pandey, M.; Kesharwani, P.; Tekade, R.K. Drug Complexation: Implications in Drug Solubilization and Oral Bioavailability Enhancement. Implications in Drug Solubiliza-tion and Oral Bioavailability Enhancement. In Dosage Form Design Considerations: Volume I; Elsevier, 2018; pp. 473–512 ISBN 9780128144244.
Liu, H.; Guo, S.; Wei, S.; Liu, J.; Tian, B. Pharmacokinetics and Pharmacodynamics of Cyclodextrin-Based Oral Drug Delivery Formulations for Disease Therapy. Carbohydr Polym 2024, 329.
Simonazzi, A.; Cid, A.G.; Villegas, M.; Romero, A.I.; Palma, S.D.; Bermúdez, J.M. Nanotechnology Applica-tions in Drug Controlled Release. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Elsevier, 2018; pp. 81–116 ISBN 9780128136898.
Kansız, S.; Elçin, Y.M. Advanced Liposome and Polymersome-Based Drug Delivery Systems: Considerations for Physicochemical Properties, Targeting Strategies and Stimuli-Sensitive Approaches. Adv Colloid Interface Sci 2023, 317.
Kumbham, S.; Ajjarapu, S.; Ghosh, B.; Biswas, S. Current Trends in the Development of Liposomes for Chemotherapeutic Drug Delivery. J Drug Deliv Sci Technol 2023, 87.
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of Liposomes as Drug Delivery System for Therapeutic Applications. Int J Pharm 2021, 601.
Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems – the Current State. Adv Col-loid Interface Sci 2022, 309.
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. Journal of Controlled Release 2021, 332, 312–336.
Zheng, Y.; Oz, Y.; Gu, Y.; Ahamad, N.; Shariati, K.; Chevalier, J.; Kapur, D.; Annabi, N. Rational Design of Polymeric Micelles for Targeted Therapeutic Delivery. Nano Today 2024, 55.
Xue, H.; Ju, Y.; Ye, X.; Dai, M.; Tang, C.; Liu, L. Construction of Intelligent Drug Delivery System Based on Polysaccharide-Derived Polymer Micelles: A Review. Int J Biol Macromol 2024, 254, 128048, doi:10.1016/j.ijbiomac.2023.128048.
Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of Nanoparticulate Strate-gies for Solubility Enhancement of Poorly Soluble Drugs. Life Sci 2022, 291.
Salunke, S.; O’Brien, F.; Cheng Thiam Tan, D.; Harris, D.; Math, M.C.; Ariën, T.; Klein, S.; Timpe, C. Oral Drug Delivery Strategies for Development of Poorly Water Soluble Drugs in Paediatric Patient Population. Adv Drug Deliv Rev 2022, 190.
Tran, P.; Park, J.S. Application of Supercritical Fluid Technology for Solid Dispersion to Enhance Solubility and Bioavailability of Poorly Water-Soluble Drugs. Int J Pharm 2021, 610.
Vo, C.L.N.; Park, C.; Lee, B.J. Current Trends and Future Perspectives of Solid Dispersions Containing Poorly Water-Soluble Drugs. European Journal of Pharmaceutics and Biopharmaceutics 2013, 85, 799–813.
Food and Drug Administration Regulatory Classification of Pharmaceutical Co-Crystals, Guidance for In-dustry. U.S. Department of Health and Human Services 2018, 1–4.
Borovyef, A.; Ozerov, R. Physics for Chemists; 2007.
CIRCE Scientific Cocrystal Technology Available online: https://www.circescientific.com/en/our-technology-cocrystal-engineering/ (accessed on 3 April 2024).
Bolla, G.; Nangia, A. Pharmaceutical Cocrystals: Walking the Talk. Chemical Communications 2016, 52, 8342–8360, doi:10.1039/c6cc02943d.
Wang, N.; Xie, C.; Lu, H.; Guo, N.; Lou, Y.; Su, W.; Hao, H. Cocrystal and Its Application in the Field of Active Pharmaceutical Ingredients and Food Ingredients. Curr Pharm Des 2018, 24, 2339–2348, doi:10.2174/1381612824666180522102732.
Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst Growth Des 2022, 22, 6323–6337.
Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Routes and Applications. Cryst Growth Des 2018, 18, 6370–6387.
Diaz Sierra, E.E. Cristales Multi-Componentes de Nafazolina y Dexclorfeniramina: Sintesis, Caracterizacion Cristalografica y Propiedades Fisicas 2019.
Panzade, P.S.; Shendarkar, G.R. Pharmaceutical Cocrystal: A Game Changing Approach for the Administra-tion of Old Drugs in New Crystalline Form. Drug Dev Ind Pharm 2020, 46, 1559–1568.
Steed, J.W. The Role of Co-Crystals in Pharmaceutical Design. Trends Pharmacol Sci 2013, 34, 185–193.
Kumar, A.; Nanda, A. In-Silico Methods of Cocrystal Screening: A Review on Tools for Rational Design of Pharmaceutical Cocrystals. J Drug Deliv Sci Technol 2021, 63.
Sarathi, P.; Padhi, S. Insight of the Various in Silico Screening Techniques Developed for Assortment of Co-crystal Formers and Their Thermodynamic Characterization. Drug Dev Ind Pharm 2021, 47, 1523–1534.
Ross, S.A.; Lamprou, D.A.; Douroumis, D. Engineering and Manufacturing of Pharmaceutical Co-Crystals: A Review on Solvent-Free Manufacturing Technologies. The Royal Society of Chemistry 2016, 20, doi:10.1039/x0xx00000x.
Chakraborty, S.; Chormale, J.H.; Bansal, A.K. Deep Eutectic Systems: An Overview of Fundamental Aspects, Current Understanding and Drug Delivery Applications. Int J Pharm 2021, 610.
Rodrigues, M.; Baptista, B.; Lopes, J.A.; Sarraguça, M.C. Pharmaceutical Cocrystallization Techniques. Ad-vances and Challenges. Int J Pharm 2018, 547, 404–420.
Buddhadev, S.S.; Garala, K.C. Pharmaceutical Cocrystals—A Review.; MDPI AG, March 8 2021; p. 14.
Savale, A.; Mogal, R.; Talele, S.; Deore, S.; Borse, L. Pharmaceutical Cocrystals: A Novel Systematic Approach for the Administration of Existing Drugs in New Crystalline Form. Biosci Biotechnol Res Asia 2023, 20, 1195–1210, doi:10.13005/bbra/3168.
Saindane, R.A.; Thombre, N.A. Drug–Drug Cocrystals: A Promising Approach to Overcome Barriers in Pain Management. Crystal Research and Technology 2023.
Kumar Bandaru, R.; Rout, S.R.; Kenguva, G.; Gorain, B.; Alhakamy, N.A.; Kesharwani, P.; Dandela, R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021, 12.
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical Cocrystals: An Over-view. Int J Pharm 2011, 419, 1–11.
Kara, D.D.; Rathnanand, M.; Sun, C.; Kara, D.D.; Rathnanand, M. Cocrystals and Drug–Drug Cocrystals of Anticancer Drugs: A Perception towards Screening Techniques, Preparation, and Enhancement of Drug Properties. Crystals 2022, Vol. 12, Page 1337 2022, 12, 1337, doi:10.3390/CRYST12101337.
Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced Methodologies for Cocrystal Synthesis. Adv Drug Deliv Rev 2017, 117, 178–195.
Pando, C.; Cabañas, A.; Cuadra, I.A. Preparation of Pharmaceutical Co-Crystals through Sustainable Pro-cesses Using Supercritical Carbon Dioxide: A Review. RSC Adv 2016, 6, 71134–71150.
O’Sullivan, A.; Long, B.; Verma, V.; Ryan, K.M.; Padrela, L. Solid-State and Particle Size Control of Pharma-ceutical Cocrystals Using Atomization-Based Techniques. Int J Pharm 2022, 621.
Kankala, R.K.; Xu, P.Y.; Chen, B.Q.; Wang, S. Bin; Chen, A.Z. Supercritical Fluid (SCF)-Assisted Fabrication of Carrier-Free Drugs: An Eco-Friendly Welcome to Active Pharmaceutical Ingredients (APIs). Adv Drug Deliv Rev 2021, 176.
Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.A.; Braga, M.E.M.; de Sousa, H.C. Supercritical Carbon Dioxide-Based Technologies for the Production of Drug Nanoparticles/Nanocrystals – A Comprehensive Re-view. Adv Drug Deliv Rev 2018, 131, 22–78.
Kendall, T.; Stratford, S.; Patterson, A.R.; Lunt, R.A.; Cruickshank, D.; Bonnaud, T.; Scott, C.D. An Industrial Perspective on Co-Crystals: Screening, Identification and Development of the Less Utilised Solid Form in Drug Discovery and Development. In Progress in Medicinal Chemistry; Elsevier B.V., 2021; Vol. 60, pp. 345–442 ISBN 9780323850568.
Izutsu, K.-I.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem. Pharm. Bull 2016, 64, 1421–1430.
Liu, H.; Tong, H.H.Y.; Zhou, Z. Feasibility of Thermal Methods on Screening, Characterization and Physico-chemical Evaluation of Pharmaceutical Cocrystals. J Therm Anal Calorim 2022, 147, 12947–12963.
Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M.J. Pharmaceutical Cocrystals: From Serendipity to Design to Application. Drug Discov Today 2019, 24, 796–804.
Banerjee, M.; Nimkar, K.; Naik, S.; Patravale, V. Unlocking the Potential of Drug-Drug Cocrystals – A Com-prehensive Review. Journal of Controlled Release 2022, 348, 456–469.
dc.rights.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/09f4713b-d61f-4dce-a6ff-bcdbc1de95f9/download
https://repositorio.unbosque.edu.co/bitstreams/0aa29237-0799-4a4f-a896-075b0be161a7/download
https://repositorio.unbosque.edu.co/bitstreams/5104f981-5d2e-4ae3-bbcd-c74a03c9f33f/download
https://repositorio.unbosque.edu.co/bitstreams/5dd0d818-d8b5-4758-8f2d-3f8e07242fbf/download
https://repositorio.unbosque.edu.co/bitstreams/7b6476ca-fcfd-4ce2-89ab-1f1079878586/download
https://repositorio.unbosque.edu.co/bitstreams/20bd4fef-cfca-4661-8002-9c1d5f74cb98/download
bitstream.checksum.fl_str_mv 200da353661b88e5b591887d13a15b28
17cc15b951e7cc6b3728a574117320f9
3d87a0632ce53117143b8439f909797f
078f8ef58748dfcc39d312cf9e12cf37
5c1d1749b5a856058439baaf249a65c6
22a81c620035fc098d788064802eed30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100732739059712
spelling González Amaya, Jhon AlexUrrea Rojas, Anamaría2024-05-15T00:22:11Z2024-05-15T00:22:11Z2024-04https://hdl.handle.net/20.500.12495/12114Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coTeniendo en cuenta que una de las problemáticas que se presentan hoy en día en las industrias farmacéuticas es la baja biodisponibilidad de los fármacos debido a la baja solubilidad que presenta en el cuerpo humano, el presente documento pretende resaltar las características de la cocristalización como una posible solución a este inconveniente. Por consiguiente, se establece un marco referencial usando diferentes bases de datos con el cual se identifica las ventajas y desventajas de la cocristalización, en comparación con otras estrategias utilizadas para mejorar la biodisponibilidad de los fármacos. Los resultados muestran que la cocristalización ofrece ventajas significativas en la formulación de fármacos sólidos, permitiendo una mayor solubilidad y estabilidad. Se destaca que no solo aumenta, sino que también disminuye propiedades según las necesidades. Sin embargo, la complejidad en la selección del coformador y la producción a gran escala de las técnicas de síntesis son dificultades que se deben considerar. En conclusión, la cocristalización emerge como una alternativa prometedora para potenciar la solubilidad y estabilidad de los fármacos. No obstante, se necesita llevar a cabo una mayor cantidad de estudios para evaluar su viabilidad en la implementación a gran escala dentro de la industria farmacéutica en el futuro.PregradoQuímico FarmacéuticoConsidering that one of the problems that arise today in the pharmaceutical industries is the low bioavailability of drugs due to their low solubility in the human body, this paper aims to highlight the characteristics of cocrystallization as a possible solution to this drawback. Therefore, a referential framework is established using different databases with which the advantages and disadvantages of cocrystallization are identified, compared to other strategies used to improve the bioavailability of drugs. The results show that cocrystallization offers significant advantages in the formulation of solid drugs, allowing greater solubility and stability. It is highlighted that it not only increases, but also decreases properties as needed. However, the complexity in the selection of the coformer and the large-scale production of the synthesis techniques are difficulties to be considered. In conclusion, cocrystallization emerges as a promising alternative to enhance drug solubility and stability. Nevertheless, more studies need to be carried out to assess its feasibility for large-scale implementation within the pharmaceutical industry in the future.application/pdfAtribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CocristalSolubilidadFármacoBiodisponibilidad615.19CocrystalSolubilityDrugBioavailabilityCocristalización, una herramienta efectiva para mejorar la solubilidad y biodisponibilidad de los fármacosCocrystallization, an effective tool to improve drug solubility and bioavailabilityQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaEmami, S.; Siahi-Shadbad, M.; Adibkia, K.; Barzegar-Jalali, M. Recent Advances in Improving Oral Drug Bioavailability by Cocrystals. BioImpacts 2018, 8, 305–320, doi:10.15171/bi.2018.33.Brittain, H.G. Pharmaceutical Cocrystals: The Coming Wave of New Drug Substances. J Pharm Sci 2013, 102, 311–317, doi:10.1002/jps.23402.Dutt, B.; Choudhary, M.; Budhwar, V. Cocrystallization: An Innovative Route toward Better Medication. Journal of Reports in Pharmaceutical Sciences 2020, 9, 256–270.Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Pro-spects. Acta Pharm Sin B 2015, 5, 442–453.Berry, D.J.; Steed, J.W. Pharmaceutical Cocrystals, Salts and Multicomponent Systems; Intermolecular Inter-actions and Property Based Design. Adv Drug Deliv Rev 2017, 117, 3–24.Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics 2018, 10.Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical Cocrystals: A Review of Preparations, Physicochemical Properties and Applications. Acta Pharm Sin B 2021, 11, 2537–2564.Garg, U.; Azim, Y. Challenges and Opportunities of Pharmaceutical Cocrystals: A Focused Review on Non-Steroidal Anti-Inflammatory Drugs. RSC Med Chem 2021, 12, 705–721.Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical Aspects of Salt and Cocrystal Forms of APIs and Characterization Challenges. Adv Drug Deliv Rev 2017, 117, 86–110.Patel, P. V.; Brahmbhatt, Hardik.; Upadhyay, U.M.; Shah, Viral. A Review on Increased Therapeutical Effi-ciency of Drugs by Pharmaceutical Cocrystal Approach. Int. J Pharm Sci Rev Res 2012, 16, 140–148.Ainurofiq, A.; Putro, D.S.; Ramadhani, D.A.; Putra, G.M.; Do Espirito Santo, L.D.C. A Review on Solubility Enhancement Methods for Poorly Water-Soluble Drugs. Journal of Reports in Pharmaceutical Sciences 2021, 10, 137–147.Pathak, K. Effective Formulation Strategies for Poorly Water Soluble Drugs. In Advances and Challenges in Pharmaceutical Technology: Materials, Process Development and Drug Delivery Strategies; Elsevier, 2021; pp. 181–228 ISBN 9780128200438.Saha, U.; De, R.; Das, B. Interactions between Loaded Drugs and Surfactant Molecules in Micellar Drug De-livery Systems: A Critical Review. J Mol Liq 2023, 382.Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical Cocrystals and Poorly Soluble Drugs. Int J Pharm 2013, 453, 101–125.Healy, A.M.; Worku, Z.A.; Kumar, D.; Madi, A.M. Pharmaceutical Solvates, Hydrates and Amorphous Forms: A Special Emphasis on Cocrystals. Adv Drug Deliv Rev 2017, 117, 25–46.Garg, U.; Azim, Y. Challenges and Opportunities of Pharmaceutical Cocrystals: A Focused Review on Non-Steroidal Anti-Inflammatory Drugs. RSC Med Chem 2021, 12, 705–721.Choudhury, H.; Gorain, B.; Madheswaran, T.; Pandey, M.; Kesharwani, P.; Tekade, R.K. Drug Complexation: Implications in Drug Solubilization and Oral Bioavailability Enhancement. Implications in Drug Solubiliza-tion and Oral Bioavailability Enhancement. In Dosage Form Design Considerations: Volume I; Elsevier, 2018; pp. 473–512 ISBN 9780128144244.Liu, H.; Guo, S.; Wei, S.; Liu, J.; Tian, B. Pharmacokinetics and Pharmacodynamics of Cyclodextrin-Based Oral Drug Delivery Formulations for Disease Therapy. Carbohydr Polym 2024, 329.Simonazzi, A.; Cid, A.G.; Villegas, M.; Romero, A.I.; Palma, S.D.; Bermúdez, J.M. Nanotechnology Applica-tions in Drug Controlled Release. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Elsevier, 2018; pp. 81–116 ISBN 9780128136898.Kansız, S.; Elçin, Y.M. Advanced Liposome and Polymersome-Based Drug Delivery Systems: Considerations for Physicochemical Properties, Targeting Strategies and Stimuli-Sensitive Approaches. Adv Colloid Interface Sci 2023, 317.Kumbham, S.; Ajjarapu, S.; Ghosh, B.; Biswas, S. Current Trends in the Development of Liposomes for Chemotherapeutic Drug Delivery. J Drug Deliv Sci Technol 2023, 87.Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of Liposomes as Drug Delivery System for Therapeutic Applications. Int J Pharm 2021, 601.Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems – the Current State. Adv Col-loid Interface Sci 2022, 309.Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. Journal of Controlled Release 2021, 332, 312–336.Zheng, Y.; Oz, Y.; Gu, Y.; Ahamad, N.; Shariati, K.; Chevalier, J.; Kapur, D.; Annabi, N. Rational Design of Polymeric Micelles for Targeted Therapeutic Delivery. Nano Today 2024, 55.Xue, H.; Ju, Y.; Ye, X.; Dai, M.; Tang, C.; Liu, L. Construction of Intelligent Drug Delivery System Based on Polysaccharide-Derived Polymer Micelles: A Review. Int J Biol Macromol 2024, 254, 128048, doi:10.1016/j.ijbiomac.2023.128048.Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of Nanoparticulate Strate-gies for Solubility Enhancement of Poorly Soluble Drugs. Life Sci 2022, 291.Salunke, S.; O’Brien, F.; Cheng Thiam Tan, D.; Harris, D.; Math, M.C.; Ariën, T.; Klein, S.; Timpe, C. Oral Drug Delivery Strategies for Development of Poorly Water Soluble Drugs in Paediatric Patient Population. Adv Drug Deliv Rev 2022, 190.Tran, P.; Park, J.S. Application of Supercritical Fluid Technology for Solid Dispersion to Enhance Solubility and Bioavailability of Poorly Water-Soluble Drugs. Int J Pharm 2021, 610.Vo, C.L.N.; Park, C.; Lee, B.J. Current Trends and Future Perspectives of Solid Dispersions Containing Poorly Water-Soluble Drugs. European Journal of Pharmaceutics and Biopharmaceutics 2013, 85, 799–813.Food and Drug Administration Regulatory Classification of Pharmaceutical Co-Crystals, Guidance for In-dustry. U.S. Department of Health and Human Services 2018, 1–4.Borovyef, A.; Ozerov, R. Physics for Chemists; 2007.CIRCE Scientific Cocrystal Technology Available online: https://www.circescientific.com/en/our-technology-cocrystal-engineering/ (accessed on 3 April 2024).Bolla, G.; Nangia, A. Pharmaceutical Cocrystals: Walking the Talk. Chemical Communications 2016, 52, 8342–8360, doi:10.1039/c6cc02943d.Wang, N.; Xie, C.; Lu, H.; Guo, N.; Lou, Y.; Su, W.; Hao, H. Cocrystal and Its Application in the Field of Active Pharmaceutical Ingredients and Food Ingredients. Curr Pharm Des 2018, 24, 2339–2348, doi:10.2174/1381612824666180522102732.Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst Growth Des 2022, 22, 6323–6337.Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Routes and Applications. Cryst Growth Des 2018, 18, 6370–6387.Diaz Sierra, E.E. Cristales Multi-Componentes de Nafazolina y Dexclorfeniramina: Sintesis, Caracterizacion Cristalografica y Propiedades Fisicas 2019.Panzade, P.S.; Shendarkar, G.R. Pharmaceutical Cocrystal: A Game Changing Approach for the Administra-tion of Old Drugs in New Crystalline Form. Drug Dev Ind Pharm 2020, 46, 1559–1568.Steed, J.W. The Role of Co-Crystals in Pharmaceutical Design. Trends Pharmacol Sci 2013, 34, 185–193.Kumar, A.; Nanda, A. In-Silico Methods of Cocrystal Screening: A Review on Tools for Rational Design of Pharmaceutical Cocrystals. J Drug Deliv Sci Technol 2021, 63.Sarathi, P.; Padhi, S. Insight of the Various in Silico Screening Techniques Developed for Assortment of Co-crystal Formers and Their Thermodynamic Characterization. Drug Dev Ind Pharm 2021, 47, 1523–1534.Ross, S.A.; Lamprou, D.A.; Douroumis, D. Engineering and Manufacturing of Pharmaceutical Co-Crystals: A Review on Solvent-Free Manufacturing Technologies. The Royal Society of Chemistry 2016, 20, doi:10.1039/x0xx00000x.Chakraborty, S.; Chormale, J.H.; Bansal, A.K. Deep Eutectic Systems: An Overview of Fundamental Aspects, Current Understanding and Drug Delivery Applications. Int J Pharm 2021, 610.Rodrigues, M.; Baptista, B.; Lopes, J.A.; Sarraguça, M.C. Pharmaceutical Cocrystallization Techniques. Ad-vances and Challenges. Int J Pharm 2018, 547, 404–420.Buddhadev, S.S.; Garala, K.C. Pharmaceutical Cocrystals—A Review.; MDPI AG, March 8 2021; p. 14.Savale, A.; Mogal, R.; Talele, S.; Deore, S.; Borse, L. Pharmaceutical Cocrystals: A Novel Systematic Approach for the Administration of Existing Drugs in New Crystalline Form. Biosci Biotechnol Res Asia 2023, 20, 1195–1210, doi:10.13005/bbra/3168.Saindane, R.A.; Thombre, N.A. Drug–Drug Cocrystals: A Promising Approach to Overcome Barriers in Pain Management. Crystal Research and Technology 2023.Kumar Bandaru, R.; Rout, S.R.; Kenguva, G.; Gorain, B.; Alhakamy, N.A.; Kesharwani, P.; Dandela, R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021, 12.Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical Cocrystals: An Over-view. Int J Pharm 2011, 419, 1–11.Kara, D.D.; Rathnanand, M.; Sun, C.; Kara, D.D.; Rathnanand, M. Cocrystals and Drug–Drug Cocrystals of Anticancer Drugs: A Perception towards Screening Techniques, Preparation, and Enhancement of Drug Properties. Crystals 2022, Vol. 12, Page 1337 2022, 12, 1337, doi:10.3390/CRYST12101337.Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced Methodologies for Cocrystal Synthesis. Adv Drug Deliv Rev 2017, 117, 178–195.Pando, C.; Cabañas, A.; Cuadra, I.A. Preparation of Pharmaceutical Co-Crystals through Sustainable Pro-cesses Using Supercritical Carbon Dioxide: A Review. RSC Adv 2016, 6, 71134–71150.O’Sullivan, A.; Long, B.; Verma, V.; Ryan, K.M.; Padrela, L. Solid-State and Particle Size Control of Pharma-ceutical Cocrystals Using Atomization-Based Techniques. Int J Pharm 2022, 621.Kankala, R.K.; Xu, P.Y.; Chen, B.Q.; Wang, S. Bin; Chen, A.Z. Supercritical Fluid (SCF)-Assisted Fabrication of Carrier-Free Drugs: An Eco-Friendly Welcome to Active Pharmaceutical Ingredients (APIs). Adv Drug Deliv Rev 2021, 176.Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.A.; Braga, M.E.M.; de Sousa, H.C. Supercritical Carbon Dioxide-Based Technologies for the Production of Drug Nanoparticles/Nanocrystals – A Comprehensive Re-view. Adv Drug Deliv Rev 2018, 131, 22–78.Kendall, T.; Stratford, S.; Patterson, A.R.; Lunt, R.A.; Cruickshank, D.; Bonnaud, T.; Scott, C.D. An Industrial Perspective on Co-Crystals: Screening, Identification and Development of the Less Utilised Solid Form in Drug Discovery and Development. In Progress in Medicinal Chemistry; Elsevier B.V., 2021; Vol. 60, pp. 345–442 ISBN 9780323850568.Izutsu, K.-I.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem. Pharm. Bull 2016, 64, 1421–1430.Liu, H.; Tong, H.H.Y.; Zhou, Z. Feasibility of Thermal Methods on Screening, Characterization and Physico-chemical Evaluation of Pharmaceutical Cocrystals. J Therm Anal Calorim 2022, 147, 12947–12963.Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M.J. Pharmaceutical Cocrystals: From Serendipity to Design to Application. Drug Discov Today 2019, 24, 796–804.Banerjee, M.; Nimkar, K.; Naik, S.; Patravale, V. Unlocking the Potential of Drug-Drug Cocrystals – A Com-prehensive Review. Journal of Controlled Release 2022, 348, 456–469.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1019137https://repositorio.unbosque.edu.co/bitstreams/09f4713b-d61f-4dce-a6ff-bcdbc1de95f9/download200da353661b88e5b591887d13a15b28MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/0aa29237-0799-4a4f-a896-075b0be161a7/download17cc15b951e7cc6b3728a574117320f9MD53Anexo 1 Acta de aprobacion.pdfapplication/pdf1849428https://repositorio.unbosque.edu.co/bitstreams/5104f981-5d2e-4ae3-bbcd-c74a03c9f33f/download3d87a0632ce53117143b8439f909797fMD512Carta de autorizacion.pdfapplication/pdf187105https://repositorio.unbosque.edu.co/bitstreams/5dd0d818-d8b5-4758-8f2d-3f8e07242fbf/download078f8ef58748dfcc39d312cf9e12cf37MD513TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain75755https://repositorio.unbosque.edu.co/bitstreams/7b6476ca-fcfd-4ce2-89ab-1f1079878586/download5c1d1749b5a856058439baaf249a65c6MD58THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5264https://repositorio.unbosque.edu.co/bitstreams/20bd4fef-cfca-4661-8002-9c1d5f74cb98/download22a81c620035fc098d788064802eed30MD5920.500.12495/12114oai:repositorio.unbosque.edu.co:20.500.12495/121142024-07-04 12:08:47.019http://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=