Sistema offline de reconocimiento de comandos de voz para raspberry pi usando aprendizaje automático

Con el auge exponencial de la computación en la nube cada vez son más los sistemas que la adoptan sin tener en cuenta la latencia producida en la internet, el reconocimiento de voz es uno de los campos donde comúnmente se hace uso de la nube dado el volumen de datos que usa para tal fin. En el prese...

Full description

Autores:
Morelo Mejia, Ibrahimme
Villegas Oyola, Andrés Ramiro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/7150
Acceso en línea:
http://hdl.handle.net/20.500.12495/7150
Palabra clave:
Reconocimiento de voz
Inteligencia artificial
Redes neuronales convolucionales
Aprendizaje automático
621.3
Speech recognition
Artificial intelligence
Convolutional neural network
Machine learning
Computación en la nube
Sistemas de procesamiento de la voz
Lingüística computacional
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Description
Summary:Con el auge exponencial de la computación en la nube cada vez son más los sistemas que la adoptan sin tener en cuenta la latencia producida en la internet, el reconocimiento de voz es uno de los campos donde comúnmente se hace uso de la nube dado el volumen de datos que usa para tal fin. En el presente documento se propuso el desarrollo de un sistema de reconocimiento de voz offline orientado a comandos de desplazamiento terrestre en idioma español para un robot construido sobre arquitecturas de bajo costo como Raspberry Pi y la aceleradora USB Coral. Se usaron las redes neuronales convolucionales para el entrenamiento del modelo, así como dos conjuntos de datos obtenidos a través de voluntarios y usuarios del sistema en cuestión. En alineación con la modalidad del proyecto (desarrollo tecnológico), se utilizó la metodología ágil SCRUM para sostener una mejor comunicación y alineación con el cliente. El sistema de reconocimiento de voz alcanzó una eficiencia promedio expresada en tiempo de 0.31 segundos necesarios para realizar la acción solicitada, la eficacia del sistema medida en precisión fue del 86% considerada alta para el contexto. Estos resultados fueron obtenidos en entornos sin ruidos externos y con usuarios que hicieron parte del entrenamiento del modelo. El estudio mostró cómo se pueden desarrollar sistemas de reconocimiento de voz desconectados de internet y con buen desempeño.