Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador

El 5-Hidorximetilfurfural o 5-HMF, es un compuesto que ha adquirido un gran valor para la industria sostenible en general, teniendo un gran impacto en la industria energética y farmacéutica, con una gran cantidad de aplicaciones. El siguiente trabajo evalúa la obtención del 5-HMF a partir de glucosa...

Full description

Autores:
Tinoco Quitian, Sebastian Felipe
Guerrero Fajardo, Carlos
Suarez , Kevin Rene
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12148
Acceso en línea:
https://hdl.handle.net/20.500.12495/12148
Palabra clave:
5-hidroximetilfurfural (5-hmf)
Ácido acético
Glucosa
Temperatura
Tiempo
Variables de reacción
615.19
5-hydroxymethylfurfural (5-hmf)
Acetic acid
Glucose
Temperature
Time
Reaction variables
Rights
openAccess
License
Attribution 4.0 International
id UNBOSQUE2_dc751819cf8ca9b78994b72060fc628c
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12148
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
dc.title.translated.none.fl_str_mv Obtaining 5-Hydroxymethylfurfural (5-HMF), a compound used as an excipient in liquid or semi-solid formulations, using acetic acid as a catalyst
title Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
spellingShingle Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
5-hidroximetilfurfural (5-hmf)
Ácido acético
Glucosa
Temperatura
Tiempo
Variables de reacción
615.19
5-hydroxymethylfurfural (5-hmf)
Acetic acid
Glucose
Temperature
Time
Reaction variables
title_short Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
title_full Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
title_fullStr Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
title_full_unstemmed Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
title_sort Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
dc.creator.fl_str_mv Tinoco Quitian, Sebastian Felipe
Guerrero Fajardo, Carlos
Suarez , Kevin Rene
dc.contributor.advisor.none.fl_str_mv Cortes Ortiz, William Giovanni
dc.contributor.author.none.fl_str_mv Tinoco Quitian, Sebastian Felipe
Guerrero Fajardo, Carlos
Suarez , Kevin Rene
dc.subject.none.fl_str_mv 5-hidroximetilfurfural (5-hmf)
Ácido acético
Glucosa
Temperatura
Tiempo
Variables de reacción
topic 5-hidroximetilfurfural (5-hmf)
Ácido acético
Glucosa
Temperatura
Tiempo
Variables de reacción
615.19
5-hydroxymethylfurfural (5-hmf)
Acetic acid
Glucose
Temperature
Time
Reaction variables
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv 5-hydroxymethylfurfural (5-hmf)
Acetic acid
Glucose
Temperature
Time
Reaction variables
description El 5-Hidorximetilfurfural o 5-HMF, es un compuesto que ha adquirido un gran valor para la industria sostenible en general, teniendo un gran impacto en la industria energética y farmacéutica, con una gran cantidad de aplicaciones. El siguiente trabajo evalúa la obtención del 5-HMF a partir de glucosa usando el ácido acético (10,0% v/v) como catalizador, evaluando las mejores condiciones encontradas en la búsqueda bibliográfica para los catalizadores ácidos, generando un sistema factorial 22 donde se evalúa el impacto de dos variables de reacción como son: la Temperatura (170 – 200°C) y el tiempo de reacción (60 – 120 min) sobre el Rendimiento. Se obtienen mediante el uso de un reactor tipo Batch y los resultados se cuantifican por HPLC y el uso de un patrón interno (Alcohol furfurílico). Los resultados generan valores de rendimiento de reacción, de 6,9%; 30,5%; 11,7% y 18,9%, siendo el mejor rendimiento el Ensayo 2 (200°C; 60 min). Confirmando que se obtiene 5-HMF y evidenciando la influencia de las variables de reacción sobre el ensayo, alterando la cantidad generada de 5-HMF y de otras sustancias relacionadas con la reacción, también se genera un análisis estadístico que confirma que las variables tienen gran influencia en el rendimiento de reacción
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-18T02:41:28Z
dc.date.available.none.fl_str_mv 2024-05-18T02:41:28Z
dc.date.issued.none.fl_str_mv 2024-04
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12148
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12148
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Z. Zhou, M. Zhu, G. Zhang, X. Hu, and J. Pan, ‘Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein’, LWT, vol. 152, Dec. 2021, doi: 10.1016/j.lwt.2021.112360
M. Bachar et al., ‘Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles’, Journal of Controlled Release, vol. 160, no. 2, pp. 164–171, Jun. 2012, doi: 10.1016/J.JCONREL.2012.01.004
A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M. Afonso, ‘5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications’, Green Chemistry, vol. 13, no. 4, pp. 754–793, Apr. 2011, doi: 10.1039/c0gc00401d.
T. N. Gevrek and A. Sanyal, ‘Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications’, European Polymer Journal, vol. 153. Elsevier Ltd, Jun. 15, 2021. doi: 10.1016/j.eurpolymj.2021.110514
K. Abdollahi, S. Hamidi, F. Monajjemzadeh, M. Zamani-Kalajahi, M. Nemati, and S. Sheykhizadeh, ‘Efficient and straightforward spectrophotometric analysis of 5-hydroxymethylfurfural (HMF) using citrate@Fe3O4 nanoparticles as an adsorbent’, J Pharm Biomed Anal, vol. 241, p. 115963, Apr. 2024, doi: 10.1016/J.JPBA.2024.115963
W. Sailer-Kronlachner et al., ‘Sulfuric Acid-Catalyzed Dehydratization of Carbohydrates for the Production of Adhesive Precursors’, ACS Omega, 2021, doi: 10.1021/acsomega.1c02075
K. T. T. Amesho, S.-C. Chen, T.-Y. Wu, V. K. Ponnusamy, and Y.-C. Lin, ‘Green synthesis of 5-hydroxymethylfurfural from biomass-derived carbohydrates using deep eutectic solvents as environmen-tally benign catalyst’, Environ Technol Innov, vol. 29, 2023, doi: 10.1016/j.eti.2022.102982
T. Tongtummachat, A. Jaree, and N. Akkarawatkhoosith, ‘Green synthesis of 5-hydroxymethylfurfural through non-catalytic conversion of glucose in a microreactor’, Energy Conversion and Management: X, vol. 12, p. 100141, Dec. 2021, doi: 10.1016/J.ECMX.2021.100141
Z. Wu, Y. Yu, and H. Wu, ‘Hydrothermal Reactions of Biomass-Derived Platform Molecules: Mechanistic In-sights into 5-Hydroxymethylfurfural (5-HMF) Formation during Glucose and Fructose Decomposition’, Energy and Fuels, vol. 37, no. 3, pp. 2115–2126, 2023, doi: 10.1021/acs.energyfuels.2c03462
Zhao Zongbao and Changzhi Li, ‘Method for preparing 5-hydroxymethyl-furfural by microwave promotion Espacenet – search results’. Accessed: Apr. 26, 2023. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/040768002/publication/CN101456851A?q=CN101456851A
Gruter Gerardus J M and Dautzenberg F, ‘Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural and their use Espacenet – search results’. Accessed: Apr. 26, 2023. [Online]. Avai-lable: https://worldwide.espacenet.com/patent/search/family/036956006/publication/EP1834951A1?q=EP1834951A1
L. Hu et al., ‘Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic al-dehydes’, RSC Adv, vol. 2, no. 30, pp. 11184–11206, Oct. 2012, doi: 10.1039/C2RA21811A
H. Zheng et al., ‘A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosacchari-des into 5-hydroxymethylfurfural in a micellar system’, RSC Adv, vol. 3, no. 45, pp. 23051–23056, Oct. 2013, doi: 10.1039/C3RA43408G
L. Hu et al., ‘Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural’, Renewable and Sustainable Energy Reviews, vol. 134. Elsevier Ltd, Dec. 01, 2020. doi: 10.1016/j.rser.2020.110317
J. Wang, J. Xi, Q. Xia, X. Liu, and Y. Wang, ‘Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes’, Science China Chemistry, vol. 60, no. 7. Science in China Press, pp. 870–886, Jul. 01, 2017. doi: 10.1007/s11426-016-9035-1
C. Lu, Y. Zhou, L. Li, H. Chen, and L. Yan, ‘Conversion of glucose into 5-hydroxymethylfurfural catalyzed by Cr-and Fe-containing mixed-metal metal–organic frameworks’, Fuel, vol. 333, 2023, doi: 10.1016/j.fuel.2022.126415
S. Wang, T. L. Eberhardt, D. Guo, J. Feng, and H. Pan, ‘Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system’, Renew Energy, vol. 190, pp. 1–10, May 2022, doi: 10.1016/J.RENENE.2022.03.021
V. Kumar Vaidyanathan, K. Saikia, P. Senthil Kumar, A. Karanam Rathankumar, G. Rangasamy, and G. Da-ttatraya Saratale, ‘Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents’, Bioresour Technol, vol. 378, p. 128975, Jun. 2023, doi: 10.1016/J.BIORTECH.2023.128975
B. L. S. Santiago and R. Guirardello, ‘5-hydroxymethylfurfural production in a lignocellulosic biorefinery: Techno-economic analysis’, Chem Eng Trans, vol. 80, pp. 139–144, 2020, doi: 10.3303/CET2080024
L. Yang, G. Tsilomelekis, S. Caratzoulas, and D. G. Vlachos, ‘Mechanism of Brønsted Acid-Catalyzed Glucose Dehydration’, ChemSusChem, vol. 8, no. 8, pp. 1334–1341, Apr. 2015, doi: 10.1002/CSSC.201403264
G. Portillo Perez, A. Mukherjee, and M. J. Dumont, ‘Insights into HMF catalysis’, Journal of Industrial and En-gineering Chemistry, vol. 70. Korean Society of Industrial Engineering Chemistry, pp. 1–34, Feb. 25, 2019. doi: 10.1016/j.jiec.2018.10.002
D. C. Harris, ‘Análisis químico cuantitativo (3a. ed.)’, p. 942, 2016, doi: 10.0/CSS/ALL.MIN.D74D1A5D029B.CSS
L. G. Wade Jr., Organic Chemistry, Sixth edtion. Pearson education, 2006
Francis A. Carey, ORGANIC CHEMISTRY, 4th ed. The McGraw-Hill, 2000
P. Sykes, D. Mauleón Casellas, and P. Translation of: Sykes, ‘Mecanismos de reacción en química orgánica’, Editorial Reverté, 2020, doi: 10.0/CSS/ALL.MIN.D74D1A5D029B.CSS
X. Qian, ‘Mechanisms and energetics for brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions’, Top Catal, vol. 55, no. 3–4, pp. 218–226, May 2012, doi: 10.1007/S11244-012-9790-6/METRICS
G. Yang, E. A. Pidko, and E. J. M. Hensen, ‘Mechanism of Bronsted acid-catalyzed conversion of carbohydra-tes’, J Catal, vol. 295, pp. 122–132, Nov. 2012, doi: 10.1016/J.JCAT.2012.08.002
N. Jiang, W. Qi, Z. Wu, R. Su, and Z. He, ‘“One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid’, Catal Today, vol. 302, pp. 94–99, Mar. 2018, doi: 10.1016/j.cattod.2017.05.081
H. Li, Z. Xia, P. Yan, and Z. C. Zhang, ‘Production of crude 5-hydroxymethylfurfural from glucose by dual catalysts with functional promoters in low-boiling hybrid solvent’, Catal Today, vol. 402, pp. 10–16, Sep. 2022, doi: 10.1016/J.CATTOD.2022.01.017
H. L. Solano, Estadística Inferencial. Area metropolitana de Barranquilla, Colombia: Universidad del Norte, 2017. [Online]. Available: https://login.ezproxy.unbosque.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e086sww&AN=1800044&lang=es&site=eds-live&scope=site
Q. Qing et al., ‘One-pot synthesis of 5-Hydroxymethylfurfural from glucose and corn stover in an aqueous choline chloride/ acetone ternary solvent’, Ind Crops Prod, vol. 188, 2022, doi: 10.1016/j.indcrop.2022.115681
B. Das and K. Mohanty, ‘Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation’, Appl Catal A Gen, vol. 622, p. 118237, 2021, doi: https://doi.org/10.1016/j.apcata.2021.118237
S. Fernández, ‘Diseño de experimentos: Diseño factorial’, 2020
A. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis, and A. A. Lappas, ‘Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media’, Appl Catal A Gen, vol. 555, pp. 75–87, Apr. 2018, doi: 10.1016/J.APCATA.2018.01.029
Y. J. Pagán-Torres, T. Wang, J. M. R. Gallo, B. H. Shanks, and J. A. Dumesic, ‘Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent’, ACS Catal, vol. 2, no. 6, pp. 930–934, Jun. 2012, doi: 10.1021/cs300192z
J. Zhao et al., ‘Design and synthesis of Brønsted-Lewis acidic tetraimidazolyl ionic liquids for efficient cataly-tic conversion of glucose to 5-hydroxymethylfurfural in water/1-octanol’, Appl Catal A Gen, vol. 649, Jan. 2023, doi: 10.1016/J.APCATA.2022.118981
A. J. Kunov-Kruse, A. Riisager, S. Saravanamurugan, R. W. Berg, S. B. Kristensen, and R. Fehrmann, ‘Revisi-ting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy’, Green Chem., vol. 15, no. 10, pp. 2843–2848, 2013, doi: 10.1039/C3GC41174E
P. Atkins, Fisicoquímica. 1999
H. Zhang et al., ‘Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kine-tic study in microreactors’, Chemical Engineering Journal, vol. 391, Jul. 2020, doi: 10.1016/J.CEJ.2019.123580
T. Rosenau et al., ‘Chromophores from hexeneuronic acids: identification of HexA-derived chromophores’, Cellulose, vol. 24, no. 9, pp. 3671–3687, Sep. 2017, doi: 10.1007/s10570-017-1397-4
R. Tomer and P. Biswas, ‘Dehydration of glucose over sulfate impregnated ZnO (hexagonal-monoclinic) ca-talyst in dimethyl sulfoxide (DMSO) medium: Production, separation, and purification of 5-hydroxymethylfurfural (5-HMF) with high purity’, Catal Today, vol. 404, pp. 219–228, Nov. 2022, doi: 10.1016/J.CATTOD.2022.02.009
D. Chen et al., ‘An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts’, Chemical Engineering Journal, vol. 300, pp. 177–184, Sep. 2016, doi: 10.1016/J.CEJ.2016.04.039
R. Huang, W. Qi, R. Su, and Z. He, ‘Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural’, Chemical Communications, vol. 46, no. 7, pp. 1115–1117, 2010, doi: 10.1039/B921306F
Ignacio Jiménez-Morales, Mercedes Moreno-Recio, José Santamaría-González, and Pedro Maireles-Torres, ‘Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid ca-talyst’, Appl Catal B, vol. 164, pp. 70–76, 2015, doi: 10.1016/j.apcatb.2014.09.002
I. Jiménez-Morales, A. Teckchandani-Ortiz, J. Santamaría-González, P. Maireles-Torres, and A. Jimé-nez-López, ‘Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate’, Appl Catal B, vol. 144, no. 1, pp. 22–28, Jan. 2014, doi: 10.1016/J.APCATB.2013.07.002
L. Li, J. Ding, J. G. Jiang, Z. Zhu, and P. Wu, ‘One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts’, Cuihua Xuebao/Chinese Journal of Catalysis, vol. 36, no. 6, pp. 820–828, Jun. 2015, doi: 10.1016/S1872-2067(14)60287-4
M. Nayebi et al., ‘TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf>/SO<inf>3</inf>H(IL): Unique Usage of Ionic Liquid-Based Sulfonic Acid as an Efficient Photocatalyst for Visible-Light-Driven Preparation of 5-HMF from Cellulose and Glucose’, ACS Appl Mater Interfaces, vol. 15, no. 6, pp. 8054–8065, 2023, doi: 10.1021/acsami.2c20480
N. Panjiar, A. J. Mattam, S. Jose, S. Gandham, and H. R. Velankar, ‘Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodip-hila’, Science of the Total Environment, vol. 729, Aug. 2020, doi: 10.1016/j.scitotenv.2020.138933
E. M. Ranzi, R. M. Filho, B. L. S. Santiago, and R. Guirardello, ‘5-Hydroxymethylfurfural Production in a Lignocellulosic Biorefinery: Techno-economic Analysis’, Chem Eng Trans, vol. 80, p. 2020, 2020, doi: 10.3303/CET2080024
T. Ståhlberg, W. Fu, J. M. Woodley, and A. Riisager, ‘Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: Paving the way to renewable chemicals’, ChemSusChem, vol. 4, no. 4. Wiley-VCH Verlag, pp. 451–458, Apr. 18, 2011. doi: 10.1002/cssc.201000374
N. I. Villanueva Martínez, ‘Obtención de 5-hidroxmetilfurfural a partir de glucosa proveniente de licores de corteza de pino y eucaliptu, utilizando catalizadores sólidos en medio acuoso’, 2017
X. Yang et al., ‘A new method for conversion of fructose and glucose to 5-hydroxymethylfurfural by magnetic mesoporous of SBA-16 was modified to sulfonic acid as Lewis’s acid catalysts’, Renew Energy, vol. 209, pp. 145–156, Jun. 2023, doi: 10.1016/J.RENENE.2023.03.102
W. Zhang et al., ‘Sn doping on partially dealuminated Beta zeolite by solid state ion exchange for 5-hydroxymethylfurfural (5-HMF) production from glucose’, Journal of Chemical Technology and Biotechnology, vol. 98, no. 3, pp. 773–781, 2023, doi: 10.1002/jctb.7282
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/fd53e5fe-bb2e-4960-b3a9-5d6ecf0d55fc/download
https://repositorio.unbosque.edu.co/bitstreams/e1e5dfe1-ce35-4b11-b2d4-fbe579b0607e/download
https://repositorio.unbosque.edu.co/bitstreams/a689d593-c47b-4d01-885c-5129e62b3229/download
https://repositorio.unbosque.edu.co/bitstreams/971e1250-985d-4724-93cd-77b0646f437d/download
https://repositorio.unbosque.edu.co/bitstreams/5bc43018-16c7-40de-b98c-ca7d9d3d18b5/download
https://repositorio.unbosque.edu.co/bitstreams/26dc6c6a-b030-43e2-bd34-8ab98c5dead8/download
https://repositorio.unbosque.edu.co/bitstreams/04d0d685-474a-4eb2-9a9f-d85fad760006/download
bitstream.checksum.fl_str_mv 385a823008d4ac60bfdb545d09af57e0
313ea3fe4cd627df823c57a0f12776e5
17cc15b951e7cc6b3728a574117320f9
eeb343f378e90a038852cd00e073d216
9e36c057d19550625990d6888468b08a
caa87b07219ca9c4cea70b86e03a3838
5334af41ae5d3f8c455bd4e8e1da69aa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100834751873024
spelling Cortes Ortiz, William GiovanniTinoco Quitian, Sebastian FelipeGuerrero Fajardo, CarlosSuarez , Kevin Rene2024-05-18T02:41:28Z2024-05-18T02:41:28Z2024-04https://hdl.handle.net/20.500.12495/12148Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl 5-Hidorximetilfurfural o 5-HMF, es un compuesto que ha adquirido un gran valor para la industria sostenible en general, teniendo un gran impacto en la industria energética y farmacéutica, con una gran cantidad de aplicaciones. El siguiente trabajo evalúa la obtención del 5-HMF a partir de glucosa usando el ácido acético (10,0% v/v) como catalizador, evaluando las mejores condiciones encontradas en la búsqueda bibliográfica para los catalizadores ácidos, generando un sistema factorial 22 donde se evalúa el impacto de dos variables de reacción como son: la Temperatura (170 – 200°C) y el tiempo de reacción (60 – 120 min) sobre el Rendimiento. Se obtienen mediante el uso de un reactor tipo Batch y los resultados se cuantifican por HPLC y el uso de un patrón interno (Alcohol furfurílico). Los resultados generan valores de rendimiento de reacción, de 6,9%; 30,5%; 11,7% y 18,9%, siendo el mejor rendimiento el Ensayo 2 (200°C; 60 min). Confirmando que se obtiene 5-HMF y evidenciando la influencia de las variables de reacción sobre el ensayo, alterando la cantidad generada de 5-HMF y de otras sustancias relacionadas con la reacción, también se genera un análisis estadístico que confirma que las variables tienen gran influencia en el rendimiento de reacciónPregradoQuímico Farmacéutico5-Hydorxymethylfurfural or 5-HMF, is a compound that has acquired great value for the sustainable industry in general, having a great impact on the energy and pharmaceutical industries, with a large number of applications. The following work evaluates the obtaining of 5-HMF from glucose using acetic acid (10.0% v/v) as a catalyst, evaluating the best conditions found in the biobibliographic search for acid catalysts, generating a 22 factorial system where The impact of two reaction variables such as: Temperature (170 – 200°C) and reaction time (60 – 120 min) on the Yield is evaluated. They are obtained by using a Batch type reactor and the results are quantified by HPLC and the use of an internal standard (furfuryl alcohol). The results generate reaction yield values ​​of 6.9%; 30.5%; 11.7% and 18.9%, with the best performance being Test 2 (200°C; 60 min). Confirming that 5-HMF is obtained and evidencing the influence of the reaction variables on the test, altering the generated amount of 5-HMF and other substances related to the reaction, a statistical analysis is also generated that confirms that the variables have great influence on the reaction yieldapplication/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf25-hidroximetilfurfural (5-hmf)Ácido acéticoGlucosaTemperaturaTiempoVariables de reacción615.195-hydroxymethylfurfural (5-hmf)Acetic acidGlucoseTemperatureTimeReaction variablesObtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizadorObtaining 5-Hydroxymethylfurfural (5-HMF), a compound used as an excipient in liquid or semi-solid formulations, using acetic acid as a catalystQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaZ. Zhou, M. Zhu, G. Zhang, X. Hu, and J. Pan, ‘Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein’, LWT, vol. 152, Dec. 2021, doi: 10.1016/j.lwt.2021.112360M. Bachar et al., ‘Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles’, Journal of Controlled Release, vol. 160, no. 2, pp. 164–171, Jun. 2012, doi: 10.1016/J.JCONREL.2012.01.004A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M. Afonso, ‘5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications’, Green Chemistry, vol. 13, no. 4, pp. 754–793, Apr. 2011, doi: 10.1039/c0gc00401d.T. N. Gevrek and A. Sanyal, ‘Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications’, European Polymer Journal, vol. 153. Elsevier Ltd, Jun. 15, 2021. doi: 10.1016/j.eurpolymj.2021.110514K. Abdollahi, S. Hamidi, F. Monajjemzadeh, M. Zamani-Kalajahi, M. Nemati, and S. Sheykhizadeh, ‘Efficient and straightforward spectrophotometric analysis of 5-hydroxymethylfurfural (HMF) using citrate@Fe3O4 nanoparticles as an adsorbent’, J Pharm Biomed Anal, vol. 241, p. 115963, Apr. 2024, doi: 10.1016/J.JPBA.2024.115963W. Sailer-Kronlachner et al., ‘Sulfuric Acid-Catalyzed Dehydratization of Carbohydrates for the Production of Adhesive Precursors’, ACS Omega, 2021, doi: 10.1021/acsomega.1c02075K. T. T. Amesho, S.-C. Chen, T.-Y. Wu, V. K. Ponnusamy, and Y.-C. Lin, ‘Green synthesis of 5-hydroxymethylfurfural from biomass-derived carbohydrates using deep eutectic solvents as environmen-tally benign catalyst’, Environ Technol Innov, vol. 29, 2023, doi: 10.1016/j.eti.2022.102982T. Tongtummachat, A. Jaree, and N. Akkarawatkhoosith, ‘Green synthesis of 5-hydroxymethylfurfural through non-catalytic conversion of glucose in a microreactor’, Energy Conversion and Management: X, vol. 12, p. 100141, Dec. 2021, doi: 10.1016/J.ECMX.2021.100141Z. Wu, Y. Yu, and H. Wu, ‘Hydrothermal Reactions of Biomass-Derived Platform Molecules: Mechanistic In-sights into 5-Hydroxymethylfurfural (5-HMF) Formation during Glucose and Fructose Decomposition’, Energy and Fuels, vol. 37, no. 3, pp. 2115–2126, 2023, doi: 10.1021/acs.energyfuels.2c03462Zhao Zongbao and Changzhi Li, ‘Method for preparing 5-hydroxymethyl-furfural by microwave promotion Espacenet – search results’. Accessed: Apr. 26, 2023. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/040768002/publication/CN101456851A?q=CN101456851AGruter Gerardus J M and Dautzenberg F, ‘Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural and their use Espacenet – search results’. Accessed: Apr. 26, 2023. [Online]. Avai-lable: https://worldwide.espacenet.com/patent/search/family/036956006/publication/EP1834951A1?q=EP1834951A1L. Hu et al., ‘Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic al-dehydes’, RSC Adv, vol. 2, no. 30, pp. 11184–11206, Oct. 2012, doi: 10.1039/C2RA21811AH. Zheng et al., ‘A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosacchari-des into 5-hydroxymethylfurfural in a micellar system’, RSC Adv, vol. 3, no. 45, pp. 23051–23056, Oct. 2013, doi: 10.1039/C3RA43408GL. Hu et al., ‘Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural’, Renewable and Sustainable Energy Reviews, vol. 134. Elsevier Ltd, Dec. 01, 2020. doi: 10.1016/j.rser.2020.110317J. Wang, J. Xi, Q. Xia, X. Liu, and Y. Wang, ‘Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes’, Science China Chemistry, vol. 60, no. 7. Science in China Press, pp. 870–886, Jul. 01, 2017. doi: 10.1007/s11426-016-9035-1C. Lu, Y. Zhou, L. Li, H. Chen, and L. Yan, ‘Conversion of glucose into 5-hydroxymethylfurfural catalyzed by Cr-and Fe-containing mixed-metal metal–organic frameworks’, Fuel, vol. 333, 2023, doi: 10.1016/j.fuel.2022.126415S. Wang, T. L. Eberhardt, D. Guo, J. Feng, and H. Pan, ‘Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system’, Renew Energy, vol. 190, pp. 1–10, May 2022, doi: 10.1016/J.RENENE.2022.03.021V. Kumar Vaidyanathan, K. Saikia, P. Senthil Kumar, A. Karanam Rathankumar, G. Rangasamy, and G. Da-ttatraya Saratale, ‘Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents’, Bioresour Technol, vol. 378, p. 128975, Jun. 2023, doi: 10.1016/J.BIORTECH.2023.128975B. L. S. Santiago and R. Guirardello, ‘5-hydroxymethylfurfural production in a lignocellulosic biorefinery: Techno-economic analysis’, Chem Eng Trans, vol. 80, pp. 139–144, 2020, doi: 10.3303/CET2080024L. Yang, G. Tsilomelekis, S. Caratzoulas, and D. G. Vlachos, ‘Mechanism of Brønsted Acid-Catalyzed Glucose Dehydration’, ChemSusChem, vol. 8, no. 8, pp. 1334–1341, Apr. 2015, doi: 10.1002/CSSC.201403264G. Portillo Perez, A. Mukherjee, and M. J. Dumont, ‘Insights into HMF catalysis’, Journal of Industrial and En-gineering Chemistry, vol. 70. Korean Society of Industrial Engineering Chemistry, pp. 1–34, Feb. 25, 2019. doi: 10.1016/j.jiec.2018.10.002D. C. Harris, ‘Análisis químico cuantitativo (3a. ed.)’, p. 942, 2016, doi: 10.0/CSS/ALL.MIN.D74D1A5D029B.CSSL. G. Wade Jr., Organic Chemistry, Sixth edtion. Pearson education, 2006Francis A. Carey, ORGANIC CHEMISTRY, 4th ed. The McGraw-Hill, 2000P. Sykes, D. Mauleón Casellas, and P. Translation of: Sykes, ‘Mecanismos de reacción en química orgánica’, Editorial Reverté, 2020, doi: 10.0/CSS/ALL.MIN.D74D1A5D029B.CSSX. Qian, ‘Mechanisms and energetics for brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions’, Top Catal, vol. 55, no. 3–4, pp. 218–226, May 2012, doi: 10.1007/S11244-012-9790-6/METRICSG. Yang, E. A. Pidko, and E. J. M. Hensen, ‘Mechanism of Bronsted acid-catalyzed conversion of carbohydra-tes’, J Catal, vol. 295, pp. 122–132, Nov. 2012, doi: 10.1016/J.JCAT.2012.08.002N. Jiang, W. Qi, Z. Wu, R. Su, and Z. He, ‘“One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid’, Catal Today, vol. 302, pp. 94–99, Mar. 2018, doi: 10.1016/j.cattod.2017.05.081H. Li, Z. Xia, P. Yan, and Z. C. Zhang, ‘Production of crude 5-hydroxymethylfurfural from glucose by dual catalysts with functional promoters in low-boiling hybrid solvent’, Catal Today, vol. 402, pp. 10–16, Sep. 2022, doi: 10.1016/J.CATTOD.2022.01.017H. L. Solano, Estadística Inferencial. Area metropolitana de Barranquilla, Colombia: Universidad del Norte, 2017. [Online]. Available: https://login.ezproxy.unbosque.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e086sww&AN=1800044&lang=es&site=eds-live&scope=siteQ. Qing et al., ‘One-pot synthesis of 5-Hydroxymethylfurfural from glucose and corn stover in an aqueous choline chloride/ acetone ternary solvent’, Ind Crops Prod, vol. 188, 2022, doi: 10.1016/j.indcrop.2022.115681B. Das and K. Mohanty, ‘Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation’, Appl Catal A Gen, vol. 622, p. 118237, 2021, doi: https://doi.org/10.1016/j.apcata.2021.118237S. Fernández, ‘Diseño de experimentos: Diseño factorial’, 2020A. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis, and A. A. Lappas, ‘Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media’, Appl Catal A Gen, vol. 555, pp. 75–87, Apr. 2018, doi: 10.1016/J.APCATA.2018.01.029Y. J. Pagán-Torres, T. Wang, J. M. R. Gallo, B. H. Shanks, and J. A. Dumesic, ‘Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent’, ACS Catal, vol. 2, no. 6, pp. 930–934, Jun. 2012, doi: 10.1021/cs300192zJ. Zhao et al., ‘Design and synthesis of Brønsted-Lewis acidic tetraimidazolyl ionic liquids for efficient cataly-tic conversion of glucose to 5-hydroxymethylfurfural in water/1-octanol’, Appl Catal A Gen, vol. 649, Jan. 2023, doi: 10.1016/J.APCATA.2022.118981A. J. Kunov-Kruse, A. Riisager, S. Saravanamurugan, R. W. Berg, S. B. Kristensen, and R. Fehrmann, ‘Revisi-ting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy’, Green Chem., vol. 15, no. 10, pp. 2843–2848, 2013, doi: 10.1039/C3GC41174EP. Atkins, Fisicoquímica. 1999H. Zhang et al., ‘Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kine-tic study in microreactors’, Chemical Engineering Journal, vol. 391, Jul. 2020, doi: 10.1016/J.CEJ.2019.123580T. Rosenau et al., ‘Chromophores from hexeneuronic acids: identification of HexA-derived chromophores’, Cellulose, vol. 24, no. 9, pp. 3671–3687, Sep. 2017, doi: 10.1007/s10570-017-1397-4R. Tomer and P. Biswas, ‘Dehydration of glucose over sulfate impregnated ZnO (hexagonal-monoclinic) ca-talyst in dimethyl sulfoxide (DMSO) medium: Production, separation, and purification of 5-hydroxymethylfurfural (5-HMF) with high purity’, Catal Today, vol. 404, pp. 219–228, Nov. 2022, doi: 10.1016/J.CATTOD.2022.02.009D. Chen et al., ‘An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts’, Chemical Engineering Journal, vol. 300, pp. 177–184, Sep. 2016, doi: 10.1016/J.CEJ.2016.04.039R. Huang, W. Qi, R. Su, and Z. He, ‘Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural’, Chemical Communications, vol. 46, no. 7, pp. 1115–1117, 2010, doi: 10.1039/B921306FIgnacio Jiménez-Morales, Mercedes Moreno-Recio, José Santamaría-González, and Pedro Maireles-Torres, ‘Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid ca-talyst’, Appl Catal B, vol. 164, pp. 70–76, 2015, doi: 10.1016/j.apcatb.2014.09.002I. Jiménez-Morales, A. Teckchandani-Ortiz, J. Santamaría-González, P. Maireles-Torres, and A. Jimé-nez-López, ‘Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate’, Appl Catal B, vol. 144, no. 1, pp. 22–28, Jan. 2014, doi: 10.1016/J.APCATB.2013.07.002L. Li, J. Ding, J. G. Jiang, Z. Zhu, and P. Wu, ‘One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts’, Cuihua Xuebao/Chinese Journal of Catalysis, vol. 36, no. 6, pp. 820–828, Jun. 2015, doi: 10.1016/S1872-2067(14)60287-4M. Nayebi et al., ‘TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf>/SO<inf>3</inf>H(IL): Unique Usage of Ionic Liquid-Based Sulfonic Acid as an Efficient Photocatalyst for Visible-Light-Driven Preparation of 5-HMF from Cellulose and Glucose’, ACS Appl Mater Interfaces, vol. 15, no. 6, pp. 8054–8065, 2023, doi: 10.1021/acsami.2c20480N. Panjiar, A. J. Mattam, S. Jose, S. Gandham, and H. R. Velankar, ‘Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodip-hila’, Science of the Total Environment, vol. 729, Aug. 2020, doi: 10.1016/j.scitotenv.2020.138933E. M. Ranzi, R. M. Filho, B. L. S. Santiago, and R. Guirardello, ‘5-Hydroxymethylfurfural Production in a Lignocellulosic Biorefinery: Techno-economic Analysis’, Chem Eng Trans, vol. 80, p. 2020, 2020, doi: 10.3303/CET2080024T. Ståhlberg, W. Fu, J. M. Woodley, and A. Riisager, ‘Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: Paving the way to renewable chemicals’, ChemSusChem, vol. 4, no. 4. Wiley-VCH Verlag, pp. 451–458, Apr. 18, 2011. doi: 10.1002/cssc.201000374N. I. Villanueva Martínez, ‘Obtención de 5-hidroxmetilfurfural a partir de glucosa proveniente de licores de corteza de pino y eucaliptu, utilizando catalizadores sólidos en medio acuoso’, 2017X. Yang et al., ‘A new method for conversion of fructose and glucose to 5-hydroxymethylfurfural by magnetic mesoporous of SBA-16 was modified to sulfonic acid as Lewis’s acid catalysts’, Renew Energy, vol. 209, pp. 145–156, Jun. 2023, doi: 10.1016/J.RENENE.2023.03.102W. Zhang et al., ‘Sn doping on partially dealuminated Beta zeolite by solid state ion exchange for 5-hydroxymethylfurfural (5-HMF) production from glucose’, Journal of Chemical Technology and Biotechnology, vol. 98, no. 3, pp. 773–781, 2023, doi: 10.1002/jctb.7282spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1667617https://repositorio.unbosque.edu.co/bitstreams/fd53e5fe-bb2e-4960-b3a9-5d6ecf0d55fc/download385a823008d4ac60bfdb545d09af57e0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81019https://repositorio.unbosque.edu.co/bitstreams/e1e5dfe1-ce35-4b11-b2d4-fbe579b0607e/download313ea3fe4cd627df823c57a0f12776e5MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/a689d593-c47b-4d01-885c-5129e62b3229/download17cc15b951e7cc6b3728a574117320f9MD56Anexo 1 Acta de aprobacion.pdfapplication/pdf9827032https://repositorio.unbosque.edu.co/bitstreams/971e1250-985d-4724-93cd-77b0646f437d/downloadeeb343f378e90a038852cd00e073d216MD513Carta de autorizacion.pdfapplication/pdf206406https://repositorio.unbosque.edu.co/bitstreams/5bc43018-16c7-40de-b98c-ca7d9d3d18b5/download9e36c057d19550625990d6888468b08aMD514TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain82082https://repositorio.unbosque.edu.co/bitstreams/26dc6c6a-b030-43e2-bd34-8ab98c5dead8/downloadcaa87b07219ca9c4cea70b86e03a3838MD57THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5381https://repositorio.unbosque.edu.co/bitstreams/04d0d685-474a-4eb2-9a9f-d85fad760006/download5334af41ae5d3f8c455bd4e8e1da69aaMD5820.500.12495/12148oai:repositorio.unbosque.edu.co:20.500.12495/121482024-07-04 10:30:44.178http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=