Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)

El proceso de cicatrización se puede ver afectado por diferentes enfermedades como lo es la diabetes, debido a la influencia que tiene la hiperglicemia y la exacerbación del estrés oxidativo. En este trabajo se presenta el desarrollo y caracterización de un parche de hidrogel como sistema de adminis...

Full description

Autores:
Sierra Guaqueta, Mariana
Gomez Villamil, Angie Valentina
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2025
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14347
Acceso en línea:
https://hdl.handle.net/20.500.12495/14347
Palabra clave:
Vitamina C
Cafeína
Hidrogel
Antioxidantes
Alginato de sodio
Alcohol polivinílico
615.19
Vitamin C
Caffeine
Hydrogel
Antioxidants
Sodium alginate
Polyvinyl alcohol
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_d9a21adcc605803341d99c36d4ea0626
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14347
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
dc.title.translated.none.fl_str_mv Contribution to the formulation of a hydrogel patch containing caffeine and ascorbic acid (vitamin C)
title Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
spellingShingle Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
Vitamina C
Cafeína
Hidrogel
Antioxidantes
Alginato de sodio
Alcohol polivinílico
615.19
Vitamin C
Caffeine
Hydrogel
Antioxidants
Sodium alginate
Polyvinyl alcohol
title_short Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
title_full Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
title_fullStr Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
title_full_unstemmed Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
title_sort Aporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)
dc.creator.fl_str_mv Sierra Guaqueta, Mariana
Gomez Villamil, Angie Valentina
dc.contributor.advisor.none.fl_str_mv Velandia Paris, Maria Angelica
Jiménez Cruz, Ronald Andrés
dc.contributor.author.none.fl_str_mv Sierra Guaqueta, Mariana
Gomez Villamil, Angie Valentina
dc.subject.none.fl_str_mv Vitamina C
Cafeína
Hidrogel
Antioxidantes
Alginato de sodio
Alcohol polivinílico
topic Vitamina C
Cafeína
Hidrogel
Antioxidantes
Alginato de sodio
Alcohol polivinílico
615.19
Vitamin C
Caffeine
Hydrogel
Antioxidants
Sodium alginate
Polyvinyl alcohol
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Vitamin C
Caffeine
Hydrogel
Antioxidants
Sodium alginate
Polyvinyl alcohol
description El proceso de cicatrización se puede ver afectado por diferentes enfermedades como lo es la diabetes, debido a la influencia que tiene la hiperglicemia y la exacerbación del estrés oxidativo. En este trabajo se presenta el desarrollo y caracterización de un parche de hidrogel como sistema de administración tópica de cafeína y ácido ascórbico, dos antioxidantes con potencial terapéutico. Se llevó a cabo un estudio de pre-formulación para evaluar la compatibilidad entre los excipientes y se diseñaron tres diferentes formulaciones de hidrogeles variando las concentraciones (1.5%m/v, 3.0%m/v y 5.0%m/v) de los polímeros seleccionados, los cuales fueron alginato de sodio y alcohol polivinílico. Posteriormente, los parches fueron caracterizados mediante pruebas mecánicas basadas en el módulo de Young por compresión, reológicas mediante el módulo de almacenamiento y perdida además de liberación in vitro de principios activos por medio de modelos cinéticos como el modelo de Korsmeyer-Peppas, el modelo de difusión de Higuchi y el modelo de Hixxon-Crowell. Los resultados muestran que la formulación propuesta posee propiedades mecánicas adecuadas y permite una liberación controlada de los antioxidantes, lo que podría contribuir a mejorar el proceso de cicatrización en pacientes diabéticos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-15T14:53:21Z
dc.date.available.none.fl_str_mv 2025-05-15T14:53:21Z
dc.date.issued.none.fl_str_mv 2025-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14347
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14347
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. Admin CAC. Día mundial de la diabetes 2024 - Cuenta de Alto Costo. Cuenta de Alto Costo - Fondo Colombiano de Cuentas de Alto Costo,. 2024. https://cuentadealtocosto.org/general/dia-mundial-de-la-diabetes/
2. Ministerio de Salud y Protección Social de Colombia. En el Día Mundial de la Diabetes: MinSalud promueve prácticas de vida saludable. Gov.co. https://www.minsalud.gov.co/Paginas/En-el-Dia-Mundial-de-la-Diabetes-MinSalud-promueve-praticas-de-vida-saludable.aspx
3. Stable García Y. Cicatrización de Heridas en la Diabetes MellitusWound Healing in Diabetes Mellitus. Arch Med Issn 1698-9465. 2023;19:1–1581.
4. Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J, et al. Updates in Diabetic Wound Healing, Inflammation, and Scarring. Semin Plast Surg. 2021;35(3):153–8.
5. Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The role of antioxidants on wound healing: A review of the current evidence. J Clin Med. 2021;10(16).
6. Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, et al. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid Med Cell Longev. 2021;2021(Figure 1).
7. Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int J Mol Sci. 2022;23(21).
8. Liu R, Gang L, Shen X, Xu H, Wu F, Sheng L. Binding characteristics and superimposed antioxidant properties of caffeine combined with superoxide dismutase. ACS Omega. 2019;4(17):17417–24.
9. Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants. 2022;11(10).
10. Ying X, Yu C, Yang W, Ye L, Sun R, Gu T, et al. The transformation of multifunctional bio-patch to hydrogel on skin wounds for efficient scarless wound healing. Mater Today Bio [Internet]. 2024 https://doi.org/10.1016/j.mtbio.2023.100901
11. Zagórska-Dziok M, Sobczak M. Hydrogel-based active substance release systems for cosmetology and dermatology application: A review. Pharmaceutics. 2020;12(5).
12. Afzal S, Barkat K, Ashraf MU, Khalid I, Mehmood Y, Shah NH, et al. Formulation and Characterization of Polymeric Cross-Linked Hydrogel Patches for Topical Delivery of Antibiotic for Healing Wound Infections. Polymers (Basel). 2023;15(7).
13. Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr Polym [Internet]. 2018 :377–83. Available from: https://doi.org/10.1016/j.carbpol.2018.01.061
14. Kenawy ER, El-Meligy MA, Ghaly ZS, Kenawy ME, Kamoun EA. Novel Physically-Crosslinked Caffeine and Vitamin C-Loaded PVA/Aloe Vera Hydrogel Membranes for Topical Wound Healing: Synthesis, Characterization and In-Vivo Wound Healing Tests. J Polym Environ. 2023;(0123456789).
15. Sarmiento, Suarez. Desarrollo de geles a base de alginato de sodio con alto contenido de ácido al-gulurónico para uso potencial como adhesivo para huesos. Univ los Andes [Internet]. 2015;45. Available from: https://repositorio.uniandes.edu.co/handle/1992/24358
16. Irastorza RM, Drouin B, Blangino E, Mantovani D. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering. Sci World J. 2015.
17. Pilch E, Musial W. Selected physicochemical properties of Lyophilized hydrogel with liposomal fraction of calcium dobesilate. Materials (Basel). 2018;11(11)
18. United States Pharmacopeia. Reagents, Buffer Solutions. USP-NF. Rockville, MD: United States Pharmacopeia. 2024; https://doi.org/10.31003/USPNF_R2999_03_01
19. Ahmad Bhawani S, Fong SS, Mohamad Ibrahim MN. Spectrophotometric Analysis of Caffeine. Int J Anal Chem. 2015
20. Gómez Ruiz B, Roux S, Courtois F, Bonazzi C. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements. Food Chem. 2016;211:583–9.
21. Alhmoud HA. The uses of matrices in drug delivery: The effect of polymers on the drug release and the kinetic models. Int J Pharm Res Allied Sci [Internet]. 2017;6(3):13–20. https://www.embase.com/search/results?subaction=viewrecord&id=L618026396&from=export
22. Cali S DE, Del Cauca V. Evaluación De La Cinética De Liberación De Un Fármaco Modelo Con Clasificación Biofarmacéutica Clase Ii, Desde Matrices Comprimidas Compuestas Por Materiales Poliméricos Aniónicos Juliana Jiménez Minotta Universidad Icesi Facultad De Ciencias Naturales Departamento De Ciencias Farmacéuticas. 2017
23. Huang WY, Hibino T, Suye SI, Fujita S. Electrospun collagen core/poly-l-lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Adv. 2021;11(10):5703–11.
24. Menegatti T, Kopač T, Žnidaršič-Plazl P. Tuning Mechanical Characteristics and Permeability of Alginate Hydrogel by Polyvinyl Alcohol and Deep Eutectic Solvent Addition. Bioengineering. 2024;11(4).
25. Akhtar R, Draper ER, Adams DJ, Hay J. Oscillatory nanoindentation of highly compliant hydrogels: A critical comparative analysis with rheometry. J Mater Res. 2018;33(8):873–83.
26. Thompson M, Cafeína: propiedades químicas, usos y producción 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB0202769.htm#:~:text=Caffeine%20may%20be%20hygroscopic.,are%20stable%20for%203%20days
27. Dong JX, Li Q, Tan ZC, Zhang ZH, Liu Y. The standard molar enthalpy of formation, molar heat capacities, and thermal stability of anhydrous caffeine. J Chem Thermodyn. 2007;39(1):108–14.
28. Rendel PM, Rytwo G. Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2. Desalin Water Treat. 2020;173:231–42.
29. Acofarma Fichas [MS1] de información técnica. Cafeína 2015 :3–5.
30. ROTH. Ficha de datos de seguridad Cafeína SECCIÓN 1 : Identificación de la sustancia Roth [Internet]. 2019;.: https://www.carlroth.com/medias/SDB-9739-ES-
31. Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, et al. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants. 2022;11(1):1–20.
32. Ali Sheraz M, Khan MF, Ahmed S, Hafeez Kazi S, Ahmad I. Stability and Stabilization of Ascorbic Acid A Review. Househ Pers Care Today [Internet]. 2015;10(3):22–5. Available from: https://www.researchgate.net/publication/321148774_Stability_and_Stabilization_of_Ascorbic_Acid
33. Saftić Martinović L, Birkic N, Miletić V, Antolović R, Štanfel D, Wittine K. Antioxidant Activity, Stability in Aqueous Medium and Molecular Docking/Dynamics Study of 6-Amino- and N-Methyl-6-amino-L-ascorbic Acid. Int J Mol Sci. 2023;24(2)
34. Chemicalbook [Internet] Ascorbic acid: Chemical properties, uses, and production. 2024. ChemicalBook. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7853704.htm
35. De D, Cas N. Información de seguridad voluntaria apoyándose en el formato de ficha de datos de seguridad conforme al Reglamento ( CE ) n . o 1907 / 2006 ( REACH ) SECCIÓN 1 : Identificación de la sustancia o la mezcla y de la sociedad o la empresa Información de segur. 2021;2006:1–13.
36. Instituto nacional de seguridad y salud en el trabajo España. Icsc 0379 - ácido ascórbico [Internet]. Ilo.org. https://chemicalsafety.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0379&p_version=2
37. Thongsuksaengcharoen S, Samosorn S, Songsrirote K. A Facile Synthesis of Self-Catalytic Hydrogel Films and Their Application as a Wound Dressing Material Coupled with Natural Active Compounds. ACS Omega. 2020;5(40):25973–83.
38. Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, et al. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem. 2024;12(February):1–21.
39. Tyeb S, Verma V, Kumar N. Polysaccharide based transdermal patches for chronic wound healing: Recent advances and clinical perspective. Carbohydr Polym. 2023;316.
40. De’Nobili MD, Soria M, Martinefski MR, Tripodi VP, Fissore EN, Rojas AM. Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. J Food Eng [Internet]. 2016;175:1–7. Available from: http://dx.doi.org/10.1016/j.jfoodeng.2015.11.015
41. Sheskey PJ, Cook WG, Cable CG. Handbookof Pharmaceutical Excipients Eighth edition.
42. LGC. Ficha de datos de seguridad Ficha de datos de seguridad. Carl Roth [Internet]. 2016;2(1907):2–7. Available from: https://hybris-static-assets-production.s3-eu-west-1.amazonaws.com/sys-master/pdfs/h96/hc3/9673630253086/EN_ST-WB-MSDS-2601489-1-1-1.PDF
43. Pérez JMM, Matos MV, Pérez LEB, Haber JRG. Alginato De Sodio. 1998;18(7):90–6.
44. Lisboa U De, Almeida BS De. Design Gel-Patch Systems for Enhanced Topical Delivery Design Gel-Patch Systems for Enhanced Topical Delivery. 2019
45. Mehrjou A, Hadaeghnia M, Ehsani Namin P, Ghasemi I. Sodium alginate/polyvinyl alcohol semi-interpenetrating hydrogels reinforced with PEG-grafted-graphene oxide. Int J Biol Macromol [Internet]. 2024;263(P2):130258. Available from: https://doi.org/10.1016/j.ijbiomac.2024.130258
46. Zewail TMM, Saad MA, AbdelRazik SM, Eldakiky BM, Sadik ER. Synthesis of sodium alginate / polyvinyl alcohol / polyethylene glycol semi-interpenetrating hydrogel as a draw agent for forward osmosis desalination. BMC Chem. 2024;18(1):1–9.
47. Hu O, Lu J, Chen G, Chen K, Gu J, Weng S, et al. An Antifreezing, Tough, Rehydratable, and Thermoplastic Poly(vinyl alcohol)/Sodium Alginate/Poly(ethylene glycol) Organohydrogel Electrolyte for Flexible Supercapacitors. ACS Sustain Chem Eng. 2021;9(29):9833–45.
48. Fakioğlu M, Kalpaklı Y. Mechanism and behavior of caffeine sorption: affecting factors. RSC Adv. 2022;12(41):26504–13
49. UPTIMA. Citric Acid Products Information. :5–6.
50. Wei Q, Yang R, Sun D, Zhou J, Li M, Zhang Y, et al. Design and evaluation of sodium alginate/polyvinyl alcohol blend hydrogel for 3D bioprinting cartilage scaffold: molecular dynamics simulation and experimental method. J Mater Res Technol [Internet]. 2022;17:66–78. Available from: https://doi.org/10.1016/j.jmrt.2021.12.130
51. DeJarnette K, Mamidala M. Analysis of variance [Internet]. Handbook for Designing and Conducting Clinical and Translational Surgery. Elsevier Inc.; 2023. 177–181 p. Available from: http://dx.doi.org/10.1016/B978-0-323-90300-4.00101-4
52. Elias, Marcus L et al. Caffeine in Skincare: Its Role in Skin Cancer, Sun Protection, and Cosmetics. Indian journal of dermatology vol. 68,5. 2023;546-550. Available from: doi:10.4103/ijd.ijd_166_22
53. Baek, Jihoon P. High-potency vitamin c topical formulations. World Patent, 2020081868:A1.2020.
54. Yi N, Chiang Z. Topical Vitamin C and the Skin. Jcad J Clin Aesthetic Dermatology. 2017;14(7):14–7.
55. Li W, Qiao K, Zheng Y, Yan Y, Xie Y, Liu Y, et al. Preparation, mechanical properties, fatigue and tribological behavior of double crosslinked high strength hydrogel. J Mech Behav Biomed Mater [Internet]. 2022;126(November 2021):105009. Available from: https://doi.org/10.1016/j.jmbbm.2021.105009
56. Kartika A, Kurniawan A, Kresna A. Analysis of the Temperature Effect on the Liquids Viscosity. J Penelit dan Pembelajaran Fis Indones. 2023;5(1).
57. Amiri S, Asghari A, Harifi-Mood AR, Rajabi M, He T, Vatanpour V. Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes. Chemosphere [Internet]. 2022;308(P2):136323. Available from: https://doi.org/10.1016/j.chemosphere.2022.136323
58. Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur Polym J [Internet]. 2020;130(February):109609. Available from: https://doi.org/10.1016/j.eurpolymj.2020.109609
59. The Editors of Encyclopaedia Britannica. Young’s modulus. Encyclopedia Britannica [Internet]. 2025.(March). Available from: https://www.britannica.com/science/Youngs-modulus.
60. Hermann W, Sockel H-G. Elastic Modulus Measurement. Encycl Mater Sci Technol. 2001;2427–9
61. Chen R, Xu X, Yu D, Xiao C, Liu M, Huang J, et al. Highly stretchable and fatigue resistant hydrogels with low Young’s modulus as transparent and flexible strain sensors. J Mater Chem C. 2018;6(41):11193–201.
62. Bahadoran M, Shamloo A, Nokoorani YD. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep [Internet]. 2020;10(1):7–9. Available from: http://dx.doi.org/10.1038/s41598-020-64480-9
63. Candry P, Godfrey BJ, Wang Z, Sabba F, Dieppa E, Fudge J, et al. Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time. Sci Rep [Internet]. 2022;12(1):1–11. Available from: https://doi.org/10.1038/s41598-022-25111-7
64. Martinez-Garcia FD, Fischer T, Hayn A, Mierke CT, Burgess JK, Harmsen MC. A Beginner’s Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels. 2022;8(9):1–20.
65. Gethin G. The significance of surface pH in chronic wounds. Wounds UK. 2007;3(3):52–6.
66. Estevan B, Alio C. Ulceras por presión. Geriatrika. 1996;12(5):58–62.
67. Askarizadeh M, Esfandiari N, Honarvar B, Sajadian SA, Azdarpour A. Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems. ChemBioEng Rev. 2023;10(6):1006–49.
68. Anton Paar GmbH: e-learning course – Basics of Rheometry, part 1: Rotation; part 2: Oscillation. Graz, 2025
69. Susilawati S, Prayogi S, Arif MF, Ismail NM, Bilad MR, Asy’ari M. Optical properties and conductivity of pva–h3 po4 (Polyvinyl alcohol–phosphoric acid) film blend irradiated by γ-rays. Polymers (Basel). 2021;13(7).
70. Kolotova DS, Borovinskaya E V., Bordiyan V V., Zuev YF, Salnikov V V., Zueva OS, et al. Phase Behavior of Aqueous Mixtures of Sodium Alginate with Fish Gelatin: Effects of pH and Ionic Strength. Polymers (Basel). 2023;15(10).
71. Mohamed EMA, Eisa WH, Mahrous S. International Journal of Advances in Scientific Research Preparation and characterization of PEG-assisted growth of colloidal Ag nanoparticles QR Code * Article History : 2017;3(06):65–8.
72. Saleem KA, Fakhre NA, Qader HA. Simultaneous Evaluation of Triclosan and Methylparaben in Some Personal Care Products Using Green Spectrophotometric Techniques. 2024;7:858–72.
73. Ortiz CP, Cardenas-Torres RE, Herrera M, Delgado DR. Thermodynamic Analysis of the Solubility of Propylparaben in Acetonitrile–Water Cosolvent Mixtures. Sustain. 2023;15(6):1–16.
74. Krukowski S, Karasiewicz M, Kolodziejski W. Convenient UV-spectrophotometric determination of citrates in aqueous solutions with applications in the pharmaceutical analysis of oral electrolyte formulations. J Food Drug Anal [Internet]. 2017;25(3):717–22. Available from: http://dx.doi.org/10.1016/j.jfda.2017.01.009
75. Krishnaswamy S, Ragupathi V, Raman S, Panigrahi P, Nagarajan GS. Study of optical and electrical property of NaI-doped PPy thin film with excellent photocatalytic property at visible light. Polym Bull [Internet]. 2019;76(10):5213–31. Available from: https://doi.org/10.1007/s00289-018-2650-1
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/b3e5ba09-1e4f-4c58-a88e-4092c80fb234/download
https://repositorio.unbosque.edu.co/bitstreams/a0ab47a8-dbfc-45f5-a5a5-fdba4d56890e/download
https://repositorio.unbosque.edu.co/bitstreams/d4a447f7-3ac5-442b-bbb4-46763cd34304/download
https://repositorio.unbosque.edu.co/bitstreams/e4971c61-52d6-4fe9-ae4c-d3cd651dd413/download
https://repositorio.unbosque.edu.co/bitstreams/0bb00b38-e226-492e-b256-1c5f7192ba33/download
https://repositorio.unbosque.edu.co/bitstreams/48520500-0d87-469c-b25f-88e518a8d5dd/download
https://repositorio.unbosque.edu.co/bitstreams/607230a2-c2fc-492e-b97f-4bb65cc1559e/download
bitstream.checksum.fl_str_mv b0a3b1feda0feeb395c000e9852bf719
17cc15b951e7cc6b3728a574117320f9
493c77c661545224c3af2b6718eb4e32
e0f00c940db8300ad13be1a89e41a82e
3b6ce8e9e36c89875e8cf39962fe8920
920fb4d565e312fb81e50a7350d16e01
bc795ebb27332964754bbd0e287ddbe9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1834107837434822656
spelling Velandia Paris, Maria AngelicaJiménez Cruz, Ronald AndrésSierra Guaqueta, MarianaGomez Villamil, Angie Valentina2025-05-15T14:53:21Z2025-05-15T14:53:21Z2025-05https://hdl.handle.net/20.500.12495/14347Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl proceso de cicatrización se puede ver afectado por diferentes enfermedades como lo es la diabetes, debido a la influencia que tiene la hiperglicemia y la exacerbación del estrés oxidativo. En este trabajo se presenta el desarrollo y caracterización de un parche de hidrogel como sistema de administración tópica de cafeína y ácido ascórbico, dos antioxidantes con potencial terapéutico. Se llevó a cabo un estudio de pre-formulación para evaluar la compatibilidad entre los excipientes y se diseñaron tres diferentes formulaciones de hidrogeles variando las concentraciones (1.5%m/v, 3.0%m/v y 5.0%m/v) de los polímeros seleccionados, los cuales fueron alginato de sodio y alcohol polivinílico. Posteriormente, los parches fueron caracterizados mediante pruebas mecánicas basadas en el módulo de Young por compresión, reológicas mediante el módulo de almacenamiento y perdida además de liberación in vitro de principios activos por medio de modelos cinéticos como el modelo de Korsmeyer-Peppas, el modelo de difusión de Higuchi y el modelo de Hixxon-Crowell. Los resultados muestran que la formulación propuesta posee propiedades mecánicas adecuadas y permite una liberación controlada de los antioxidantes, lo que podría contribuir a mejorar el proceso de cicatrización en pacientes diabéticos.PregradoQuímico FarmacéuticoThe healing process can be affected by different diseases such as diabetes, due to the influence of hyperglycemia and the exacerbation of oxidative stress. This work presents the development and characterization of a hydrogel patch as a topical delivery system for caffeine and ascorbic acid, two antioxidants with therapeutic potential. A pre-formulation study was conducted to evaluate the compatibility between the excipients, and three different hydrogel formulations were designed, varying the concentrations (1.5% w/v, 3.0% w/v, and 5.0% w/v) of the selected polymers, which were sodium alginate and polyvinyl alcohol. Subsequently, the patches were characterized through mechanical tests based on Young's modulus by compression, rheological tests using the loading and unloading modulus, and in vitro release of active ingredients using kinetic models such as the Korsmeyer-Peppas model, the Higuchi diffusion model, and the Hixxon-Crowell model. The results show that the proposed formulation has adequate mechanical properties and allows for controlled release of antioxidants, which could contribute to improving the healing process in diabetic patients.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Vitamina CCafeínaHidrogelAntioxidantesAlginato de sodioAlcohol polivinílico615.19Vitamin CCaffeineHydrogelAntioxidantsSodium alginatePolyvinyl alcoholAporte a la formulación de un parche de hidrogel que contiene cafeína y ácido ascórbico (vitamina C)Contribution to the formulation of a hydrogel patch containing caffeine and ascorbic acid (vitamin C)Química FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Admin CAC. Día mundial de la diabetes 2024 - Cuenta de Alto Costo. Cuenta de Alto Costo - Fondo Colombiano de Cuentas de Alto Costo,. 2024. https://cuentadealtocosto.org/general/dia-mundial-de-la-diabetes/2. Ministerio de Salud y Protección Social de Colombia. En el Día Mundial de la Diabetes: MinSalud promueve prácticas de vida saludable. Gov.co. https://www.minsalud.gov.co/Paginas/En-el-Dia-Mundial-de-la-Diabetes-MinSalud-promueve-praticas-de-vida-saludable.aspx3. Stable García Y. Cicatrización de Heridas en la Diabetes MellitusWound Healing in Diabetes Mellitus. Arch Med Issn 1698-9465. 2023;19:1–1581.4. Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J, et al. Updates in Diabetic Wound Healing, Inflammation, and Scarring. Semin Plast Surg. 2021;35(3):153–8.5. Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The role of antioxidants on wound healing: A review of the current evidence. J Clin Med. 2021;10(16).6. Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, et al. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid Med Cell Longev. 2021;2021(Figure 1).7. Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int J Mol Sci. 2022;23(21).8. Liu R, Gang L, Shen X, Xu H, Wu F, Sheng L. Binding characteristics and superimposed antioxidant properties of caffeine combined with superoxide dismutase. ACS Omega. 2019;4(17):17417–24.9. Gęgotek A, Skrzydlewska E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants. 2022;11(10).10. Ying X, Yu C, Yang W, Ye L, Sun R, Gu T, et al. The transformation of multifunctional bio-patch to hydrogel on skin wounds for efficient scarless wound healing. Mater Today Bio [Internet]. 2024 https://doi.org/10.1016/j.mtbio.2023.10090111. Zagórska-Dziok M, Sobczak M. Hydrogel-based active substance release systems for cosmetology and dermatology application: A review. Pharmaceutics. 2020;12(5).12. Afzal S, Barkat K, Ashraf MU, Khalid I, Mehmood Y, Shah NH, et al. Formulation and Characterization of Polymeric Cross-Linked Hydrogel Patches for Topical Delivery of Antibiotic for Healing Wound Infections. Polymers (Basel). 2023;15(7).13. Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydr Polym [Internet]. 2018 :377–83. Available from: https://doi.org/10.1016/j.carbpol.2018.01.06114. Kenawy ER, El-Meligy MA, Ghaly ZS, Kenawy ME, Kamoun EA. Novel Physically-Crosslinked Caffeine and Vitamin C-Loaded PVA/Aloe Vera Hydrogel Membranes for Topical Wound Healing: Synthesis, Characterization and In-Vivo Wound Healing Tests. J Polym Environ. 2023;(0123456789).15. Sarmiento, Suarez. Desarrollo de geles a base de alginato de sodio con alto contenido de ácido al-gulurónico para uso potencial como adhesivo para huesos. Univ los Andes [Internet]. 2015;45. Available from: https://repositorio.uniandes.edu.co/handle/1992/2435816. Irastorza RM, Drouin B, Blangino E, Mantovani D. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering. Sci World J. 2015.17. Pilch E, Musial W. Selected physicochemical properties of Lyophilized hydrogel with liposomal fraction of calcium dobesilate. Materials (Basel). 2018;11(11)18. United States Pharmacopeia. Reagents, Buffer Solutions. USP-NF. Rockville, MD: United States Pharmacopeia. 2024; https://doi.org/10.31003/USPNF_R2999_03_0119. Ahmad Bhawani S, Fong SS, Mohamad Ibrahim MN. Spectrophotometric Analysis of Caffeine. Int J Anal Chem. 201520. Gómez Ruiz B, Roux S, Courtois F, Bonazzi C. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements. Food Chem. 2016;211:583–9.21. Alhmoud HA. The uses of matrices in drug delivery: The effect of polymers on the drug release and the kinetic models. Int J Pharm Res Allied Sci [Internet]. 2017;6(3):13–20. https://www.embase.com/search/results?subaction=viewrecord&id=L618026396&from=export22. Cali S DE, Del Cauca V. Evaluación De La Cinética De Liberación De Un Fármaco Modelo Con Clasificación Biofarmacéutica Clase Ii, Desde Matrices Comprimidas Compuestas Por Materiales Poliméricos Aniónicos Juliana Jiménez Minotta Universidad Icesi Facultad De Ciencias Naturales Departamento De Ciencias Farmacéuticas. 201723. Huang WY, Hibino T, Suye SI, Fujita S. Electrospun collagen core/poly-l-lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Adv. 2021;11(10):5703–11.24. Menegatti T, Kopač T, Žnidaršič-Plazl P. Tuning Mechanical Characteristics and Permeability of Alginate Hydrogel by Polyvinyl Alcohol and Deep Eutectic Solvent Addition. Bioengineering. 2024;11(4).25. Akhtar R, Draper ER, Adams DJ, Hay J. Oscillatory nanoindentation of highly compliant hydrogels: A critical comparative analysis with rheometry. J Mater Res. 2018;33(8):873–83.26. Thompson M, Cafeína: propiedades químicas, usos y producción 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB0202769.htm#:~:text=Caffeine%20may%20be%20hygroscopic.,are%20stable%20for%203%20days27. Dong JX, Li Q, Tan ZC, Zhang ZH, Liu Y. The standard molar enthalpy of formation, molar heat capacities, and thermal stability of anhydrous caffeine. J Chem Thermodyn. 2007;39(1):108–14.28. Rendel PM, Rytwo G. Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2. Desalin Water Treat. 2020;173:231–42.29. Acofarma Fichas [MS1] de información técnica. Cafeína 2015 :3–5.30. ROTH. Ficha de datos de seguridad Cafeína SECCIÓN 1 : Identificación de la sustancia Roth [Internet]. 2019;.: https://www.carlroth.com/medias/SDB-9739-ES-31. Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, et al. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants. 2022;11(1):1–20.32. Ali Sheraz M, Khan MF, Ahmed S, Hafeez Kazi S, Ahmad I. Stability and Stabilization of Ascorbic Acid A Review. Househ Pers Care Today [Internet]. 2015;10(3):22–5. Available from: https://www.researchgate.net/publication/321148774_Stability_and_Stabilization_of_Ascorbic_Acid33. Saftić Martinović L, Birkic N, Miletić V, Antolović R, Štanfel D, Wittine K. Antioxidant Activity, Stability in Aqueous Medium and Molecular Docking/Dynamics Study of 6-Amino- and N-Methyl-6-amino-L-ascorbic Acid. Int J Mol Sci. 2023;24(2)34. Chemicalbook [Internet] Ascorbic acid: Chemical properties, uses, and production. 2024. ChemicalBook. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7853704.htm35. De D, Cas N. Información de seguridad voluntaria apoyándose en el formato de ficha de datos de seguridad conforme al Reglamento ( CE ) n . o 1907 / 2006 ( REACH ) SECCIÓN 1 : Identificación de la sustancia o la mezcla y de la sociedad o la empresa Información de segur. 2021;2006:1–13.36. Instituto nacional de seguridad y salud en el trabajo España. Icsc 0379 - ácido ascórbico [Internet]. Ilo.org. https://chemicalsafety.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0379&p_version=237. Thongsuksaengcharoen S, Samosorn S, Songsrirote K. A Facile Synthesis of Self-Catalytic Hydrogel Films and Their Application as a Wound Dressing Material Coupled with Natural Active Compounds. ACS Omega. 2020;5(40):25973–83.38. Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, et al. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem. 2024;12(February):1–21.39. Tyeb S, Verma V, Kumar N. Polysaccharide based transdermal patches for chronic wound healing: Recent advances and clinical perspective. Carbohydr Polym. 2023;316.40. De’Nobili MD, Soria M, Martinefski MR, Tripodi VP, Fissore EN, Rojas AM. Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. J Food Eng [Internet]. 2016;175:1–7. Available from: http://dx.doi.org/10.1016/j.jfoodeng.2015.11.01541. Sheskey PJ, Cook WG, Cable CG. Handbookof Pharmaceutical Excipients Eighth edition.42. LGC. Ficha de datos de seguridad Ficha de datos de seguridad. Carl Roth [Internet]. 2016;2(1907):2–7. Available from: https://hybris-static-assets-production.s3-eu-west-1.amazonaws.com/sys-master/pdfs/h96/hc3/9673630253086/EN_ST-WB-MSDS-2601489-1-1-1.PDF43. Pérez JMM, Matos MV, Pérez LEB, Haber JRG. Alginato De Sodio. 1998;18(7):90–6.44. Lisboa U De, Almeida BS De. Design Gel-Patch Systems for Enhanced Topical Delivery Design Gel-Patch Systems for Enhanced Topical Delivery. 201945. Mehrjou A, Hadaeghnia M, Ehsani Namin P, Ghasemi I. Sodium alginate/polyvinyl alcohol semi-interpenetrating hydrogels reinforced with PEG-grafted-graphene oxide. Int J Biol Macromol [Internet]. 2024;263(P2):130258. Available from: https://doi.org/10.1016/j.ijbiomac.2024.13025846. Zewail TMM, Saad MA, AbdelRazik SM, Eldakiky BM, Sadik ER. Synthesis of sodium alginate / polyvinyl alcohol / polyethylene glycol semi-interpenetrating hydrogel as a draw agent for forward osmosis desalination. BMC Chem. 2024;18(1):1–9.47. Hu O, Lu J, Chen G, Chen K, Gu J, Weng S, et al. An Antifreezing, Tough, Rehydratable, and Thermoplastic Poly(vinyl alcohol)/Sodium Alginate/Poly(ethylene glycol) Organohydrogel Electrolyte for Flexible Supercapacitors. ACS Sustain Chem Eng. 2021;9(29):9833–45.48. Fakioğlu M, Kalpaklı Y. Mechanism and behavior of caffeine sorption: affecting factors. RSC Adv. 2022;12(41):26504–1349. UPTIMA. Citric Acid Products Information. :5–6.50. Wei Q, Yang R, Sun D, Zhou J, Li M, Zhang Y, et al. Design and evaluation of sodium alginate/polyvinyl alcohol blend hydrogel for 3D bioprinting cartilage scaffold: molecular dynamics simulation and experimental method. J Mater Res Technol [Internet]. 2022;17:66–78. Available from: https://doi.org/10.1016/j.jmrt.2021.12.13051. DeJarnette K, Mamidala M. Analysis of variance [Internet]. Handbook for Designing and Conducting Clinical and Translational Surgery. Elsevier Inc.; 2023. 177–181 p. Available from: http://dx.doi.org/10.1016/B978-0-323-90300-4.00101-452. Elias, Marcus L et al. Caffeine in Skincare: Its Role in Skin Cancer, Sun Protection, and Cosmetics. Indian journal of dermatology vol. 68,5. 2023;546-550. Available from: doi:10.4103/ijd.ijd_166_2253. Baek, Jihoon P. High-potency vitamin c topical formulations. World Patent, 2020081868:A1.2020.54. Yi N, Chiang Z. Topical Vitamin C and the Skin. Jcad J Clin Aesthetic Dermatology. 2017;14(7):14–7.55. Li W, Qiao K, Zheng Y, Yan Y, Xie Y, Liu Y, et al. Preparation, mechanical properties, fatigue and tribological behavior of double crosslinked high strength hydrogel. J Mech Behav Biomed Mater [Internet]. 2022;126(November 2021):105009. Available from: https://doi.org/10.1016/j.jmbbm.2021.10500956. Kartika A, Kurniawan A, Kresna A. Analysis of the Temperature Effect on the Liquids Viscosity. J Penelit dan Pembelajaran Fis Indones. 2023;5(1).57. Amiri S, Asghari A, Harifi-Mood AR, Rajabi M, He T, Vatanpour V. Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes. Chemosphere [Internet]. 2022;308(P2):136323. Available from: https://doi.org/10.1016/j.chemosphere.2022.13632358. Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur Polym J [Internet]. 2020;130(February):109609. Available from: https://doi.org/10.1016/j.eurpolymj.2020.10960959. The Editors of Encyclopaedia Britannica. Young’s modulus. Encyclopedia Britannica [Internet]. 2025.(March). Available from: https://www.britannica.com/science/Youngs-modulus.60. Hermann W, Sockel H-G. Elastic Modulus Measurement. Encycl Mater Sci Technol. 2001;2427–961. Chen R, Xu X, Yu D, Xiao C, Liu M, Huang J, et al. Highly stretchable and fatigue resistant hydrogels with low Young’s modulus as transparent and flexible strain sensors. J Mater Chem C. 2018;6(41):11193–201.62. Bahadoran M, Shamloo A, Nokoorani YD. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep [Internet]. 2020;10(1):7–9. Available from: http://dx.doi.org/10.1038/s41598-020-64480-963. Candry P, Godfrey BJ, Wang Z, Sabba F, Dieppa E, Fudge J, et al. Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time. Sci Rep [Internet]. 2022;12(1):1–11. Available from: https://doi.org/10.1038/s41598-022-25111-764. Martinez-Garcia FD, Fischer T, Hayn A, Mierke CT, Burgess JK, Harmsen MC. A Beginner’s Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels. 2022;8(9):1–20.65. Gethin G. The significance of surface pH in chronic wounds. Wounds UK. 2007;3(3):52–6.66. Estevan B, Alio C. Ulceras por presión. Geriatrika. 1996;12(5):58–62.67. Askarizadeh M, Esfandiari N, Honarvar B, Sajadian SA, Azdarpour A. Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems. ChemBioEng Rev. 2023;10(6):1006–49.68. Anton Paar GmbH: e-learning course – Basics of Rheometry, part 1: Rotation; part 2: Oscillation. Graz, 202569. Susilawati S, Prayogi S, Arif MF, Ismail NM, Bilad MR, Asy’ari M. Optical properties and conductivity of pva–h3 po4 (Polyvinyl alcohol–phosphoric acid) film blend irradiated by γ-rays. Polymers (Basel). 2021;13(7).70. Kolotova DS, Borovinskaya E V., Bordiyan V V., Zuev YF, Salnikov V V., Zueva OS, et al. Phase Behavior of Aqueous Mixtures of Sodium Alginate with Fish Gelatin: Effects of pH and Ionic Strength. Polymers (Basel). 2023;15(10).71. Mohamed EMA, Eisa WH, Mahrous S. International Journal of Advances in Scientific Research Preparation and characterization of PEG-assisted growth of colloidal Ag nanoparticles QR Code * Article History : 2017;3(06):65–8.72. Saleem KA, Fakhre NA, Qader HA. Simultaneous Evaluation of Triclosan and Methylparaben in Some Personal Care Products Using Green Spectrophotometric Techniques. 2024;7:858–72.73. Ortiz CP, Cardenas-Torres RE, Herrera M, Delgado DR. Thermodynamic Analysis of the Solubility of Propylparaben in Acetonitrile–Water Cosolvent Mixtures. Sustain. 2023;15(6):1–16.74. Krukowski S, Karasiewicz M, Kolodziejski W. Convenient UV-spectrophotometric determination of citrates in aqueous solutions with applications in the pharmaceutical analysis of oral electrolyte formulations. J Food Drug Anal [Internet]. 2017;25(3):717–22. Available from: http://dx.doi.org/10.1016/j.jfda.2017.01.00975. Krishnaswamy S, Ragupathi V, Raman S, Panigrahi P, Nagarajan GS. Study of optical and electrical property of NaI-doped PPy thin film with excellent photocatalytic property at visible light. Polym Bull [Internet]. 2019;76(10):5213–31. Available from: https://doi.org/10.1007/s00289-018-2650-1spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1682450https://repositorio.unbosque.edu.co/bitstreams/b3e5ba09-1e4f-4c58-a88e-4092c80fb234/downloadb0a3b1feda0feeb395c000e9852bf719MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/a0ab47a8-dbfc-45f5-a5a5-fdba4d56890e/download17cc15b951e7cc6b3728a574117320f9MD54Carta de autorizacion.pdfapplication/pdf174487https://repositorio.unbosque.edu.co/bitstreams/d4a447f7-3ac5-442b-bbb4-46763cd34304/download493c77c661545224c3af2b6718eb4e32MD56Anexo 1 Acta de aprobacion.pdfapplication/pdf8767454https://repositorio.unbosque.edu.co/bitstreams/e4971c61-52d6-4fe9-ae4c-d3cd651dd413/downloade0f00c940db8300ad13be1a89e41a82eMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/0bb00b38-e226-492e-b256-1c5f7192ba33/download3b6ce8e9e36c89875e8cf39962fe8920MD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101694https://repositorio.unbosque.edu.co/bitstreams/48520500-0d87-469c-b25f-88e518a8d5dd/download920fb4d565e312fb81e50a7350d16e01MD58THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5283https://repositorio.unbosque.edu.co/bitstreams/607230a2-c2fc-492e-b97f-4bb65cc1559e/downloadbc795ebb27332964754bbd0e287ddbe9MD5920.500.12495/14347oai:repositorio.unbosque.edu.co:20.500.12495/143472025-05-16 05:00:32.755http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2028-05-14https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=