Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente

Las industrias de curtiembres son el sector industrial con mayor impacto en la contaminación de metales pesados en el río Bogotá por sus vertimientos de altas concentraciones de cromo hexavalente. Este contaminante tiene consecuencias mutagénicas con repercusiones en la salud de los diferentes entes...

Full description

Autores:
Osorio Bautista, Juan Sebastián
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12591
Acceso en línea:
https://hdl.handle.net/20.500.12495/12591
https://repositorio.unbosque.edu.co
Palabra clave:
Aprendizaje automático
Abundancia taxonómica
Biorremediación
Consorcio bacteriano
Cromo hexavalente
Perfiles funcionales
610.28
Machine learning
Taxonomic abundance
Bioremediation
Bacteria consortia
Hexavalent chromium
Function profiles
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNBOSQUE2_c796b99e30d8586c9947a27969a9297e
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12591
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
dc.title.translated.none.fl_str_mv Development of a predictive algorithm for bacterial consortia based on metabolic characteristics with potential use for the bioremediation of wastewater contaminated with hexavalent chromium
title Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
spellingShingle Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
Aprendizaje automático
Abundancia taxonómica
Biorremediación
Consorcio bacteriano
Cromo hexavalente
Perfiles funcionales
610.28
Machine learning
Taxonomic abundance
Bioremediation
Bacteria consortia
Hexavalent chromium
Function profiles
title_short Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
title_full Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
title_fullStr Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
title_full_unstemmed Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
title_sort Desarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalente
dc.creator.fl_str_mv Osorio Bautista, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Torres Ballesteros, Adriana María
Merchán Castellanos, Nuri Andrea
dc.contributor.author.none.fl_str_mv Osorio Bautista, Juan Sebastián
dc.subject.none.fl_str_mv Aprendizaje automático
Abundancia taxonómica
Biorremediación
Consorcio bacteriano
Cromo hexavalente
Perfiles funcionales
topic Aprendizaje automático
Abundancia taxonómica
Biorremediación
Consorcio bacteriano
Cromo hexavalente
Perfiles funcionales
610.28
Machine learning
Taxonomic abundance
Bioremediation
Bacteria consortia
Hexavalent chromium
Function profiles
dc.subject.ddc.none.fl_str_mv 610.28
dc.subject.keywords.none.fl_str_mv Machine learning
Taxonomic abundance
Bioremediation
Bacteria consortia
Hexavalent chromium
Function profiles
description Las industrias de curtiembres son el sector industrial con mayor impacto en la contaminación de metales pesados en el río Bogotá por sus vertimientos de altas concentraciones de cromo hexavalente. Este contaminante tiene consecuencias mutagénicas con repercusiones en la salud de los diferentes entes biológicos presentes en el ecosistema hídrico, como lo son los microorganismos. Se han propuesto técnicas para la remoción del contaminante que han sido un desafío para su desarrollo e implementación. La biorremediación se presenta como alternativa sostenible para la remoción de este metal pesado, pero su desarrollo depende de factores esenciales como la selección de microorganismos con potencial de biorremediación. El objetivo de este trabajo fue desarrollar un algoritmo predictor de consorcios bacterianos, basado en la información obtenida de rutas metabólicas, perfiles taxonómicos y perfiles funcionales de las bacterias presentes en el río Bogotá, con potencial uso para la biorremediación de Cromo hexavalente. Se identificaron los perfiles taxonómicos y funcionales de las bacterias presentes en tres puntos de muestreo del río Bogotá mediante secuenciamiento del gen 16s. El análisis bioinformático no presentó una alfa diversidad significativa con un rango de 2.75 a 3.50 (índice de Shannon). La beta diversidad evidenció cambios significativos en la composición bacteriana de los puntos (0,76 distancia de Bray Curtis). Se identificó un aumento en la riqueza de especies Acinetobacter johnsonii y Pseudomonas aeruginosa, así como dominancia de los géneros Arthrobacter, Duganella, Flavobacterium, Limnohabitans y Rhodoferax. Se implementó el modelo de regresión Random Forest para la predicción del porcentaje de biorremediación capaz de realizar cada perfil taxonómico. Este modelo expuso un error cuadrático de medio porcentaje de biorremediación de 5,41. Se implementó adicionalmente el método de clusterización aglomerativo jerárquico Agnes para la conformación del consorcio bacteriano biorremediador. El algoritmo utilizó la información de conectividad detectada en la red ecológica microbiana, los perfiles funcionales y la capacidad de biorremediación de 40 bacterias identificadas como indicadoras del aumento de la concentración de cromo (VI) en el río Bogotá. El algoritmo agrupó las bacterias Pseudomonas peli, Pseudomonas aeruginosa, Burkholderia singularis, Acinetobacter Bahumannii y Dechloromonas denitrificans en el cluster con mayor capacidad de biorremediación de Cr VI (92,2%). La capacidad de biorremediación del consorcio natural obtenido por método de extinción y el consorcio predicho por el algoritmo fue comparada, evidenciando un 78,14% y 87.19% de remoción respectivamente.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-09T16:24:00Z
dc.date.available.none.fl_str_mv 2024-07-09T16:24:00Z
dc.date.issued.none.fl_str_mv 2024-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_970fb48d4fbd8a85
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12591
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12591
https://repositorio.unbosque.edu.co
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aguilar, C. Cordovez, C. Molina, N. (2010). Plomo, cromo III y cromo VI y sus efectos sobre la salud humana. Ciencia & Tecnología para la Salud Visual y Ocular Vol. 8, No. 1. pp. 77-88.
Alayande, A. B., Aung, M. M., & Kim, I. S. (2018). Correlation Between Quorum Sensing Signal Molecules and Pseudomonas aeruginosa’s Biofilm Development and Virulency. Current Microbiology, 75(7), 787–793. https://doi.org/10.1007/s00284-018-1449-5
Alboukadel Kassambara. (2017). Practical guide to Cluster Analysis in R : unsupervised machine learning. Createspace Independent Publishing Platform.
Al-Faiz, M. Z., Ali Abdulhafidh Ibrahim, & Hadi, S. M. (2019). The effect of Z-Score standardization (normalization) on binary input due the speed of learning in back-propagation neural network. Iraqi Journal of Information and Communication Technology, 1(3), 42–48. https://doi.org/10.31987/ijict.1.3.41
Ali El-Naggar, Ahmed Mosa, Naveed Ahmed, Nabeel Khan Niazi, Balal Yousaf, Binoy Sarkar, Jörg Rinklebe, Yanjiang Cai, Scott X. Chang. (2022). Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. Chemosphere. Volume 303, Part 1. https://doi.org/10.1016/j.chemosphere.2022.134942.
Ali, W. Zhang, H. Mao, K. Shafeeque, M. Wajahat M. Yang, X. Zhong L. Feng, X. Podgorski, J. (2022). Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Science of The Total Environment. Volume 826. 153910. https://doi.org/10.1016/j.scitotenv.2022.153910.
Alzate, L. (2021). Diseño e implementación de un algoritmo para la identificación de comunidades microbianas con potencial uso en la biorremediación de ríos contaminados con cromo (VI). Repositorio Institucional Universidad el bosque, 15-24.
Andermann T, Antonelli A, Barrett R & Silvestro D. (2022). Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Frontiers in Plant Science, Vol 13. DOI :10.3389/fpls.2022.839407
Andrade C. (2020). Understanding the Difference Between Standard Deviation and Standard Error of the Mean, and Knowing When to Use Which. Indian Journal of Psychological Medicine. 42(4):409-410. doi:10.1177/0253717620933419
Arenas, J. (2019) Comparison of programming languages for algorithms in bioinformatics. Programming language benchmarking. Universidad de los Andes.
Argudo, S. & Pons, A. (2012) Mejorar las búsquedas de información. UOC, Barcelona.
Arkin, A., Cottingham, R., Henry, C. et al. (2018). KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36, 566–569. https://doi.org/10.1038/nbt.4163
Asunción, A., & Newman, D. J. (2007). UCI Machine Learning Repository. Recuperado de http://archive.ics.uci.edu/ml
Ayele, A., & Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 2021.
Azeez, N. A., Dash, S. S., Gummadi, S. N., & Deepa, V. S. (2021). Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere, 266, 129204.
BacDive. (2020). Dechloromonas denitrificans ED1 is a facultative anaerobe, mesophilic, Gramnegative bacterium that was isolated from earthworm gut.
Banerjee, S., Misra, A., Chaudhury, S., & Dam, B. (2019). A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. Journal of hazardous materials, 367, 215-223. https://doi.org/10.1016/j.jhazmat.2018.12.038
Bautista, S. (2020). Patrones de diversidad alfa y beta para quince complejos de páramo de Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Equipo de Gestión de Ecosistemas Estratégicos. Contrato: 20-20-0041-134PS.
Bhunia, A., Lahiri, D., Nag, M., Upadhye, V., & Pandit, S. (2022). Bacterial biofilm mediated bioremediation of hexavalent chromium: A review. Biocatalysis and Agricultural Biotechnology, 102397. https://www-sciencedirect-com.ezproxy.unbosque.edu.co/science/article/pii/S1878818122001244
Breitwieser, F. P., Lu, J., & Salzberg, S. L. (2019). A review of methods and databases for metagenomic classification and assembly. Briefings in bioinformatics, 20(4), 1125-1136.
Breton-Deval, L., Sanchez-Reyes, A., Sanchez-Flores, A., Juárez, K., Salinas-Peralta, I., & MussaliGalante, P. (2020). Functional Analysis of a Polluted River Microbiome Reveals a Metabolic Potential for Bioremediation. Microorganisms, 8(4), 554. https: //doi.org/ 10.3390/microorganisms8040554
Brock, G., Pihur, V., Datta, S., & Datta, S. (2021). clValid: AnRPackage for Cluster Validation. Journal of Statistical Software, 25(4).
Bobay, L. & Ochman, H. (2017). The Evolution of Bacterial Genome Architecture. Frontiers in Genetics, 8. https://doi.org/10.3389/fgene.2017.00072
Bocianowski, J., Wrońska-Pilarek, D., Krysztofiak-Kaniewska, A., Matusiak, K., & Wiatrowska, B. (2023). Comparison of Pearson’s and Spearman’s Correlation Coefficients Values for Selected Traits of Pinus sylvestris L. Preprints.org. https://doi.org/10.20944/preprints202312.1604.v1
Boehmke, B. (2018). UC Business Analytics R Programming Guide - Hierarchical Cluster Analysis. University of Cincinnati. Recuperado de https://uc-r.github.io/hc_clustering
Bonaccorso, G. (2018). Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning, 2nd Edition: Vol. 2nd ed. Packt Publishing.
Botyarov, M., & Miller, E. E. (2022). Partitioning around medoids as a systematic approach to generative design solution space reduction. Results in Engineering, 15, 100544.
Buenas prácticas de laboratorio de la OMS para laboratorios de microbiología farmacéutica (Red PARF Documento Técnico Nº 11) - OPS/OMS | Organización Panamericana de la Salud. Paho.org. (2013). Retrieved 4 May 2021
Camacho Sánchez, J. (2020). Diagnóstico sobre los niveles de Cromo hexavalente (cr+6) en el tramo IV del Río Tunjuelito. Repository.unad.edu.co. https://repository.unad.edu.co/handle/10596/36849
Carles, L., Wullschleger, S., Joss, A., Eggen, R. I. L., Schirmer, K., Schuwirth, N., Stamm, C., & Tlili, A. (2022). Wastewater microorganisms impact microbial diversity and important ecological functions of stream periphyton. Water Research, 225, 119119. https://doi.org/10.1016/j.watres.2022.119119
Carmenaty, D. A. C., Silva, R. M. P., Aguilera, I., & Lamela, O. C. (2010). Validación Interna Del Método Espectofotométrico Por Adecuación, Para La Determinación De Cromo (vi) En Aguas Residuales. Revista Cubana de Química, XXII(3), 9–13.
Caviedes, D., Muñoz, R., Perdomo, A., Rodríguez, D., & Sandoval, I (2015). Tratamientos para la remoción de metales pesados comúnmente presentes en aguas residuales industriales. Una revisión. Ingeniería y región, (13), 73-90. https://doi.org/10.25054/22161325.710
Chakraborty, J., Palit, K., & Das, S. (2022). Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment—a case study on north-eastern coast of Bay of Bengal, India. Microbial Biodegradation and Bioremediation, 81–107. https //doi.org/10.1016/b978-0-323-85455-9.00014-x
Charrad, Malika, Nadia Ghazzali, Véronique Boiteau, & Azam Niknafs. (2014). “NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set.” Journal of Statistical Software 61: 1–36. http://www.jstatsoft.org/v61/i06/paper.
Chávez, A. (2010). Descripción de la nocividad del cromo proveniente de la industria curtiembre y de las posibles formas de removerlo. Revista Ingenierías Universidad de Medellín, 9(17), 41-49.
Chen, S.-J., Shu, H.-Y., & Lin, G.-H. (2021). Regulation of tert-Butyl Hydroperoxide Resistance by Chromosomal OhrR in A. baumannii ATCC 19606. Microorganisms, 9(3), 629–629.
Chen, Y., Hu, W., Huang, B., Weindorf, D. C., Rajan, N., Liu, X.,& Niedermann, S. (2013). Accumulation and health risk of heavy metals in vegetables from harmLess and organic vegetable production systems of China. Ecotoxicology and environmental safety, 98, 324-330.
Cheng, H., Garrick, D. & Fernando, R. (2017). Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. J Animal Sci Biotechnol 8, 38. https://doi.org/10.1186/s40104-017-0164-6
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7(5), e623. ncbi. https://doi.org/10.7717/peerj-cs.623
Chong, P. P., Chin, V. K., Looi, C. Y., Wong, W. F., Madhavan, P., & Yong, V. C. (2019). The Microbiome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Frontiers in Microbiology, 10(10). https://doi.org/10.3389/fmicb.2019.01136
Claussen JC, Skiecevičienė J, Wang J, Rausch P, Karlsen TH, Lieb W, et al. (2017). Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome. PLoS Comput Biol 13(6): e1005361. https://doi.org/10.1371/journal.pcbi.1005361
Contaminación del agua. (2015). Universidad de Granada. https://www.ugr.es/f̃garciac/pdf_color/tema4%20%5BModo%20de%20compatibilidad%5D.pdf
Cui, J., Huang, L., Wang, W., Xu, P., Zanaroli, G. & Tang, H. (2020). Maximization of the petroleum biodegradation using a synthetic bacterial consortium based on minimal value algorithm. International Biodeterioration & Biodegradation, 150, 104964. https://doi.org/10.1016/j.ibiod.2020.104964
Cummings, D. E., Fendorf, S., Singh, N., Sani, R. K., Peyton, B. M., & Magnuson, T. S. (2006). Reduction of Cr(VI) under Acidic Conditions by the Facultative Fe(III)-Reducing Bacterium Acidiphilium cryptum. Environmental Science & Technology, 41(1), 146–152. https://doi.org/10.1021/es061333k
Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random Forests. Ensemble Machine Learning, 157–175. https://doi.org/10.1007/978-1-4419-9326-7_5
Dangeti, P. (2017). Statistics for machine learning: build supervised, unsupervised, and reinforcement learning models using both Python and R. Packt Publishing.
Decreto 2811 de 1974 [con fuerza de ley]. Por medio del cual se expide el Código de Recursos Naturales Renovables y de Protección al Medio Ambiente. 27 de enero de 1974. D.O. No. 34243.
de Souza, O., Sinhor, V., Crizel, G., Pires, N., Sanches, J., Picoloto, R. S., ... & Mesko, M. F. (2022). Bioremediation of chromium and lead in wastewater from chemistry laboratories promotes by cyanobacteria. Bioresource Technology Reports, 19, 101161.
Dellai, A., Dridi, D., Lemorvan, V. et al. (2013). Decolorization does not always mean detoxification: case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environ Sci Pollut Res 20, 5790–5796. https://doi.org/10.1007/s11356-013-1603-3
Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics, 13(1), 113. https://doi.org/10.1186/1471-2105-13-113
Díaz-García L, Huang S, Spröer C, Sierra-Ramírez R, Bunk B, Overmann J, Jiménez DJ., (2021). Dilution-to-Stimulation/Extinction Method: a Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Appl Environ Microbiol. 2021 Jan 4;87(2): e02427-20. doi: 10.1128/ AEM.02427-20. PMID: 33127812; PMCID: PMC7783344.
Dong-ju, K., Seung-gun, C., Sang-hyup, L. & Jae-woo, C. (2012). Relation of microbial biomass to counting units for Pseudomonas aeruginosa. African Journal of Microbiology Research, 6(21). https://doi.org/10.5897/ajmr10.902
Dutta, A., Goldman, T., Keating, J., Burke, E., Williamson, N., Dirmeier, R., & Bowman, J. S. (2022). Machine Learning Predicts Biogeochemistry from Microbial Community Structure in a Complex Model System. Microbiology Spectrum, 10(1). https://doi.org/10.1128/spectrum.01909-21
Dwan, A., Sánchez, B., Alexander, J., Castellanos, D., Clara, M., & Gaitán, E. (2021). Estudio de la composición de comunidades bacterianas en aguas del distrito de riego la ramada. Trabajo de Maestría. Universidad de los Andes.
Eddy S. (2017). Accelerated Profile HMM Searches. PLOS Computational Biology. 7: e1002195. doi:10.1371/journal.pcbi.1002195
Esser, M., Hoggarth, C., Baulch, H. M., Challis, J. K., Xie, Y., Giesy, J. P., Hecker, M., & Brinkmann, M. (2023). Wastewater discharges alter microbial community composition in surface waters of the canadian prairies. Chemosphere, 334, 138991–138991.
Fahmy, K. (2022). Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms, 10(7), 1397.
Fang, W., Fan, T., Wang, S., Yu, X., Lu, A., Wang, X., Zhou, W., Yuan, H., & Zhang, L. (2023). Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. Science of the Total Environment, 905, 167027–167027. https://doi.org/10.1016/j.scitotenv.2023.167027
Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10(8), 538–550. https://doi.org/10.1038/nrmicro2832
Ferrario, A., & Hämmerli, R. (2019). On Boosting: Theory and Applications. Social Science Research Network. https://doi.org/10.3929/ethz-b-000383242
Forero Pineda, N., Marín - Suárez, J., Forero- Ulloa, F. E., & Gómez-Palacio, A. (2021). Extracción de ADN bacteriano a partir de cuerpos de agua de uso agrícola. Ciencia Y Agricultura, 18(1), 36–45. https://doi.org/10.19053/01228420.v18.n1.2021.11703
Francke. H. (1997). Tecnologías modernas para la optimización del proceso de curtición al cromo. Lahstein, Alemania. https://biblioteca.org.ar/libros/cueros/curtido.htm
Friedman J, Alm EJ (2012) Inferring Correlation Networks from Genomic Survey Data. PLOS Computational Biology 8(9): e1002687.
Fuchs, S., Di Lascio, F. M. L., & Durante, F. (2021). Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables. Computational Statistics & Data Analysis, 159, 107201. https://doi.org/10.1016/j.csda.2021.107201
Fujimoto A, Nakagawa H, Hosono N, Nakano K, Abe T, et al. (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing.
Fullwood, M. J., Wei, C.-L. ., Liu, E. T., & Ruan, Y. (2009). Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Research, 19(4), 521–532.
Fundación Humedales Bogotá. (2016). Páramo de Guacheneque. Fecha de acceso marzo de 2024. https://humedalesbogota.com/paramo-de-guacheneque/
Garboza, Fátima, Frontado, Ronald, Noguera, Nirza, Ávila, Horacio, Ojeda, Luis, Ramírez, Ninoska, Triana, Juana, & Triana, Francisco. (2011). Uso de medios alternativos a base de hidrolizado de caseína y extracto de Aspergillus niger y su efecto sobre la expresión genética de una cepa de Escherichia coli. Revista de la Sociedad Venezolana de Microbiología, 31(2), 138-143. Recuperado en 21 de febrero de 2024, de http://ve.scielo.org/scielo.phpcript=sci_arttext&pid=S1315-25562011000200010& lng=es&tlng=es.
Garcia-Etxebarria, K., Garcia-Garcerà, M., & Calafell, F. (2014). Consistency of metagenomic assignment programs in simulated and real data. BMC bioinformatics, 15(1), 1-10.
Gobierno del Encuentro. (2013). Estudio para conocer los potenciales impactos ambientales y vulnerabilidad relacionada con las sustancias químicas y tratamiento de desechos peligrosos en el sector productivo del Ecuador. Ministerio de ambiente. https: //www.ambiente.gob.ec/wp-content/uploads/downloads/ 2013/03/PART2.pdf
Gollapudi, S. (2016). Practical Machine Learning. Packt Publishing.
Gong, R., & Li, S. (2014). Extraction of human genomic DNA from whole blood using a magnetic microsphere method. International Journal of Nanomedicine, 3781. https://doi.org/10.2147/ijn.s59545
Gupta, P. K., Yadav, B., Kumar, A., & Himanshu, S. K. (2021). Machine learning and artificial intelligence application in constructed wetlands for industrial effluent treatment: advances and challenges in assessment and bioremediation modeling. Bioremediation for Environmental Sustainability, 403-414. https://doi.org/10.1016/B978-0-12-820524-2.00016-X
Guseva, K., Darcy, S., Simon, E., Alteio, L. V., Montesinos-Navarro, A., & Kaiser, C. (2022). From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry, 169, 108604. https://doi.org/10.1016/j.soilbio.2022.108604
Guzmán, A., Isabel, M., Yesid Cuesta-Astroz, & Torres, G. (2020). Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia. Brazilian Journal of Microbiology, 51(3), 1259–1267. https://doi.org/10.1007/s42770-020-00260-x
Hacılar, O. U. Nalbantoğlu and B. Bakir-Güngör. (2018) ”Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset,” 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 434-438, doi:10.1109/UBMK.2018.8566487.
Haulian, R. (2014). Diagnóstico sobre los niveles de cromo hexavalente (cr+6) en el tramo iv del río Tunjuelito. Repository usu ac Id bitstream 123456789 3747 1 FKM-JUANITA5, Academia.edu. Available at: https://www.academia.edu/7496208/Repository_usu_ac_idjuanita5 (Accessed: 21 February 2024).
Hauptfeld, E., Pelkmans, J., Huisman, T. T., Anocic, A., Snoek, B. L., von Meijenfeldt, F. B., ... & Dutilh, B. E. (2022). A metagenomic portrait of the microbial community responsible for two decades of bioremediation of poly-contaminated groundwater. Water Research, 221, 118767.
Hidrolab. (2021, 22 diciembre). Análisis de residuos sólidos y líquidos. https ://www.hidrolab.com/servicios/analisis-residuos-solidos-y-liquidos/
Horn, M. A., Ihssen, J., Matthies, C., Schramm, A., Acker, G., & Drake, H. L. (2005). Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1255–1265. https://doi.org/10.1099/ijs.0.63484-0
Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Imran KM, Moniruzzaman M, Mou TJ, Parvez AK, Mahmud ZH, (2020). Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. Int J Environ Res Public Health. 2020 Aug 19;17(17):6013. doi:10.3390/ijerph17176013. PMID: 32824890; PMCID: PMC7504174.
Huang, X. N., Min, D., Liu, D. F., Cheng, L., Qian, C., Li, W. W., & Yu, H. Q. (2019). Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. Environment international, 129, 86-94 https://doi.org/10.1016/j.envint.2019.05.016.
Iltaf, J., Zaheer, T., Tariq, L., Amir, M. B., Fatima, R., Asbat, A., Kabeer, T., Fahad, M., Naeem, H., Shoukat, U., Noor, H., Awais, M., Umar, W. & Ayyub, M. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Science of The Total Environment, 850, 157961. https://doi.org/10.1016/j.scitotenv.2022.157961
Jahan, M., & Hasan, M. (2021). A robust fuzzy approach for gene expression data clustering. Soft Computing, 25(23), 14583–14596. https://doi.org/10.1007/s00500-021-06397-7
Jayakumar, S., Daisy, T., Kalaiselvi, J., Mahalakshmi, P.,& Soumiya, V. (2020). A Theoretical study on the Microbial Fuel Cells Technology for Waste Water Treatment along with Heavy Metal Reduction and Power Generation using Nano catalysts. Aut Aut Research Journal, 11(6), 93-98.
Jia, S., Jia, R., Zhang, K., Sun, S., Lu, N., Wang, M., & Zhao, Q. (2020). Disinfection characteristics of Pseudomonas peli, a chlorine-resistant bacterium isolated from a water supply network. Environmental Research, 185, 109417. https://doi.org/10.1016/j.envres.2020.109417
Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere, 207, 255-266. https ://doi.org/10.1016/j.chemosphere.2018.05.050
Jobby R, Jha P, Gupta A, Gupte A, Desai N., (2019) Biotransformation of chromium by root nodule bacteria Sinorhizobium sp. SAR1. PLoS One, 30;14(7):e0219387. doi: 10.1371/journal.pone.0219387.PMID: 31361751; PMCID: PMC6667149.
Jones, A. (2024) Purity ratios: Nucleic acid ratios: Technical note 130, DeNovix. Available at: https://www.denovix.com/tn-130-purity-ratios-explained/ (Accessed: 21 February 2024).
Joutey, N. T., Sayel, H., Bahafid, W., & El Ghachtouli, N. (2014). Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms. Reviews of Environmental Contamination and Toxicology Volume 233, 45–69. https://doi.org/10.1007/978-3-319-10479-9_2
Karrar, A. E. (2022). The Effect of Using Data Pre-Processing by Imputations in Handling Missing Values. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 10(2).
Kao, C. M., Liao, H. Y., Chien, C. C., Tseng, Y. K., Tang, P., Lin, C. E., & Chen, S. C. (2016). The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. Journal of hazardous materials, 302, 144-150.
Kaul A, Mandal S, Davidov O, Peddada SD. (2017). Analysis of Microbiome Data in the Presence of Excess Zeros. Front Microbiol. Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. PMID: 29163406; PMCID: PMC5682008.
Khan, I., Aftab, M. & Shakir, S. (2019). Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191, 585.
Klein, C.C., Cottret, L., Kielbassa, J. et al. (2012). Exploration of the core metabolism of symbiotic bacteria. BMC Genomics 13, 438. https://doi.org/10.1186/1471-2164-13-438
Kuddus, M. (2018). Bioremediation: Advances in Research and Applications. Nova.
Laxman, R. S., & More, S. (2002). Reduction of hexavalent chromium by Streptomyces griseus. Minerals Engineering, 15(11), 831–837. https://doi.org/10.1016/s0892-6875(02)00128-0
Lin, W.-H. et al. (2023) ‘Cleanup of cr(vi)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms’, Journal of Environmental Management, 339, p. 117947. doi: 10.1016/j.jenvman.2023.117947.
Liu, B., Yao, J., Ma, B., Chen, Z., Zhao, C., Zhu, X. & Duran, R. (2021). Microbial community profiles in soils adjacent to mining and smelting areas: Contrasting potentially toxic metals and co-occurrence patterns. Chemosphere, 282, 130992.
Liu, Y., Zeng, M., Xie, Z., Ning, D., Zhou, J., Yu, X., Liu, R., Zhang, L., & Fang, J. (2022). Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms, 10(3), 639. https://doi.org/10.3390/microorganisms10030639
López, T, Dominguez, L & García, J. (2007). Arreglo estructural de un consorcio microbiano de interés alimentario en la producción del vinagre. Trabajo presentado en el octavo Congreso Nacional de Microscopía, Octubre, México.
López, M,(2016) La contaminación del agua con cromo. Fundación para el Conocimiento madrid. https://www.madrimasd.org/
Lucena-Aguilar, G. et al. (2016) DNA source selection for downstream applications based on DNA Quality Indicators Analysis, Biopreservation and biobanking.
Luijken, K., Song, J., & Groenwold, R. H. H. (2022). Quantitative prediction error analysis to investigate predictive performance under predictor measurement heterogeneity at model implementation. Diagnostic and Prognostic Research, 6(1).
Mahé, F., Rognes, T., Quince, C., de Vargas, C., & Dunthorn, M. (2014). Swarm: robust and fast clustering method for amplicon-based studies. PeerJ, 2, e593.
Malaviya, P. & Singh, A. (2014). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 27.
Marino, B. (2006). Evaluación de las tecnologías de tratamiento de aguas subterráneas contaminadas con Cromo, Universitat Politecnica Catalunya. http://hdl.handle.net/2099.1/3153
Ma, L., Xu, J., Chen, N., Li, M., & Feng, C. (2019). Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicology and environmental safety, 170, 763-770. https://doi.org/10.1016/j.ecoenv.2018.12.041
Maalouf, M. (2011). Logistic regression in data analysis: an overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281. https://doi.org/10.1504/ijdats.2011.041335
Mala, J. G. S. M., Takeuchi, S., Sujatha, D., & Mani, U. (2020). Microbial Chromate Reductases: Novel and Potent Mediators in Chromium Bioremediation-A Review. Applied Microbiology: Theory & Technology, 32-44.
Marchesi, J.R., Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3, 31.
Mariappan, V., Vellasamy, K. M., Hashim, O. H., & Vadivelu, J. (2011). Profiling of Burkholderia cepacia Secretome at Mid-Logarithmic and Early-Stationary Phases of Growth. PLoS ONE, 6(10), e26518. https://doi.org/10.1371/journal.pone.0026518
Mathieu, A., Leclercq, M., Sanabria, M., Perin, O., & Droit, A. (2022). Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.811495
Maulud, D., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.
McMurdie, P.J. and Holmes, S. (2014). ‘Waste not, want not: Why rarefying microbiome data is inadmissible’, PLoS Computational Biology, 10(4). doi:10.1371/journal.pcbi.1003531.
McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: a review of the literature from an educational perspective. Computer Science Education, 18(2), 67–92. https://doi.org/10.1080/08993400802114581
Mehdi L, David M. & David S. (2018). Constructing and Analyzing Microbiome Networks in R. Microbiome Analysis: Methods and Protocols, Methods in Molecular Biology, vol. 1849, Chapter 16.
Mercado, J.V., Koyama, M. and Nakasaki, K. (2022) Co-occurrence network analysis reveals loss of microbial interactions in anaerobic digester subjected to repeated organic load shocks, Water Research, 221, p. 118754. doi:10.1016/j.watres.2022.118754.
Ministerio de ambiente y desarrollo sostenible. (2013). Decreto 2811 del 18 de diciembre de 1974.”Por el cual se dicta el Código Nacional de Recursos Naturales Renovables y de Protección al Medio Ambiente. https://www.minambiente.gov.co/ wp-content/uploads/2021/10/Decreto-2811-de-1974.pdf ”Ministerio de salud y protección social. (2018). LEY 1930 DE 2018. ”POR MEDIO DE LA CUAL SE DICTAN DISPOSICIONES PARA LA GESTIÓN INTEGRAL DE LOS PÁRAMOS EN COLOMBIA”. https://www.funcionpublica .gov.co/eva/gestornormativo/norma.php?i=87764
Ministerio de salud y protección social. (2022). RESOLUCIÓN NÚMERO 172 DE 2022 Por la cual se autorizan los laboratorios para la realización de análisis físicos, químicos y microbiológicos de agua para el consumo humano https ://minsalud.gov.co/ Normatividad_Nuevo/Resoluci%C3%B3n%20No.%20172%20de%202022.pdf
Mora Collazos, Alexander. (2016). Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova scientia, 8(17), 361-378. Recuperado en 26 de septiembre de 2022, de http://www.scielo.org.mx/scielo.php? script=sci_arttext&pid=S2007-07052016000200361&lng=es&tlng=es.
MP Biomedicals (2021). FastDNA SPIN Kit for Soil User manual. Fecha de accceso Agosto (2023). https: //www.mpbio.com/media/document/file/manual/FastDNA _SPIN_Kit_for_SoilWEB.pdf
Mushtaq, H., Khawaja, S. G., Akram, M. U., Yasin, A., Muzammal, M., Khalid, S., & Khan, S. A. (2018). A Parallel Architecture for the Partitioning Around Medoids (PAM) Algorithm for Scalable Multi-Core Processor Implementation with Applications in Healthcare. Sensors, 18(12), 4129.
Najat, N., & Abdulazeez, A. M. (2017). Gene clusteringwith partition around mediods algorithm basedon weighted andnormalized Mahalanobis distance. In 2017 International Conferenceon Intelligent Informatics and Biomedical Sciences (ICIIBMS) (pp.140-145).
Namkung, J. (2020) Machine learning methods for microbiome studies. Journal of Microbiology. 58, 206–216. https://doi-org.ezproxy.unbosque.edu.co/10.1007/s12275-020-0066-8
NewEngland BioLabs. (2023). Monarch® Genomic DNA Purification Kit instruction manual. NEB T3010S/L.
Nielsen, F. (2016). Hierarchical Clustering. Introduction to HPC with MPI for Data Science, 195–211.
Ochoa, D. & Montoya, A. (2010). Consorcios microbianos: una metáfora biológica aplicada a la asociatividad empresarial en cadenas productivas agropecuarias. Revista de la Facultad de Ciencias Económicas: Investigación y reflexión, Vol 18(2), 55-74. http://www.scielo.org.co/pdf/rfce/v18n2/v18n2a04.pdf
Oti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive Review of K-Means Clustering Algorithms. International Journal of Advances in Scientific Research and Engineering, 07(08), 64–69.
Ormaza-González, F.I. et al. (2022) Sampling bottles for shallow estuarine waters, constructed using inexpensive recyclable materials, Estuarine, Coastal and Shelf Science, 275, p. 107965. doi:10.1016/j.ecss.2022.107965.
Ortega, O. (2013) .Research Hints: Guía para la elaboración de un plan de Búsqueda. Universidad de Antioquia, Colombia.
Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104(16), 6544–6549. https://doi.org/10.1073/pnas.0701085104
Pardakhti, M., Mandal, N., Ma, A. W. K., & Yang, Q. (2021). Practical Active Learning with Model Selection for Small Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). https://doi.org/10.1109/icmla52953.2021.00263
Pédron J, Guyon L, Lecomte A, Blottière L, Chandeysson C, Rochelle-Newall E, Raynaud X, Berge O, Barny MA. (2020). Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa. Microorganisms. Jul 27;8(8) :1129. doi: 10.3390/microorganisms8081129.
Peschel, S. et al. (2020) Netcomi: Network construction and comparison for microbiome data in R, Briefings in Bioinformatics, 22(4). doi :10.1093/bib/bbaa290.
Prasad, S. Kumar, K. Kumar, S… Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approach, Journal of Environmental Management, Volume 285. ISSN 0301-4797 https://doi.org/10.1016/j.jenvman.2021.112174.
Pure Heart (2011) Tannery Operations, :: WorstPolluted.org : Projects Reports. Available at: http://www.worstpolluted.org/ projects_reports/display/88 (Accessed: October 30, 2022).
Pushkar, B., Sevak, P., Parab, S., & Nilkanth, N. (2021). Chromium pollution and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Management, 287, 112279. https://doi.org/10.1016/j.jenvman.2021.112279
Quiñonero, J., Sugiyama, M., Schwaighofer, A. & Lawrence, D. (2009). Dataset Shift in Machine Learning. The MIT Press.
QIIME2 documentation (2023). ”Moving Pictures” tutorial .9.2 documentation. Docs.qiime2.org. Retrieved February 24, 2024, from https://docs.qiime2.org/2024.2/tutorials/moving-pictures/
Rahman, Z., & Thomas, L. (2021). Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Frontiers in Microbiology, 11.
Ramos, L. (2018). Estudio de la dinámica del cromo en la cuenca alta del río Bogotá mediante la selección y aplicación de un modelo de calidad de agua para la representación de contaminantes conservativos en cuerpos de agua lóticos. Trabajo de grado para obtener el título de Ingeniero Ambiental. Universidad Nacional Abierta y a Distancia.
Reyes, L. (2017). Aplicación del algoritmo Adaboost.rt para la predicción del índice Colcap y el diseño de un controlador no lineal. Universidad Distrital Francisco José de Caldas.
Reyes, Y., Vergara, I., Torres, O., Lagos, M. D., & Jimenez, E. E. G. (2016). Contaminación por metales pesados: implicaciones en Salud, ambiente y seguridad alimentaria. Revista Ingeniería, Investigación y Desarrollo,16 ( 2),66-77. https://dialnet.unirioja.es/servlet/articulo?codigo=6096110
Rognes T;Flouri T;Nichols B;Quince C;Mahé F; (2016) VSEARCH: A versatile open source tool for metagenomics, PeerJ. Available at: https://pubmed.ncbi.nlm.nih.gov/27781170/ (Accessed: 21 February 2024).
Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P., Baranyi, J., Peck, M. W., & Hinton, J. C. D. (2011). Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology, 194(3), 686–701. https://doi.org/10.1128/jb.06112-11
Röttjers L & Faust K. (2018) From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 1;42(6):761-780. doi: 10.1093/femsre/fuy030. PMID: 30085090; PMCID: PMC6199531
Ruiz-Moreno, H. A., López-Tamayo, A. M., Caro-Quintero, A., Husserl, J. & González Barrios, A. F. (2019). Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecological Modelling, 399, 1-12. https://doi.org/10.1016/j.ecolmodel.2019.02.001
S. K. Pradhan, N. R. Singh, B. P. Rath & H. N. Thatoi (2016): Bacterial chromate reduction: a review of important genomic, proteomic and bioinformatic analysis, Critical Reviews in Environmental Science and Technology, DOI: 10.1080/10643389.2016.1258912
Saganome Rodríguez, G. (2016). Diversidad de microorganismos endófitos y su papel en el ciclo de nitrógeno en macrófitas flotantes del Humedal Meandro del Say. Biología.
Salem, N., & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292–299. https://doi.org/10.1016/j.procs.2019.12.111
Sathishkumar, K., Murugan, K. & Benelli, G. (2017). Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol 67, 91–98.
Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies. PLoS ONE, 6(12), e27310. https://doi.org/10.1371/journal.pone.0027310
Schmidt T, Friehs K, Schleef M, Voss C, Flaschel E. (1999). Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal Biochem. 15;274(2):235-40.
Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal: Promoting Communications on Statistics and Stata, 20(1), 3–29. https://doi.org/10.1177/1536867x20909688
Severiche, C. & González, H. (2013). Verificación analítica para las determinaciones de cromo hexavalente en aguas por espectrofotometría. Ingenierías USBMed, 4(1), 22–26.
Shahneela Pitafi, Anwar, T., & Sharif, Z. (2023). A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms. Applied Sciences, 13(6), 3529–3529.
Shao, K., Yao, X., Wu, Z. et al. (2021). The bacterial community composition and its environmental drivers in the rivers around eutrophic Chaohu Lake, China. BMC Microbiol 21, 179. https://doi.org/10.1186/s12866-021-02252-9
Sharma, P. Kumar, A. Sang-Hyoun, K. Pratap, S. Chaturvedi, P, Varjani, S. (2021). Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation. Volume 24. 101826. https://doi.org/10.1016/j.eti.2021.101826.
Sharma, P., Singh, S. P., Parakh, S. K., & Tong, Y. W. (2022). Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered, 13(3), 4923–4938.
Sierra, I. N., Ferreira, M. J., Torres-Ballesteros, A., Louvado, A., Gomes, N., & Cunha, A. (2024). Brevibacterium EB3 inoculation enhances rhizobacterial community interactions leading to improved growth of Salicornia europaea. Applied Soil Ecology, 196, 105306–105306.
Solomatine, D. & Shrestha,D. (2004).AdaBoost. RT: a boosting algorithm for regression problems IEEE Int. Jt. Conf. Neural Networks, vol. 2, pp. 1163–1168.
Su, Y., Sun, S., Liu, Q., Zhao, C., Li, L., Chen, S., ... & Tang, F. (2022). Characterization of the simultaneous degradation of pyrene and removal of Cr (VI) by a bacteria consortium YH. Science of The Total Environment, 853, 158388.
Sukanta Kumar Pradhan, Nihar Ranjan Singh, Bhagwat Prasad Rath & Hrudayanath Thatoi (2016) Bacterial chromate reduction: A review of important genomic, proteomic, and bioinformatic analysis, Critical Reviews in Environmental Science and Technology, 46:21-22, 1659-1703, DOI: 10.1080/10643389.2016.1258912
Sun, Y., Li, X., Cao, N., Duan, C., Ding, C., Huang, Y., & Wang, J. (2022). Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. Journal of Hazardous Materials, 439, 129610. https://doi.org/10.1016/j.jhazmat.2022.129610
Tang, R., Li, X., Mo, Y., Ma, Y., Ding, C., Wang, J., ... & Wang, X. (2019). Toxic responses of metabolites, organelles and gut microorganisms of Eisenia fetida in a soil with chromium contamination. Environmental Pollution, 251, 910-920. https://www-sciencedirect- com.ezproxy.unbosque.edu.co /science/article/pii/S0269749119316057
Tankeshwar, A. (2022, 7 abril). Bacterial Culture Media: Classification, Types, Uses. Microbe Online. Recuperado 15 de abril de 2022, de http://microbeonline.com/types-of-bacteriological-culturemedium/
Tichý, Lubomı́r & Milan Chytrý. (2006). “Statistical determination of diagnostic species for site groups of unequal size.” Journal of Vegetation Science 17 (6): 809
Tomasz Burzykowski, Geubbelmans, M., Rousseau, A.-J., & Valkenborg, D. (2023). Validation of machine learning algorithms. American Journal of Orthodontics and Dentofacial Orthopedics, 164(2), 295–297. https://doi.org/10.1016/j.ajodo.2023.05.007
Tu, Q., Yan, Q., Deng, Y., Michaletz, S. T., Buzzard, V., Weiser, M. D., Waide, R. B., Ning, D., Wu, L., He, Z., & Zhou, J. (2020). Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biology & Biochemistry, 148, 107897–107897.
Tufail, M. A., Iltaf, J., Zaheer, T., Tariq, L., Amir, M. B., Fatima, R., ... & Ayyub, M. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Science of The Total Environment, 157961.
Umargono, E., Suseno, J. E., & Gunawan, S. K. V. (2020, October 11). K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula. Www.atlantis-Press.com; Atlantis Press. https://doi.org/10.2991/assehr.k.201010.019
Urrea, V. (2022). Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico. Tesis presentada como requisito para obtener el título de Bióloga. Universidad del Rosario. Rescatado del repositorio institucional de la universidad del Rosario.
Valenzuela-González, F., Martínez-Porchas, M., Villalpando-Canchola, E., & Vargas-Albores, F. (2016). Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken). Journal of microbiological methods, 122, 38-42.
Vanparys, B. (2006). Pseudomonas peli sp. nov. and Pseudomonas borbori sp. nov., isolated from a nitrifying inoculum. INTERNATIONAL JOURNAL of SYSTEMATIC and EVOLUTIONARY MICROBIOLOGY, 56(8), 1875–1881. https://doi.org/10.1099/ijs.0.64224-0
Vandamme, P., Peeters, C., Birgit De Smet, Price, E. P., Sarovich, D. S., Deborah Boran Henry, Hird, T. J., James, Mayo, M., Warner, J. H., Baker, A. J., Currie, B. J., & Carlier, A. (2017). Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01679
Vargas-Albores, F., Luis Enrique Ortiz-Suárez, Villalpando-Canchola, E., & Martínez-Porchas, M. (2017). Size-variable zone in V3 region of 16S rRNA. RNA Biology, 14(11), 1514–1521. https://doi.org/ 0.1080/15476286.2017.1317912
Wang, A., Gao, L., Ren, N., Xu, J., Liu, C., & Lee, D. J. (2010). Enrichment strategy to select functional consortium from mixed cultures: consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production. International journal of hydrogen energy, 35(24), 13413-13418.
Wang, Xusheng et al. (2023) ‘Microbial community composition and degradation potential of petroleumcontaminated sites under heavy metal stress’, Journal of Hazardous Materials, 457, p. 131814. doi:10.1016/j.jhazmat.2023.131814.
Wang, S., Hua, X., & Cui, L. (2021). Characterization of microbiota diversity of engorged ticks collected from dogs in China. Journal of Veterinary Science, 22(3). https://doi.org/10.4142/jvs.2021.22.e37
Wang YS, Dai TM, Tian H, Wan FH, Zhang GF. (2019). Comparative analysis of eight DNA extraction methods for molecular research in mealybugs. PLOS ONE 14(12): e0226818.
Wilhelm, R.C. et al. (2023). Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils, Nature News.
Xiao, Y., Angulo, M.T., Friedman, J. et al. (2017). Mapping the ecological networks of microbial communities. Nat Commun 8, 2042. https://doi.org/10.1038/s41467-017-02090-2
Xie, Y. (2024). bookdown: Authoring Books and Technical Documents with R Markdown. Taylor and Francis group.
Y. C. Reyes, I. Vergara, O. E. Torres, M. Díaz, and E. E. González, (2016). Contaminación Por Metales Pesados: Implicaciones En Salud, Ambiente Y Seguridad Alimentaria. Ing. Investig. y Desarro., vol.16, no. 2, pp. 66–77.
Yang, Z., Algesheimer, R. & Tessone, C. A Comparative Analysis of Community Detection Algorithms on Artificial Networks. Sci Rep 6, 30750 (2016). https ://doi.org/10.1038/srep30750
Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Victor, H., Guerrero, V.H. (2021). Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation. 22, 101504 https://doi.org/ 10.1016/j.eti.2021.101504.
Zeeshan Haider Jaffari, Jeong, H., Shin, J., Kwak, J., Son, C., Lee, Y.-G., Kim, S., Chon, K., & Kyung Hwa Cho. (2023). Machine-learning-based prediction and optimization of emerging contaminants’ adsorption capacity on biochar materials. Chemical Engineering Journal, 466, 143073–143073.
Zhao C, Yang Q, Chen W, Teng B. (2012). Removal of hexavalent chromium in tannery wastewater by Bacillus cereus. Can J Microbiol. Jan;58(1):23-8. doi: 10.1139/w11-096. Epub 2011 Dec 13. PMID:22149215.
Zhao, W. P., Li, J., Zhao, J., Zhao, D., Lu, J., & Wang, X. (2020). XGB Model : Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm. Radioengineering, 29(1), 81–93. https://doi.org/10.13164/re.2020.0081
Zou, L. Liu, P. & Xiangkai, L. (2013). New advances in molecular mechanism of microbial hexavalent chromium reduction. Identification and quantification of isoflavones in Bangladeshi. Available at: http://www.sciencewebpublishing.net/ijbfs/archive/2017/September/Abstract/Saleh et al.htm (Accessed:21 February 2024).
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bioingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/c6fde8d1-5793-43d6-a055-184b364c62d1/download
https://repositorio.unbosque.edu.co/bitstreams/777ca924-93c4-4a54-b145-b7ee54bb18c8/download
https://repositorio.unbosque.edu.co/bitstreams/1c7f9627-21bd-463a-a295-f4eff946914b/download
https://repositorio.unbosque.edu.co/bitstreams/fe720db0-da29-4027-a9b7-749fb41e8b38/download
https://repositorio.unbosque.edu.co/bitstreams/4732ae70-65a5-4edc-83ba-5f5f36b56a3e/download
https://repositorio.unbosque.edu.co/bitstreams/779a1b00-4876-44be-98b2-c3d2f55f1cbc/download
https://repositorio.unbosque.edu.co/bitstreams/ee06c3d5-d463-4b12-93a9-3e6a9dd20c5f/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
810c2e643ca9c4f9523276ae1da1d2c7
b9d49831b13074fef651f08a7d2001da
5015dccdb52c00940bac22c84288df14
3b6ce8e9e36c89875e8cf39962fe8920
fe6163575aa718450a010f587fee177f
de125650c60f033a7c53232ead79cceb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100722422120448
spelling Torres Ballesteros, Adriana MaríaMerchán Castellanos, Nuri AndreaOsorio Bautista, Juan Sebastián2024-07-09T16:24:00Z2024-07-09T16:24:00Z2024-05https://hdl.handle.net/20.500.12495/12591instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coLas industrias de curtiembres son el sector industrial con mayor impacto en la contaminación de metales pesados en el río Bogotá por sus vertimientos de altas concentraciones de cromo hexavalente. Este contaminante tiene consecuencias mutagénicas con repercusiones en la salud de los diferentes entes biológicos presentes en el ecosistema hídrico, como lo son los microorganismos. Se han propuesto técnicas para la remoción del contaminante que han sido un desafío para su desarrollo e implementación. La biorremediación se presenta como alternativa sostenible para la remoción de este metal pesado, pero su desarrollo depende de factores esenciales como la selección de microorganismos con potencial de biorremediación. El objetivo de este trabajo fue desarrollar un algoritmo predictor de consorcios bacterianos, basado en la información obtenida de rutas metabólicas, perfiles taxonómicos y perfiles funcionales de las bacterias presentes en el río Bogotá, con potencial uso para la biorremediación de Cromo hexavalente. Se identificaron los perfiles taxonómicos y funcionales de las bacterias presentes en tres puntos de muestreo del río Bogotá mediante secuenciamiento del gen 16s. El análisis bioinformático no presentó una alfa diversidad significativa con un rango de 2.75 a 3.50 (índice de Shannon). La beta diversidad evidenció cambios significativos en la composición bacteriana de los puntos (0,76 distancia de Bray Curtis). Se identificó un aumento en la riqueza de especies Acinetobacter johnsonii y Pseudomonas aeruginosa, así como dominancia de los géneros Arthrobacter, Duganella, Flavobacterium, Limnohabitans y Rhodoferax. Se implementó el modelo de regresión Random Forest para la predicción del porcentaje de biorremediación capaz de realizar cada perfil taxonómico. Este modelo expuso un error cuadrático de medio porcentaje de biorremediación de 5,41. Se implementó adicionalmente el método de clusterización aglomerativo jerárquico Agnes para la conformación del consorcio bacteriano biorremediador. El algoritmo utilizó la información de conectividad detectada en la red ecológica microbiana, los perfiles funcionales y la capacidad de biorremediación de 40 bacterias identificadas como indicadoras del aumento de la concentración de cromo (VI) en el río Bogotá. El algoritmo agrupó las bacterias Pseudomonas peli, Pseudomonas aeruginosa, Burkholderia singularis, Acinetobacter Bahumannii y Dechloromonas denitrificans en el cluster con mayor capacidad de biorremediación de Cr VI (92,2%). La capacidad de biorremediación del consorcio natural obtenido por método de extinción y el consorcio predicho por el algoritmo fue comparada, evidenciando un 78,14% y 87.19% de remoción respectivamente.BioingenieroPregradoThe tannery industries are the industrial sector with the greatest impact on heavy metal pollution in the Bogotá River due to their discharge of high concentrations of hexavalent chromium. This pollutant has mutagenic consequences with repercussions on the health of different biological entities present in the aquatic ecosystem, such as microorganisms. Techniques for removing the pollutant have been proposed, which have been challenging for their development and implementation. Bioremediation emerges as a sustainable alternative for the removal of this heavy metal, but its development depends on essential factors such as the selection of microorganisms with bioremediation potential. The objective of this work was to develop a predictive algorithm of bacterial consortia, based on information obtained from metabolic pathways, taxonomic profiles, and functional profiles of bacteria present in the Bogotá River, with potential use for the bioremediation of hexavalent chromium. Taxonomic and functional profiles of bacteria present at three sampling points along the Bogotá River were identified using 16s gene sequencing. Bioinformatic analysis did not show significant alpha diversity with a range from 2.75 to 3.50 (Shannon index). Beta diversity revealed significant changes in bacterial composition between the points (Bray Curtis distance of 0.76). An increase in species richness of Acinetobacter johnsonii and Pseudomonas aeruginosa was identified, as well as dominance of the genera Arthrobacter, Duganella, Flavobacterium, Limnohabitans, and Rhodoferax. The Random Forest regression model was implemented for predicting the percentage of bioremediation achievable by each taxonomic profile. This model exhibited a mean squared error of 5.41 for bioremediation percentage. Additionally, the hierarchical agglomerative clustering method Agnes was implemented for the formation of the bioremediation bacterial consortium. The algorithm used connectivity information detected in the microbial ecological network, functional profiles, and the bioremediation capacity of 40 bacteria identified as indicators of increased chromium (VI) concentration in the Bogotá River. The algorithm grouped the bacteria Pseudomonas peli, Pseudomonas aeruginosa, Burkholderia singularis, Acinetobacter Bahumannii, and Dechloromonas denitrificans in the cluster with the highest Cr VI bioremediation capacity (92.2%). The bioremediation capacity of the naturally obtained consortium by extinction method and the consortium predicted by the algorithm was compared, showing 78.14% and 87.19% removal, respectively.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aprendizaje automáticoAbundancia taxonómicaBiorremediaciónConsorcio bacterianoCromo hexavalentePerfiles funcionales610.28Machine learningTaxonomic abundanceBioremediationBacteria consortiaHexavalent chromiumFunction profilesDesarrollo de un algoritmo predictor de consorcios bacterianos, partiendo de características metabólicas con potencial uso para la biorremediación de aguas residuales contaminadas con cromo hexavalenteDevelopment of a predictive algorithm for bacterial consortia based on metabolic characteristics with potential use for the bioremediation of wastewater contaminated with hexavalent chromiumBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Aguilar, C. Cordovez, C. Molina, N. (2010). Plomo, cromo III y cromo VI y sus efectos sobre la salud humana. Ciencia & Tecnología para la Salud Visual y Ocular Vol. 8, No. 1. pp. 77-88.Alayande, A. B., Aung, M. M., & Kim, I. S. (2018). Correlation Between Quorum Sensing Signal Molecules and Pseudomonas aeruginosa’s Biofilm Development and Virulency. Current Microbiology, 75(7), 787–793. https://doi.org/10.1007/s00284-018-1449-5Alboukadel Kassambara. (2017). Practical guide to Cluster Analysis in R : unsupervised machine learning. Createspace Independent Publishing Platform.Al-Faiz, M. Z., Ali Abdulhafidh Ibrahim, & Hadi, S. M. (2019). The effect of Z-Score standardization (normalization) on binary input due the speed of learning in back-propagation neural network. Iraqi Journal of Information and Communication Technology, 1(3), 42–48. https://doi.org/10.31987/ijict.1.3.41Ali El-Naggar, Ahmed Mosa, Naveed Ahmed, Nabeel Khan Niazi, Balal Yousaf, Binoy Sarkar, Jörg Rinklebe, Yanjiang Cai, Scott X. Chang. (2022). Modified and pristine biochars for remediation of chromium contamination in soil and aquatic systems. Chemosphere. Volume 303, Part 1. https://doi.org/10.1016/j.chemosphere.2022.134942.Ali, W. Zhang, H. Mao, K. Shafeeque, M. Wajahat M. Yang, X. Zhong L. Feng, X. Podgorski, J. (2022). Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Science of The Total Environment. Volume 826. 153910. https://doi.org/10.1016/j.scitotenv.2022.153910.Alzate, L. (2021). Diseño e implementación de un algoritmo para la identificación de comunidades microbianas con potencial uso en la biorremediación de ríos contaminados con cromo (VI). Repositorio Institucional Universidad el bosque, 15-24.Andermann T, Antonelli A, Barrett R & Silvestro D. (2022). Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Frontiers in Plant Science, Vol 13. DOI :10.3389/fpls.2022.839407Andrade C. (2020). Understanding the Difference Between Standard Deviation and Standard Error of the Mean, and Knowing When to Use Which. Indian Journal of Psychological Medicine. 42(4):409-410. doi:10.1177/0253717620933419Arenas, J. (2019) Comparison of programming languages for algorithms in bioinformatics. Programming language benchmarking. Universidad de los Andes.Argudo, S. & Pons, A. (2012) Mejorar las búsquedas de información. UOC, Barcelona.Arkin, A., Cottingham, R., Henry, C. et al. (2018). KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36, 566–569. https://doi.org/10.1038/nbt.4163Asunción, A., & Newman, D. J. (2007). UCI Machine Learning Repository. Recuperado de http://archive.ics.uci.edu/mlAyele, A., & Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 2021.Azeez, N. A., Dash, S. S., Gummadi, S. N., & Deepa, V. S. (2021). Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere, 266, 129204.BacDive. (2020). Dechloromonas denitrificans ED1 is a facultative anaerobe, mesophilic, Gramnegative bacterium that was isolated from earthworm gut.Banerjee, S., Misra, A., Chaudhury, S., & Dam, B. (2019). A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. Journal of hazardous materials, 367, 215-223. https://doi.org/10.1016/j.jhazmat.2018.12.038Bautista, S. (2020). Patrones de diversidad alfa y beta para quince complejos de páramo de Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Equipo de Gestión de Ecosistemas Estratégicos. Contrato: 20-20-0041-134PS.Bhunia, A., Lahiri, D., Nag, M., Upadhye, V., & Pandit, S. (2022). Bacterial biofilm mediated bioremediation of hexavalent chromium: A review. Biocatalysis and Agricultural Biotechnology, 102397. https://www-sciencedirect-com.ezproxy.unbosque.edu.co/science/article/pii/S1878818122001244Breitwieser, F. P., Lu, J., & Salzberg, S. L. (2019). A review of methods and databases for metagenomic classification and assembly. Briefings in bioinformatics, 20(4), 1125-1136.Breton-Deval, L., Sanchez-Reyes, A., Sanchez-Flores, A., Juárez, K., Salinas-Peralta, I., & MussaliGalante, P. (2020). Functional Analysis of a Polluted River Microbiome Reveals a Metabolic Potential for Bioremediation. Microorganisms, 8(4), 554. https: //doi.org/ 10.3390/microorganisms8040554Brock, G., Pihur, V., Datta, S., & Datta, S. (2021). clValid: AnRPackage for Cluster Validation. Journal of Statistical Software, 25(4).Bobay, L. & Ochman, H. (2017). The Evolution of Bacterial Genome Architecture. Frontiers in Genetics, 8. https://doi.org/10.3389/fgene.2017.00072Bocianowski, J., Wrońska-Pilarek, D., Krysztofiak-Kaniewska, A., Matusiak, K., & Wiatrowska, B. (2023). Comparison of Pearson’s and Spearman’s Correlation Coefficients Values for Selected Traits of Pinus sylvestris L. Preprints.org. https://doi.org/10.20944/preprints202312.1604.v1Boehmke, B. (2018). UC Business Analytics R Programming Guide - Hierarchical Cluster Analysis. University of Cincinnati. Recuperado de https://uc-r.github.io/hc_clusteringBonaccorso, G. (2018). Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning, 2nd Edition: Vol. 2nd ed. Packt Publishing.Botyarov, M., & Miller, E. E. (2022). Partitioning around medoids as a systematic approach to generative design solution space reduction. Results in Engineering, 15, 100544.Buenas prácticas de laboratorio de la OMS para laboratorios de microbiología farmacéutica (Red PARF Documento Técnico Nº 11) - OPS/OMS | Organización Panamericana de la Salud. Paho.org. (2013). Retrieved 4 May 2021Camacho Sánchez, J. (2020). Diagnóstico sobre los niveles de Cromo hexavalente (cr+6) en el tramo IV del Río Tunjuelito. Repository.unad.edu.co. https://repository.unad.edu.co/handle/10596/36849Carles, L., Wullschleger, S., Joss, A., Eggen, R. I. L., Schirmer, K., Schuwirth, N., Stamm, C., & Tlili, A. (2022). Wastewater microorganisms impact microbial diversity and important ecological functions of stream periphyton. Water Research, 225, 119119. https://doi.org/10.1016/j.watres.2022.119119Carmenaty, D. A. C., Silva, R. M. P., Aguilera, I., & Lamela, O. C. (2010). Validación Interna Del Método Espectofotométrico Por Adecuación, Para La Determinación De Cromo (vi) En Aguas Residuales. Revista Cubana de Química, XXII(3), 9–13.Caviedes, D., Muñoz, R., Perdomo, A., Rodríguez, D., & Sandoval, I (2015). Tratamientos para la remoción de metales pesados comúnmente presentes en aguas residuales industriales. Una revisión. Ingeniería y región, (13), 73-90. https://doi.org/10.25054/22161325.710Chakraborty, J., Palit, K., & Das, S. (2022). Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment—a case study on north-eastern coast of Bay of Bengal, India. Microbial Biodegradation and Bioremediation, 81–107. https //doi.org/10.1016/b978-0-323-85455-9.00014-xCharrad, Malika, Nadia Ghazzali, Véronique Boiteau, & Azam Niknafs. (2014). “NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set.” Journal of Statistical Software 61: 1–36. http://www.jstatsoft.org/v61/i06/paper.Chávez, A. (2010). Descripción de la nocividad del cromo proveniente de la industria curtiembre y de las posibles formas de removerlo. Revista Ingenierías Universidad de Medellín, 9(17), 41-49.Chen, S.-J., Shu, H.-Y., & Lin, G.-H. (2021). Regulation of tert-Butyl Hydroperoxide Resistance by Chromosomal OhrR in A. baumannii ATCC 19606. Microorganisms, 9(3), 629–629.Chen, Y., Hu, W., Huang, B., Weindorf, D. C., Rajan, N., Liu, X.,& Niedermann, S. (2013). Accumulation and health risk of heavy metals in vegetables from harmLess and organic vegetable production systems of China. Ecotoxicology and environmental safety, 98, 324-330.Cheng, H., Garrick, D. & Fernando, R. (2017). Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. J Animal Sci Biotechnol 8, 38. https://doi.org/10.1186/s40104-017-0164-6Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7(5), e623. ncbi. https://doi.org/10.7717/peerj-cs.623Chong, P. P., Chin, V. K., Looi, C. Y., Wong, W. F., Madhavan, P., & Yong, V. C. (2019). The Microbiome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Frontiers in Microbiology, 10(10). https://doi.org/10.3389/fmicb.2019.01136Claussen JC, Skiecevičienė J, Wang J, Rausch P, Karlsen TH, Lieb W, et al. (2017). Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome. PLoS Comput Biol 13(6): e1005361. https://doi.org/10.1371/journal.pcbi.1005361Contaminación del agua. (2015). Universidad de Granada. https://www.ugr.es/f̃garciac/pdf_color/tema4%20%5BModo%20de%20compatibilidad%5D.pdfCui, J., Huang, L., Wang, W., Xu, P., Zanaroli, G. & Tang, H. (2020). Maximization of the petroleum biodegradation using a synthetic bacterial consortium based on minimal value algorithm. International Biodeterioration & Biodegradation, 150, 104964. https://doi.org/10.1016/j.ibiod.2020.104964Cummings, D. E., Fendorf, S., Singh, N., Sani, R. K., Peyton, B. M., & Magnuson, T. S. (2006). Reduction of Cr(VI) under Acidic Conditions by the Facultative Fe(III)-Reducing Bacterium Acidiphilium cryptum. Environmental Science & Technology, 41(1), 146–152. https://doi.org/10.1021/es061333kCutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random Forests. Ensemble Machine Learning, 157–175. https://doi.org/10.1007/978-1-4419-9326-7_5Dangeti, P. (2017). Statistics for machine learning: build supervised, unsupervised, and reinforcement learning models using both Python and R. Packt Publishing.Decreto 2811 de 1974 [con fuerza de ley]. Por medio del cual se expide el Código de Recursos Naturales Renovables y de Protección al Medio Ambiente. 27 de enero de 1974. D.O. No. 34243.de Souza, O., Sinhor, V., Crizel, G., Pires, N., Sanches, J., Picoloto, R. S., ... & Mesko, M. F. (2022). Bioremediation of chromium and lead in wastewater from chemistry laboratories promotes by cyanobacteria. Bioresource Technology Reports, 19, 101161.Dellai, A., Dridi, D., Lemorvan, V. et al. (2013). Decolorization does not always mean detoxification: case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environ Sci Pollut Res 20, 5790–5796. https://doi.org/10.1007/s11356-013-1603-3Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC Bioinformatics, 13(1), 113. https://doi.org/10.1186/1471-2105-13-113Díaz-García L, Huang S, Spröer C, Sierra-Ramírez R, Bunk B, Overmann J, Jiménez DJ., (2021). Dilution-to-Stimulation/Extinction Method: a Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Appl Environ Microbiol. 2021 Jan 4;87(2): e02427-20. doi: 10.1128/ AEM.02427-20. PMID: 33127812; PMCID: PMC7783344.Dong-ju, K., Seung-gun, C., Sang-hyup, L. & Jae-woo, C. (2012). Relation of microbial biomass to counting units for Pseudomonas aeruginosa. African Journal of Microbiology Research, 6(21). https://doi.org/10.5897/ajmr10.902Dutta, A., Goldman, T., Keating, J., Burke, E., Williamson, N., Dirmeier, R., & Bowman, J. S. (2022). Machine Learning Predicts Biogeochemistry from Microbial Community Structure in a Complex Model System. Microbiology Spectrum, 10(1). https://doi.org/10.1128/spectrum.01909-21Dwan, A., Sánchez, B., Alexander, J., Castellanos, D., Clara, M., & Gaitán, E. (2021). Estudio de la composición de comunidades bacterianas en aguas del distrito de riego la ramada. Trabajo de Maestría. Universidad de los Andes.Eddy S. (2017). Accelerated Profile HMM Searches. PLOS Computational Biology. 7: e1002195. doi:10.1371/journal.pcbi.1002195Esser, M., Hoggarth, C., Baulch, H. M., Challis, J. K., Xie, Y., Giesy, J. P., Hecker, M., & Brinkmann, M. (2023). Wastewater discharges alter microbial community composition in surface waters of the canadian prairies. Chemosphere, 334, 138991–138991.Fahmy, K. (2022). Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms, 10(7), 1397.Fang, W., Fan, T., Wang, S., Yu, X., Lu, A., Wang, X., Zhou, W., Yuan, H., & Zhang, L. (2023). Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. Science of the Total Environment, 905, 167027–167027. https://doi.org/10.1016/j.scitotenv.2023.167027Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10(8), 538–550. https://doi.org/10.1038/nrmicro2832Ferrario, A., & Hämmerli, R. (2019). On Boosting: Theory and Applications. Social Science Research Network. https://doi.org/10.3929/ethz-b-000383242Forero Pineda, N., Marín - Suárez, J., Forero- Ulloa, F. E., & Gómez-Palacio, A. (2021). Extracción de ADN bacteriano a partir de cuerpos de agua de uso agrícola. Ciencia Y Agricultura, 18(1), 36–45. https://doi.org/10.19053/01228420.v18.n1.2021.11703Francke. H. (1997). Tecnologías modernas para la optimización del proceso de curtición al cromo. Lahstein, Alemania. https://biblioteca.org.ar/libros/cueros/curtido.htmFriedman J, Alm EJ (2012) Inferring Correlation Networks from Genomic Survey Data. PLOS Computational Biology 8(9): e1002687.Fuchs, S., Di Lascio, F. M. L., & Durante, F. (2021). Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables. Computational Statistics & Data Analysis, 159, 107201. https://doi.org/10.1016/j.csda.2021.107201Fujimoto A, Nakagawa H, Hosono N, Nakano K, Abe T, et al. (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing.Fullwood, M. J., Wei, C.-L. ., Liu, E. T., & Ruan, Y. (2009). Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Research, 19(4), 521–532.Fundación Humedales Bogotá. (2016). Páramo de Guacheneque. Fecha de acceso marzo de 2024. https://humedalesbogota.com/paramo-de-guacheneque/Garboza, Fátima, Frontado, Ronald, Noguera, Nirza, Ávila, Horacio, Ojeda, Luis, Ramírez, Ninoska, Triana, Juana, & Triana, Francisco. (2011). Uso de medios alternativos a base de hidrolizado de caseína y extracto de Aspergillus niger y su efecto sobre la expresión genética de una cepa de Escherichia coli. Revista de la Sociedad Venezolana de Microbiología, 31(2), 138-143. Recuperado en 21 de febrero de 2024, de http://ve.scielo.org/scielo.phpcript=sci_arttext&pid=S1315-25562011000200010& lng=es&tlng=es.Garcia-Etxebarria, K., Garcia-Garcerà, M., & Calafell, F. (2014). Consistency of metagenomic assignment programs in simulated and real data. BMC bioinformatics, 15(1), 1-10.Gobierno del Encuentro. (2013). Estudio para conocer los potenciales impactos ambientales y vulnerabilidad relacionada con las sustancias químicas y tratamiento de desechos peligrosos en el sector productivo del Ecuador. Ministerio de ambiente. https: //www.ambiente.gob.ec/wp-content/uploads/downloads/ 2013/03/PART2.pdfGollapudi, S. (2016). Practical Machine Learning. Packt Publishing.Gong, R., & Li, S. (2014). Extraction of human genomic DNA from whole blood using a magnetic microsphere method. International Journal of Nanomedicine, 3781. https://doi.org/10.2147/ijn.s59545Gupta, P. K., Yadav, B., Kumar, A., & Himanshu, S. K. (2021). Machine learning and artificial intelligence application in constructed wetlands for industrial effluent treatment: advances and challenges in assessment and bioremediation modeling. Bioremediation for Environmental Sustainability, 403-414. https://doi.org/10.1016/B978-0-12-820524-2.00016-XGuseva, K., Darcy, S., Simon, E., Alteio, L. V., Montesinos-Navarro, A., & Kaiser, C. (2022). From diversity to complexity: Microbial networks in soils. Soil Biology and Biochemistry, 169, 108604. https://doi.org/10.1016/j.soilbio.2022.108604Guzmán, A., Isabel, M., Yesid Cuesta-Astroz, & Torres, G. (2020). Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia. Brazilian Journal of Microbiology, 51(3), 1259–1267. https://doi.org/10.1007/s42770-020-00260-xHacılar, O. U. Nalbantoğlu and B. Bakir-Güngör. (2018) ”Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset,” 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 434-438, doi:10.1109/UBMK.2018.8566487.Haulian, R. (2014). Diagnóstico sobre los niveles de cromo hexavalente (cr+6) en el tramo iv del río Tunjuelito. Repository usu ac Id bitstream 123456789 3747 1 FKM-JUANITA5, Academia.edu. Available at: https://www.academia.edu/7496208/Repository_usu_ac_idjuanita5 (Accessed: 21 February 2024).Hauptfeld, E., Pelkmans, J., Huisman, T. T., Anocic, A., Snoek, B. L., von Meijenfeldt, F. B., ... & Dutilh, B. E. (2022). A metagenomic portrait of the microbial community responsible for two decades of bioremediation of poly-contaminated groundwater. Water Research, 221, 118767.Hidrolab. (2021, 22 diciembre). Análisis de residuos sólidos y líquidos. https ://www.hidrolab.com/servicios/analisis-residuos-solidos-y-liquidos/Horn, M. A., Ihssen, J., Matthies, C., Schramm, A., Acker, G., & Drake, H. L. (2005). Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1255–1265. https://doi.org/10.1099/ijs.0.63484-0Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Imran KM, Moniruzzaman M, Mou TJ, Parvez AK, Mahmud ZH, (2020). Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. Int J Environ Res Public Health. 2020 Aug 19;17(17):6013. doi:10.3390/ijerph17176013. PMID: 32824890; PMCID: PMC7504174.Huang, X. N., Min, D., Liu, D. F., Cheng, L., Qian, C., Li, W. W., & Yu, H. Q. (2019). Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. Environment international, 129, 86-94 https://doi.org/10.1016/j.envint.2019.05.016.Iltaf, J., Zaheer, T., Tariq, L., Amir, M. B., Fatima, R., Asbat, A., Kabeer, T., Fahad, M., Naeem, H., Shoukat, U., Noor, H., Awais, M., Umar, W. & Ayyub, M. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Science of The Total Environment, 850, 157961. https://doi.org/10.1016/j.scitotenv.2022.157961Jahan, M., & Hasan, M. (2021). A robust fuzzy approach for gene expression data clustering. Soft Computing, 25(23), 14583–14596. https://doi.org/10.1007/s00500-021-06397-7Jayakumar, S., Daisy, T., Kalaiselvi, J., Mahalakshmi, P.,& Soumiya, V. (2020). A Theoretical study on the Microbial Fuel Cells Technology for Waste Water Treatment along with Heavy Metal Reduction and Power Generation using Nano catalysts. Aut Aut Research Journal, 11(6), 93-98.Jia, S., Jia, R., Zhang, K., Sun, S., Lu, N., Wang, M., & Zhao, Q. (2020). Disinfection characteristics of Pseudomonas peli, a chlorine-resistant bacterium isolated from a water supply network. Environmental Research, 185, 109417. https://doi.org/10.1016/j.envres.2020.109417Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere, 207, 255-266. https ://doi.org/10.1016/j.chemosphere.2018.05.050Jobby R, Jha P, Gupta A, Gupte A, Desai N., (2019) Biotransformation of chromium by root nodule bacteria Sinorhizobium sp. SAR1. PLoS One, 30;14(7):e0219387. doi: 10.1371/journal.pone.0219387.PMID: 31361751; PMCID: PMC6667149.Jones, A. (2024) Purity ratios: Nucleic acid ratios: Technical note 130, DeNovix. Available at: https://www.denovix.com/tn-130-purity-ratios-explained/ (Accessed: 21 February 2024).Joutey, N. T., Sayel, H., Bahafid, W., & El Ghachtouli, N. (2014). Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms. Reviews of Environmental Contamination and Toxicology Volume 233, 45–69. https://doi.org/10.1007/978-3-319-10479-9_2Karrar, A. E. (2022). The Effect of Using Data Pre-Processing by Imputations in Handling Missing Values. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 10(2).Kao, C. M., Liao, H. Y., Chien, C. C., Tseng, Y. K., Tang, P., Lin, C. E., & Chen, S. C. (2016). The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. Journal of hazardous materials, 302, 144-150.Kaul A, Mandal S, Davidov O, Peddada SD. (2017). Analysis of Microbiome Data in the Presence of Excess Zeros. Front Microbiol. Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. PMID: 29163406; PMCID: PMC5682008.Khan, I., Aftab, M. & Shakir, S. (2019). Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191, 585.Klein, C.C., Cottret, L., Kielbassa, J. et al. (2012). Exploration of the core metabolism of symbiotic bacteria. BMC Genomics 13, 438. https://doi.org/10.1186/1471-2164-13-438Kuddus, M. (2018). Bioremediation: Advances in Research and Applications. Nova.Laxman, R. S., & More, S. (2002). Reduction of hexavalent chromium by Streptomyces griseus. Minerals Engineering, 15(11), 831–837. https://doi.org/10.1016/s0892-6875(02)00128-0Lin, W.-H. et al. (2023) ‘Cleanup of cr(vi)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms’, Journal of Environmental Management, 339, p. 117947. doi: 10.1016/j.jenvman.2023.117947.Liu, B., Yao, J., Ma, B., Chen, Z., Zhao, C., Zhu, X. & Duran, R. (2021). Microbial community profiles in soils adjacent to mining and smelting areas: Contrasting potentially toxic metals and co-occurrence patterns. Chemosphere, 282, 130992.Liu, Y., Zeng, M., Xie, Z., Ning, D., Zhou, J., Yu, X., Liu, R., Zhang, L., & Fang, J. (2022). Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms, 10(3), 639. https://doi.org/10.3390/microorganisms10030639López, T, Dominguez, L & García, J. (2007). Arreglo estructural de un consorcio microbiano de interés alimentario en la producción del vinagre. Trabajo presentado en el octavo Congreso Nacional de Microscopía, Octubre, México.López, M,(2016) La contaminación del agua con cromo. Fundación para el Conocimiento madrid. https://www.madrimasd.org/Lucena-Aguilar, G. et al. (2016) DNA source selection for downstream applications based on DNA Quality Indicators Analysis, Biopreservation and biobanking.Luijken, K., Song, J., & Groenwold, R. H. H. (2022). Quantitative prediction error analysis to investigate predictive performance under predictor measurement heterogeneity at model implementation. Diagnostic and Prognostic Research, 6(1).Mahé, F., Rognes, T., Quince, C., de Vargas, C., & Dunthorn, M. (2014). Swarm: robust and fast clustering method for amplicon-based studies. PeerJ, 2, e593.Malaviya, P. & Singh, A. (2014). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 27.Marino, B. (2006). Evaluación de las tecnologías de tratamiento de aguas subterráneas contaminadas con Cromo, Universitat Politecnica Catalunya. http://hdl.handle.net/2099.1/3153Ma, L., Xu, J., Chen, N., Li, M., & Feng, C. (2019). Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicology and environmental safety, 170, 763-770. https://doi.org/10.1016/j.ecoenv.2018.12.041Maalouf, M. (2011). Logistic regression in data analysis: an overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281. https://doi.org/10.1504/ijdats.2011.041335Mala, J. G. S. M., Takeuchi, S., Sujatha, D., & Mani, U. (2020). Microbial Chromate Reductases: Novel and Potent Mediators in Chromium Bioremediation-A Review. Applied Microbiology: Theory & Technology, 32-44.Marchesi, J.R., Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3, 31.Mariappan, V., Vellasamy, K. M., Hashim, O. H., & Vadivelu, J. (2011). Profiling of Burkholderia cepacia Secretome at Mid-Logarithmic and Early-Stationary Phases of Growth. PLoS ONE, 6(10), e26518. https://doi.org/10.1371/journal.pone.0026518Mathieu, A., Leclercq, M., Sanabria, M., Perin, O., & Droit, A. (2022). Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.811495Maulud, D., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.McMurdie, P.J. and Holmes, S. (2014). ‘Waste not, want not: Why rarefying microbiome data is inadmissible’, PLoS Computational Biology, 10(4). doi:10.1371/journal.pcbi.1003531.McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: a review of the literature from an educational perspective. Computer Science Education, 18(2), 67–92. https://doi.org/10.1080/08993400802114581Mehdi L, David M. & David S. (2018). Constructing and Analyzing Microbiome Networks in R. Microbiome Analysis: Methods and Protocols, Methods in Molecular Biology, vol. 1849, Chapter 16.Mercado, J.V., Koyama, M. and Nakasaki, K. (2022) Co-occurrence network analysis reveals loss of microbial interactions in anaerobic digester subjected to repeated organic load shocks, Water Research, 221, p. 118754. doi:10.1016/j.watres.2022.118754.Ministerio de ambiente y desarrollo sostenible. (2013). Decreto 2811 del 18 de diciembre de 1974.”Por el cual se dicta el Código Nacional de Recursos Naturales Renovables y de Protección al Medio Ambiente. https://www.minambiente.gov.co/ wp-content/uploads/2021/10/Decreto-2811-de-1974.pdf ”Ministerio de salud y protección social. (2018). LEY 1930 DE 2018. ”POR MEDIO DE LA CUAL SE DICTAN DISPOSICIONES PARA LA GESTIÓN INTEGRAL DE LOS PÁRAMOS EN COLOMBIA”. https://www.funcionpublica .gov.co/eva/gestornormativo/norma.php?i=87764Ministerio de salud y protección social. (2022). RESOLUCIÓN NÚMERO 172 DE 2022 Por la cual se autorizan los laboratorios para la realización de análisis físicos, químicos y microbiológicos de agua para el consumo humano https ://minsalud.gov.co/ Normatividad_Nuevo/Resoluci%C3%B3n%20No.%20172%20de%202022.pdfMora Collazos, Alexander. (2016). Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova scientia, 8(17), 361-378. Recuperado en 26 de septiembre de 2022, de http://www.scielo.org.mx/scielo.php? script=sci_arttext&pid=S2007-07052016000200361&lng=es&tlng=es.MP Biomedicals (2021). FastDNA SPIN Kit for Soil User manual. Fecha de accceso Agosto (2023). https: //www.mpbio.com/media/document/file/manual/FastDNA _SPIN_Kit_for_SoilWEB.pdfMushtaq, H., Khawaja, S. G., Akram, M. U., Yasin, A., Muzammal, M., Khalid, S., & Khan, S. A. (2018). A Parallel Architecture for the Partitioning Around Medoids (PAM) Algorithm for Scalable Multi-Core Processor Implementation with Applications in Healthcare. Sensors, 18(12), 4129.Najat, N., & Abdulazeez, A. M. (2017). Gene clusteringwith partition around mediods algorithm basedon weighted andnormalized Mahalanobis distance. In 2017 International Conferenceon Intelligent Informatics and Biomedical Sciences (ICIIBMS) (pp.140-145).Namkung, J. (2020) Machine learning methods for microbiome studies. Journal of Microbiology. 58, 206–216. https://doi-org.ezproxy.unbosque.edu.co/10.1007/s12275-020-0066-8NewEngland BioLabs. (2023). Monarch® Genomic DNA Purification Kit instruction manual. NEB T3010S/L.Nielsen, F. (2016). Hierarchical Clustering. Introduction to HPC with MPI for Data Science, 195–211.Ochoa, D. & Montoya, A. (2010). Consorcios microbianos: una metáfora biológica aplicada a la asociatividad empresarial en cadenas productivas agropecuarias. Revista de la Facultad de Ciencias Económicas: Investigación y reflexión, Vol 18(2), 55-74. http://www.scielo.org.co/pdf/rfce/v18n2/v18n2a04.pdfOti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive Review of K-Means Clustering Algorithms. International Journal of Advances in Scientific Research and Engineering, 07(08), 64–69.Ormaza-González, F.I. et al. (2022) Sampling bottles for shallow estuarine waters, constructed using inexpensive recyclable materials, Estuarine, Coastal and Shelf Science, 275, p. 107965. doi:10.1016/j.ecss.2022.107965.Ortega, O. (2013) .Research Hints: Guía para la elaboración de un plan de Búsqueda. Universidad de Antioquia, Colombia.Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104(16), 6544–6549. https://doi.org/10.1073/pnas.0701085104Pardakhti, M., Mandal, N., Ma, A. W. K., & Yang, Q. (2021). Practical Active Learning with Model Selection for Small Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). https://doi.org/10.1109/icmla52953.2021.00263Pédron J, Guyon L, Lecomte A, Blottière L, Chandeysson C, Rochelle-Newall E, Raynaud X, Berge O, Barny MA. (2020). Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa. Microorganisms. Jul 27;8(8) :1129. doi: 10.3390/microorganisms8081129.Peschel, S. et al. (2020) Netcomi: Network construction and comparison for microbiome data in R, Briefings in Bioinformatics, 22(4). doi :10.1093/bib/bbaa290.Prasad, S. Kumar, K. Kumar, S… Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approach, Journal of Environmental Management, Volume 285. ISSN 0301-4797 https://doi.org/10.1016/j.jenvman.2021.112174.Pure Heart (2011) Tannery Operations, :: WorstPolluted.org : Projects Reports. Available at: http://www.worstpolluted.org/ projects_reports/display/88 (Accessed: October 30, 2022).Pushkar, B., Sevak, P., Parab, S., & Nilkanth, N. (2021). Chromium pollution and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Management, 287, 112279. https://doi.org/10.1016/j.jenvman.2021.112279Quiñonero, J., Sugiyama, M., Schwaighofer, A. & Lawrence, D. (2009). Dataset Shift in Machine Learning. The MIT Press.QIIME2 documentation (2023). ”Moving Pictures” tutorial .9.2 documentation. Docs.qiime2.org. Retrieved February 24, 2024, from https://docs.qiime2.org/2024.2/tutorials/moving-pictures/Rahman, Z., & Thomas, L. (2021). Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Frontiers in Microbiology, 11.Ramos, L. (2018). Estudio de la dinámica del cromo en la cuenca alta del río Bogotá mediante la selección y aplicación de un modelo de calidad de agua para la representación de contaminantes conservativos en cuerpos de agua lóticos. Trabajo de grado para obtener el título de Ingeniero Ambiental. Universidad Nacional Abierta y a Distancia.Reyes, L. (2017). Aplicación del algoritmo Adaboost.rt para la predicción del índice Colcap y el diseño de un controlador no lineal. Universidad Distrital Francisco José de Caldas.Reyes, Y., Vergara, I., Torres, O., Lagos, M. D., & Jimenez, E. E. G. (2016). Contaminación por metales pesados: implicaciones en Salud, ambiente y seguridad alimentaria. Revista Ingeniería, Investigación y Desarrollo,16 ( 2),66-77. https://dialnet.unirioja.es/servlet/articulo?codigo=6096110Rognes T;Flouri T;Nichols B;Quince C;Mahé F; (2016) VSEARCH: A versatile open source tool for metagenomics, PeerJ. Available at: https://pubmed.ncbi.nlm.nih.gov/27781170/ (Accessed: 21 February 2024).Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P., Baranyi, J., Peck, M. W., & Hinton, J. C. D. (2011). Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology, 194(3), 686–701. https://doi.org/10.1128/jb.06112-11Röttjers L & Faust K. (2018) From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 1;42(6):761-780. doi: 10.1093/femsre/fuy030. PMID: 30085090; PMCID: PMC6199531Ruiz-Moreno, H. A., López-Tamayo, A. M., Caro-Quintero, A., Husserl, J. & González Barrios, A. F. (2019). Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecological Modelling, 399, 1-12. https://doi.org/10.1016/j.ecolmodel.2019.02.001S. K. Pradhan, N. R. Singh, B. P. Rath & H. N. Thatoi (2016): Bacterial chromate reduction: a review of important genomic, proteomic and bioinformatic analysis, Critical Reviews in Environmental Science and Technology, DOI: 10.1080/10643389.2016.1258912Saganome Rodríguez, G. (2016). Diversidad de microorganismos endófitos y su papel en el ciclo de nitrógeno en macrófitas flotantes del Humedal Meandro del Say. Biología.Salem, N., & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292–299. https://doi.org/10.1016/j.procs.2019.12.111Sathishkumar, K., Murugan, K. & Benelli, G. (2017). Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol 67, 91–98.Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies. PLoS ONE, 6(12), e27310. https://doi.org/10.1371/journal.pone.0027310Schmidt T, Friehs K, Schleef M, Voss C, Flaschel E. (1999). Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal Biochem. 15;274(2):235-40.Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal: Promoting Communications on Statistics and Stata, 20(1), 3–29. https://doi.org/10.1177/1536867x20909688Severiche, C. & González, H. (2013). Verificación analítica para las determinaciones de cromo hexavalente en aguas por espectrofotometría. Ingenierías USBMed, 4(1), 22–26.Shahneela Pitafi, Anwar, T., & Sharif, Z. (2023). A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms. Applied Sciences, 13(6), 3529–3529.Shao, K., Yao, X., Wu, Z. et al. (2021). The bacterial community composition and its environmental drivers in the rivers around eutrophic Chaohu Lake, China. BMC Microbiol 21, 179. https://doi.org/10.1186/s12866-021-02252-9Sharma, P. Kumar, A. Sang-Hyoun, K. Pratap, S. Chaturvedi, P, Varjani, S. (2021). Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation. Volume 24. 101826. https://doi.org/10.1016/j.eti.2021.101826.Sharma, P., Singh, S. P., Parakh, S. K., & Tong, Y. W. (2022). Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered, 13(3), 4923–4938.Sierra, I. N., Ferreira, M. J., Torres-Ballesteros, A., Louvado, A., Gomes, N., & Cunha, A. (2024). Brevibacterium EB3 inoculation enhances rhizobacterial community interactions leading to improved growth of Salicornia europaea. Applied Soil Ecology, 196, 105306–105306.Solomatine, D. & Shrestha,D. (2004).AdaBoost. RT: a boosting algorithm for regression problems IEEE Int. Jt. Conf. Neural Networks, vol. 2, pp. 1163–1168.Su, Y., Sun, S., Liu, Q., Zhao, C., Li, L., Chen, S., ... & Tang, F. (2022). Characterization of the simultaneous degradation of pyrene and removal of Cr (VI) by a bacteria consortium YH. Science of The Total Environment, 853, 158388.Sukanta Kumar Pradhan, Nihar Ranjan Singh, Bhagwat Prasad Rath & Hrudayanath Thatoi (2016) Bacterial chromate reduction: A review of important genomic, proteomic, and bioinformatic analysis, Critical Reviews in Environmental Science and Technology, 46:21-22, 1659-1703, DOI: 10.1080/10643389.2016.1258912Sun, Y., Li, X., Cao, N., Duan, C., Ding, C., Huang, Y., & Wang, J. (2022). Biodegradable microplastics enhance soil microbial network complexity and ecological stochasticity. Journal of Hazardous Materials, 439, 129610. https://doi.org/10.1016/j.jhazmat.2022.129610Tang, R., Li, X., Mo, Y., Ma, Y., Ding, C., Wang, J., ... & Wang, X. (2019). Toxic responses of metabolites, organelles and gut microorganisms of Eisenia fetida in a soil with chromium contamination. Environmental Pollution, 251, 910-920. https://www-sciencedirect- com.ezproxy.unbosque.edu.co /science/article/pii/S0269749119316057Tankeshwar, A. (2022, 7 abril). Bacterial Culture Media: Classification, Types, Uses. Microbe Online. Recuperado 15 de abril de 2022, de http://microbeonline.com/types-of-bacteriological-culturemedium/Tichý, Lubomı́r & Milan Chytrý. (2006). “Statistical determination of diagnostic species for site groups of unequal size.” Journal of Vegetation Science 17 (6): 809Tomasz Burzykowski, Geubbelmans, M., Rousseau, A.-J., & Valkenborg, D. (2023). Validation of machine learning algorithms. American Journal of Orthodontics and Dentofacial Orthopedics, 164(2), 295–297. https://doi.org/10.1016/j.ajodo.2023.05.007Tu, Q., Yan, Q., Deng, Y., Michaletz, S. T., Buzzard, V., Weiser, M. D., Waide, R. B., Ning, D., Wu, L., He, Z., & Zhou, J. (2020). Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biology & Biochemistry, 148, 107897–107897.Tufail, M. A., Iltaf, J., Zaheer, T., Tariq, L., Amir, M. B., Fatima, R., ... & Ayyub, M. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Science of The Total Environment, 157961.Umargono, E., Suseno, J. E., & Gunawan, S. K. V. (2020, October 11). K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula. Www.atlantis-Press.com; Atlantis Press. https://doi.org/10.2991/assehr.k.201010.019Urrea, V. (2022). Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico. Tesis presentada como requisito para obtener el título de Bióloga. Universidad del Rosario. Rescatado del repositorio institucional de la universidad del Rosario.Valenzuela-González, F., Martínez-Porchas, M., Villalpando-Canchola, E., & Vargas-Albores, F. (2016). Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken). Journal of microbiological methods, 122, 38-42.Vanparys, B. (2006). Pseudomonas peli sp. nov. and Pseudomonas borbori sp. nov., isolated from a nitrifying inoculum. INTERNATIONAL JOURNAL of SYSTEMATIC and EVOLUTIONARY MICROBIOLOGY, 56(8), 1875–1881. https://doi.org/10.1099/ijs.0.64224-0Vandamme, P., Peeters, C., Birgit De Smet, Price, E. P., Sarovich, D. S., Deborah Boran Henry, Hird, T. J., James, Mayo, M., Warner, J. H., Baker, A. J., Currie, B. J., & Carlier, A. (2017). Comparative Genomics of Burkholderia singularis sp. nov., a Low G+C Content, Free-Living Bacterium That Defies Taxonomic Dissection of the Genus Burkholderia. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01679Vargas-Albores, F., Luis Enrique Ortiz-Suárez, Villalpando-Canchola, E., & Martínez-Porchas, M. (2017). Size-variable zone in V3 region of 16S rRNA. RNA Biology, 14(11), 1514–1521. https://doi.org/ 0.1080/15476286.2017.1317912Wang, A., Gao, L., Ren, N., Xu, J., Liu, C., & Lee, D. J. (2010). Enrichment strategy to select functional consortium from mixed cultures: consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production. International journal of hydrogen energy, 35(24), 13413-13418.Wang, Xusheng et al. (2023) ‘Microbial community composition and degradation potential of petroleumcontaminated sites under heavy metal stress’, Journal of Hazardous Materials, 457, p. 131814. doi:10.1016/j.jhazmat.2023.131814.Wang, S., Hua, X., & Cui, L. (2021). Characterization of microbiota diversity of engorged ticks collected from dogs in China. Journal of Veterinary Science, 22(3). https://doi.org/10.4142/jvs.2021.22.e37Wang YS, Dai TM, Tian H, Wan FH, Zhang GF. (2019). Comparative analysis of eight DNA extraction methods for molecular research in mealybugs. PLOS ONE 14(12): e0226818.Wilhelm, R.C. et al. (2023). Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils, Nature News.Xiao, Y., Angulo, M.T., Friedman, J. et al. (2017). Mapping the ecological networks of microbial communities. Nat Commun 8, 2042. https://doi.org/10.1038/s41467-017-02090-2Xie, Y. (2024). bookdown: Authoring Books and Technical Documents with R Markdown. Taylor and Francis group.Y. C. Reyes, I. Vergara, O. E. Torres, M. Díaz, and E. E. González, (2016). Contaminación Por Metales Pesados: Implicaciones En Salud, Ambiente Y Seguridad Alimentaria. Ing. Investig. y Desarro., vol.16, no. 2, pp. 66–77.Yang, Z., Algesheimer, R. & Tessone, C. A Comparative Analysis of Community Detection Algorithms on Artificial Networks. Sci Rep 6, 30750 (2016). https ://doi.org/10.1038/srep30750Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Victor, H., Guerrero, V.H. (2021). Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation. 22, 101504 https://doi.org/ 10.1016/j.eti.2021.101504.Zeeshan Haider Jaffari, Jeong, H., Shin, J., Kwak, J., Son, C., Lee, Y.-G., Kim, S., Chon, K., & Kyung Hwa Cho. (2023). Machine-learning-based prediction and optimization of emerging contaminants’ adsorption capacity on biochar materials. Chemical Engineering Journal, 466, 143073–143073.Zhao C, Yang Q, Chen W, Teng B. (2012). Removal of hexavalent chromium in tannery wastewater by Bacillus cereus. Can J Microbiol. Jan;58(1):23-8. doi: 10.1139/w11-096. Epub 2011 Dec 13. PMID:22149215.Zhao, W. P., Li, J., Zhao, J., Zhao, D., Lu, J., & Wang, X. (2020). XGB Model : Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm. Radioengineering, 29(1), 81–93. https://doi.org/10.13164/re.2020.0081Zou, L. Liu, P. & Xiangkai, L. (2013). New advances in molecular mechanism of microbial hexavalent chromium reduction. Identification and quantification of isoflavones in Bangladeshi. Available at: http://www.sciencewebpublishing.net/ijbfs/archive/2017/September/Abstract/Saleh et al.htm (Accessed:21 February 2024).spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/c6fde8d1-5793-43d6-a055-184b364c62d1/download17cc15b951e7cc6b3728a574117320f9MD51Carta de autorización.pdfapplication/pdf245166https://repositorio.unbosque.edu.co/bitstreams/777ca924-93c4-4a54-b145-b7ee54bb18c8/download810c2e643ca9c4f9523276ae1da1d2c7MD57Anexo 1. Acta de aprobación.pdfapplication/pdf355034https://repositorio.unbosque.edu.co/bitstreams/1c7f9627-21bd-463a-a295-f4eff946914b/downloadb9d49831b13074fef651f08a7d2001daMD58ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf5569400https://repositorio.unbosque.edu.co/bitstreams/fe720db0-da29-4027-a9b7-749fb41e8b38/download5015dccdb52c00940bac22c84288df14MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/4732ae70-65a5-4edc-83ba-5f5f36b56a3e/download3b6ce8e9e36c89875e8cf39962fe8920MD56TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102022https://repositorio.unbosque.edu.co/bitstreams/779a1b00-4876-44be-98b2-c3d2f55f1cbc/downloadfe6163575aa718450a010f587fee177fMD59THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2325https://repositorio.unbosque.edu.co/bitstreams/ee06c3d5-d463-4b12-93a9-3e6a9dd20c5f/downloadde125650c60f033a7c53232ead79ccebMD51020.500.12495/12591oai:repositorio.unbosque.edu.co:20.500.12495/125912024-07-10 03:02:52.182http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=